期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Establishment of genomic library technology mediated by non-homologous end joining mechanism in Yarrowia lipolytica 被引量:5
1
作者 Qiuyan Bai Shuai Cheng +3 位作者 Jinlai Zhang Mengxu Li Yingxiu Cao Yingjin Yuan 《Science China(Life Sciences)》 SCIE CAS CSCD 2021年第12期2114-2128,共15页
Genomic variants libraries are conducive to obtain dominant strains with desirable phenotypic traits.The non-homologous end joining(NHEJ),which enables foreign DNA fragments to be randomly integrated into different ch... Genomic variants libraries are conducive to obtain dominant strains with desirable phenotypic traits.The non-homologous end joining(NHEJ),which enables foreign DNA fragments to be randomly integrated into different chromosomal sites,shows prominent capability in genomic libraries construction.In this study,we established an efficient NHEJ-mediated genomic library technology in Yarrowia lipolytica through regulation of NHEJ repair process,employment of defective Ura marker and optimization of iterative transformations,which enhanced genes integration efficiency by 4.67,22.74 and 1.87 times,respectively.We further applied this technology to create high lycopene producing strains by multi-integration of heterologous genes of CrtE,CrtB and CrtI,with 23.8 times higher production than rDNA integration through homologous recombination(HR).The NHEJ-mediated genomic library technology also achieved random and scattered integration of loxP and vox sites,with the copy number up to 65 and 53,respectively,creating potential for further application of recombinase mediated genome rearrangement in Y.lipolytica.This work provides a high-efficient NHEJ-mediated genomic library technology,which enables random and scattered genomic integration of multiple heterologous fragments and rapid generation of diverse strains with superior phenotypes within 96 h.This novel technology also lays an excellent foundation for the development of other genetic technologies in Y.lipolytica. 展开更多
关键词 non-homologous end joining genomic library Yarrowia lipolytica synthetic biology
原文传递
Functional non-homologous end joining patterns triggered by CRISPR/Cas9 in human cells
2
作者 Fayu Yang Xianglian Ge +9 位作者 Xiubin He Xiexie Liu Chenchen Zhou Huihui Sun Junsong Zhang Junzhao Zhao Zongming Song Jia Qu Changbao Liu Feng Gu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2018年第6期329-332,共4页
CRISPR/Cas9-mediated genome engineering technologies are now widely applied in various organisms,including mouse and human cells(Cong et al.,2013;Mali et al.,2013;Yang et al.,2013;Hsu et al.,2014).The most widely us... CRISPR/Cas9-mediated genome engineering technologies are now widely applied in various organisms,including mouse and human cells(Cong et al.,2013;Mali et al.,2013;Yang et al.,2013;Hsu et al.,2014).The most widely used customized CRISPR/Cas9(Sp Cas9)is derived from Streptococcus pyogenes(Cong et al.,2013). 展开更多
关键词 GFP Functional non-homologous end joining patterns triggered by CRISPR/Cas9 in human cells PCR RNA HEK
原文传递
The phage T4 DNA ligase mediates bacterial chromosome DSBs repair as single component non-homologous end joining
3
作者 Tianyuan Su Fapeng Liu +4 位作者 Yizhao Chang Qi Guo Junshu Wang Qian Wang Qingsheng Qi 《Synthetic and Systems Biotechnology》 SCIE 2019年第2期107-112,共6页
DNA double-strand breaks(DSBs)are one of the most lethal forms of DNA damage that is not efficiently repaired in prokaryotes.Certain microorganisms can handle chromosomal DSBs using the error-prone non-homologous end ... DNA double-strand breaks(DSBs)are one of the most lethal forms of DNA damage that is not efficiently repaired in prokaryotes.Certain microorganisms can handle chromosomal DSBs using the error-prone non-homologous end joining(NHEJ)system and ultimately cause genome mutagenesis.Here,we demonstrated that Enterobacteria phage T4 DNA ligase alone is capable of mediating in vivo chromosome DSBs repair in Escherichia coli.The ligation efficiency of DSBs with T4 DNA ligase is one order of magnitude higher than the NHEJ system from Mycobacterium tuberculosis.This process introduces chromosome DNA excision with different sizes,which can be manipulated by regulating the activity of host-exonuclease RecBCD.The DNA deletion length reduced either by inactivating recB or expressing the RecBCD inhibitor Gam protein fromλphage.Furthermore,we also found single nucleotide substitutions at the DNA junction,suggesting that T4 DNA ligase,as a single component non-homologous end joining system,has great potential in genome mutagenesis,genome reduction and genome editing. 展开更多
关键词 T4 DNA ligase DNA double-strand breaks non-homologous end joining CRISPR-Cas9
原文传递
Inhibition of KU70 and KU80 by CRISPR interference,not NgAgo interference,increases the efficiency of homologous recombination in pig fetal fibroblasts 被引量:2
4
作者 LI Guo-ling QUAN Rong +10 位作者 WANG Hao-qiang RUAN Xiao-fang MO Jian-xin ZHONG Cui-li YANG Huaqiang LI Zi-cong GU Ting LIU De-wu WU Zhen-fang CAI Geng-yuan ZHANG Xian-wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第2期438-448,共11页
Non-homologous end-joining(NHEJ) is a predominant pathway for the repair of DNA double-strand breaks(DSB). It inhibits the efficiency of homologous recombination(HR) by competing for DSB targets. To improve the effici... Non-homologous end-joining(NHEJ) is a predominant pathway for the repair of DNA double-strand breaks(DSB). It inhibits the efficiency of homologous recombination(HR) by competing for DSB targets. To improve the efficiency of HR, multiple CRISPR interference(CRISPRi) and Natronobacterium gregoryi Argonaute(NgAgo) interference(NgAgoi) systems have been designed for the knockdown of NHEJ key molecules, KU70, KU80, polynucleotide kinase/phosphatase(PNKP), DNA ligase IV(LIG4), and NHEJ1. Suppression of KU70 and KU80 by CRISPRi dramatically promoted(P<0.05) the efficiency of HR to 1.85-and 1.58-fold, respectively, whereas knockdown of PNKP, LIG4, and NHEJ1 repair factors did not significantly increase(P>0.05) HR efficiency. Interestingly, although the NgAgoi system significantly suppressed(P<0.05) KU70, KU80, PNKP, LIG4, and NHEJ1 expression, it did not improve(P>0.05) HR efficiency in primary fetal fibroblasts. Our result showed that both NgAgo and catalytically inactive Cas9(dCas9) could interfere with the expression of target genes, but the downstream factors appear to be more active following CRISPR-mediated interference than that of NgAgo. 展开更多
关键词 HOMOLOGOUS recombination non-homologous end-joining CRISPRi NgAgoi KU70 KU80
下载PDF
Genome engineering using the CRISPR/Cas system 被引量:9
5
作者 Takuro Horii Izuho Hatada 《World Journal of Medical Genetics》 2014年第3期69-76,共8页
Recently, an epoch-making genome engineering technology using clustered regularly at interspaced short palindromic repeats(CRISPR) and CRISPR associated(Cas) nucleases, was developed. Previous technologies for genome ... Recently, an epoch-making genome engineering technology using clustered regularly at interspaced short palindromic repeats(CRISPR) and CRISPR associated(Cas) nucleases, was developed. Previous technologies for genome manipulation require the time-consuming design and construction of genome-engineered nucleases for each target and have, therefore, not been widely used in mouse research where standard techniques based on homologous recombination are commonly used. The CRISPR/Cas system only requires the design of sequences complementary to a target locus, making this technology fast and straightforward. In addition, CRISPR/Cas can be used to generate mice carrying mutations in multiple genes in a single step, an achievement not possible using other methods. Here, we review the uses of this technology in genetic analysis and manipulation, including achievements made possible to date and the prospects for future therapeutic applications. 展开更多
关键词 Clustered regularly at interspaced short palindromic repeats Clustered regularly at interspaced short palindromic repeats associated 9 Genome engineering Double-strand breaks non-homologous end joining Homology-directed repair
下载PDF
DNA Double-Strand Breaks,Potential Targets for HBV Integration 被引量:2
6
作者 胡晓文 林菊生 +4 位作者 谢琼慧 任精华 常莹 吴文杰 夏羽佳 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2010年第3期265-270,共6页
Hepatitis B virus(HBV)-induced hepatocellular carcinoma(HCC) is one of the most fre-quently occurring cancers.Hepadnaviral DNA integrations are considered to be essential agents which can promote the process of the he... Hepatitis B virus(HBV)-induced hepatocellular carcinoma(HCC) is one of the most fre-quently occurring cancers.Hepadnaviral DNA integrations are considered to be essential agents which can promote the process of the hepatocarcinogenesis.More and more researches were designed to find the relationship of the two.In this study,we investigated whether HBV DNA integration occurred at sites of DNA double-strand breaks(DSBs),one of the most detrimental DNA damage.An 18-bp I-SceI homing endonuclease recognition site was introduced into the DNA of HepG2 cell line by stable DNA transfection,then cells were incubated in patients’ serum with high HBV DNA copies and at the same time,DSBs were induced by transient expression of I-SceI after transfection of an I-SceI expression vector.By using nest PCR,the viral DNA was detected at the sites of the break.It appeared that integra-tion occurred between part of HBV x gene and the I-SceI induced breaks.The results suggested that DSBs,as the DNA damages,may serve as potential targets for hepadnaviral DNA insertion and the integrants would lead to widespread host genome changes necessarily.It provided a new site to investi-gate the integration. 展开更多
关键词 DNA double-strand breaks hepatitis B virus INTEGRATION non-homologous end joining
下载PDF
Frederick W.Alt received the 2015 Szent-Gyrgi Prize for Progress in Cancer Research 被引量:1
7
作者 peter scully jie zhao sujuan ba 《Chinese Journal of Cancer》 SCIE CAS CSCD 2016年第3期151-154,共4页
The Szent-Gyorgyi Prize for Progress in Cancer Research is a prestigious scientific award established by the National Foundation for Cancer Research(NFCR)—a leading cancer research charitable organization in the Unit... The Szent-Gyorgyi Prize for Progress in Cancer Research is a prestigious scientific award established by the National Foundation for Cancer Research(NFCR)—a leading cancer research charitable organization in the United States that is committed to supporting scientific research and public education relating to the prevention,early diagnosis,better treatments,and ultimately,a cure for cancer.Each year,the Szent-Gyorgyi Prize honors an outstanding researcher,nominated by colleagues or peers,who has contributed outstanding,significant research to the fight against cancer,and whose accomplishments have helped improve treatment options for cancer patients.The Prize also promotes public awareness of the importance of basic cancer research and encourages the sustained investment needed to accelerate the translation of these research discoveries into new cancer treatments.This report highlights the pioneering work led by the 2015 Prize winner,Dr.Frederick Alt.Dr.Alt's work in the area of cancer genetics over four decades has helped to shape the very roots of modern cancer research.His work continues to profoundly impact the approaches that doctors around the globe use to diagnose and treat cancer.In particular,his seminal discoveries of gene amplification and his pioneering work on molecular mechanisms of DNA damage repair have helped to usher in the era of genetically targeted therapy and personalized medicine. 展开更多
关键词 The National Foundation for Cancer Research The Szent-Gyorgyi Prize Frederick Alt Gene amplification non-homologous end joining
下载PDF
New insights into tumor dormancy:Targeting DNA repair pathways 被引量:1
8
作者 Elizabeth B Evans Shiaw-Yih Lin 《World Journal of Clinical Oncology》 CAS 2015年第5期80-88,共9页
Over the past few decades, major strides have advanced the techniques for early detection and treatment of cancer. However, metastatic tumor growth still accounts for the majority of cancer-related deaths worldwide. I... Over the past few decades, major strides have advanced the techniques for early detection and treatment of cancer. However, metastatic tumor growth still accounts for the majority of cancer-related deaths worldwide. In fact, breast cancers are notorious for relapsing years or decades after the initial clinical treatment, and this relapse can vary according to the type of breast cancer. In estrogen receptor-positive breast cancers, late tumor relapses frequently occur whereas relapses in estrogen receptor-negative cancers or triple negative tumors arise early resulting in a higher mortality risk. One of the main causes of metastasis is tumor dormancy in which cancer cells remain concealed, asymptomatic, and untraceable over a prolonged period of time. Under certain conditions, dormant cells can re-enter into the cell cycle and resume proliferation leading to recurrence. However, the molecular and cellular regulators underlying this transition remain poorly understood. To date, three mechanisms have been identified to trigger tumor dormancy including cellular, angiogenic, and immunologic dormancies. In addition, recent studies have suggested that DNA repair mechanisms may contribute to the survival of dormant cancer cells. In this article, we summarize the recent experimental and clinical evidence governing cancer dormancy. In addition, we will discuss the role of DNA repair mechanisms in promoting the survival of dormant cells. This information provides mechanistic insight to explain why recurrence occurs, and strategies that may enhance therapeutic approaches to prevent disease recurrence. 展开更多
关键词 QUIESCENCE HOMOLOGOUS recombination non-homologous end joining Tumor DORMANCY DNA repair
下载PDF
The Role of DNA Mismatch Repair and Recombination in the Processing of DNA Alkylating Damage in Living Yeast Cells 被引量:1
9
作者 Hernan Flores-Rozas Lahcen Jaafar Ling Xia 《Advances in Bioscience and Biotechnology》 2015年第6期408-418,共11页
It is proposed that mismatch repair (MMR) mediates the cytotoxic effects of DNA damaging agents by exerting a futile repair pathway which leads to double strand breaks (DSBs). Previous reports indicate that the sensit... It is proposed that mismatch repair (MMR) mediates the cytotoxic effects of DNA damaging agents by exerting a futile repair pathway which leads to double strand breaks (DSBs). Previous reports indicate that the sensitivity of cells defective in homologous recombination (HR) to DNA alkylation is reduced by defects in MMR genes. We have assessed the contribution of different MMR genes to the processing of alkylation damage in vivo. We have directly visualized recombination complexes formed upon DNA damage using fluorescent protein (FP) fusions. We find that msh6 mutants are more resistant than wild type cells to MNNG, and that an msh6 mutation rescues the sensitivity of rad52 strains more efficiently than an msh3 mutation. Analysis of RAD52-GFP tagged strains indicate that MNNG increases repair foci formation, and that the inactivation of the MHS2 and MSH6 genes but not the MSH3 gene result in a reduction of the number of foci formed. In addition, in the absence of HR, NHEJ could process the MNNG-induced DSBs as indicated by the formation of NHEJ-GFP tagged foci. These data suggest that processing of the alkylation damage by MMR, mainly by MSH2-MSH6, is required for recruitment of recombination proteins to the damage site for repair. 展开更多
关键词 DNA MISMATCH REPAIR Recombination DNA DAMAGE non-homologous End Joining
下载PDF
Site-Specifc Gene Targeting Using Transcription Activator-Like Effector(TALE)-Based Nuclease in Brassica oleracea 被引量:3
10
作者 Zijian Sun Nianzu Li +6 位作者 Guodong Huang Junqiang Xu Yu Pan Zhimin Wang Qinglin Tang Ming Song Xiaojia Wang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2013年第11期1092-1103,共12页
Site-specific recognition modules with DNA nuclease have tremendous potential as molecular tools for genome targeting. The type III transcription activator-like effectors (TALEs) contain a DNA binding domain consist... Site-specific recognition modules with DNA nuclease have tremendous potential as molecular tools for genome targeting. The type III transcription activator-like effectors (TALEs) contain a DNA binding domain consisting of tandem repeats that can be engineered to bind user-defined specific DNA sequences. We demonstrated that customized TALE-based nucleases (TALENs), constructed using a method called "unit assembly", specifically target the endogenous FRIGIDA gene in Brassica oleracea L. var. capitata L. The results indicate that the TALENs bound to the target site and cleaved double-strand DNA in vitro and in vivo, whereas the effector binding elements have a 23 bp spacer. The T7 endonuclease I assay and sequencing data show that TALENs made double-strand breaks, which were repaired by a non- homologous end-joining pathway within the target sequence. These data show the feasibility of applying customized TALENs to target and modify the genome with deletions in those organisms that are still in lacking gene target methods to provide germplasms in breeding improvement. 展开更多
关键词 Brassica oleracea double-strand break FRIGIDA gene targeting type III transcription activator-like effector-based nucleases non-homologous end-joining.
原文传递
Role of deubiquitinating enzymes in DNA double-strand break repair 被引量:4
11
作者 Yunhui LI Jian YUAN 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2021年第1期63-72,共10页
DNA is the hereditary material in humans and almost all other organisms. It is essential for maintaining accurate transmission of genetic information. In the life cycle, DNA replication, cell division, or genome damag... DNA is the hereditary material in humans and almost all other organisms. It is essential for maintaining accurate transmission of genetic information. In the life cycle, DNA replication, cell division, or genome damage, including that caused by endogenous and exogenous agents, may cause DNA aberrations. Of all forms of DNA damage, DNA double-strand breaks(DSBs) are the most serious. If the repair function is defective, DNA damage may cause gene mutation, genome instability, and cell chromosome loss, which in turn can even lead to tumorigenesis. DNA damage can be repaired through multiple mechanisms. Homologous recombination(HR) and non-homologous end joining(NHEJ) are the two main repair mechanisms for DNA DSBs. Increasing amounts of evidence reveal that protein modifications play an essential role in DNA damage repair.Protein deubiquitination is a vital post-translational modification which removes ubiquitin molecules or polyubiquitinated chains from substrates in order to reverse the ubiquitination reaction. This review discusses the role of deubiquitinating enzymes(DUBs) in repairing DNA DSBs. Exploring the molecular mechanisms of DUB regulation in DSB repair will provide new insights to combat human diseases and develop novel therapeutic approaches. 展开更多
关键词 Deubiquitinating enzymes(DUBs) DNA double-strand breaks(DSBs) DNA repair non-homologous end joining(NHEJ) Homologous recombination(HR)
原文传递
MRN complex is an essential effector of DNA damage repair 被引量:2
12
作者 Shan QIU Jun HUANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2021年第1期31-37,共7页
Genome stability can be threatened by both endogenous and exogenous agents.Organisms have evolved numerous mechanisms to repair DNA damage,including homologous recombination(HR)and non-homologous end joining(NHEJ).Amo... Genome stability can be threatened by both endogenous and exogenous agents.Organisms have evolved numerous mechanisms to repair DNA damage,including homologous recombination(HR)and non-homologous end joining(NHEJ).Among the factors associated with DNA repair,the MRE11-RAD50-NBS1(MRN)complex(MRE11-RAD50-XRS2 in Saccharomyces cerevisiae)plays important roles not only in DNA damage recognition and signaling but also in subsequent HR or NHEJ repair.Upon detecting DNA damage,the MRN complex activates signaling molecules,such as the protein kinase ataxia-telangiectasia mutated(ATM),to trigger a broad DNA damage response,including cell cycle arrest.The nuclease activity of the MRN complex is responsible for DNA end resection,which guides DNA repair to HR in the presence of sister chromatids.The MRN complex is also involved in NHEJ,and has a species-specific role in hairpin repair.This review focuses on the structure of the MRN complex and its function in DNA damage repair. 展开更多
关键词 DNA damage repair MRE11-RAD50-NBS1(MRN)complex Homologous recombination non-homologous end joining
原文传递
Regulation of DNA double-strand break repair pathway choice:a new focus on 53BP1 被引量:2
13
作者 Fan ZHANG Zihua GONG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2021年第1期38-46,共9页
Maintenance of cellular homeostasis and genome integrity is a critical responsibility of DNA double-strand break(DSB)signaling.P53-binding protein 1(53BP1)plays a critical role in coordinating the DSB repair pathway c... Maintenance of cellular homeostasis and genome integrity is a critical responsibility of DNA double-strand break(DSB)signaling.P53-binding protein 1(53BP1)plays a critical role in coordinating the DSB repair pathway choice and promotes the non-homologous end-joining(NHEJ)-mediated DSB repair pathway that rejoins DSB ends.New insights have been gained into a basic molecular mechanism that is involved in 53BP1 recruitment to the DNA lesion and how 53BP1 then recruits the DNA break-responsive effectors that promote NHEJ-mediated DSB repair while inhibiting homologous recombination(HR)signaling.This review focuses on the up-and downstream pathways of 53BP1 and how 53BP1 promotes NHEJ-mediated DSB repair,which in turn promotes the sensitivity of poly(ADP-ribose)polymerase inhibitor(PARPi)in BRCA1-deficient cancers and consequently provides an avenue for improving cancer therapy strategies. 展开更多
关键词 P53-binding protein 1(53BP1) DNA double-strand break(DSB) non-homologous end-joining(NHEJ) Homologous recombination(HR) Poly(ADP-ribose)polymerase inhibitor(PARPi)
原文传递
cGAS guards against chromosome endto-end fusions during mitosis and facilitates replicative senescence 被引量:1
14
作者 Xiaocui Li Xiaojuan Li +7 位作者 Chen Xie Sihui Cai Mengqiu Li Heping Jin Shu Wu Jun Cui Haiying Liu Yong Zhao 《Protein & Cell》 SCIE CSCD 2022年第1期47-64,共18页
As a sensor of cytosolic DNA, the role of cyclic GMP-AMP synthase (cGAS) in innate immune response is well established, yet how its functions in different biological conditions remain to be elucidated. Here, we identi... As a sensor of cytosolic DNA, the role of cyclic GMP-AMP synthase (cGAS) in innate immune response is well established, yet how its functions in different biological conditions remain to be elucidated. Here, we identify cGAS as an essential regulator in inhibiting mitotic DNA double-strand break (DSB) repair and protecting short telomeres from end-to-end fusion independent of the canonical cGAS-STING pathway. cGAS associates with telomeric/subtelomeric DNA during mitosis when TRF1/TRF2/POT1 are deficient on telomeres. Depletion of cGAS leads to mitotic chromosome end-to-end fusions predominantly occurring between short telomeres. Mechanistically, cGAS interacts with CDK1 and positions them to chromosome ends. Thus, CDK1 inhibits mitotic non-homologous end joining (NHEJ) by blocking the recruitment of RNF8. cGAS-deficient human primary cells are defective in entering replicative senescence and display chromosome end-to-end fusions, genome instability and prolonged growth arrest. Altogether, cGAS safeguards genome stability by controlling mitotic DSB repair to inhibit mitotic chromosome end-to-end fusions, thus facilitating replicative senescence. 展开更多
关键词 cGAS TELOMERES chromosome end-toend fusion DNA damage response non-homologous end joining MITOSIS genome stability
原文传递
The Application of CRISPR-Cas9 Genome Editing in Caenorhabditis elegans 被引量:1
15
作者 Suhong Xu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2015年第8期413-421,共9页
Genome editing using the Cas9 endonuclease of Streptococcus pyogenes has demonstrated unparalleled efficacy and facility for modifying genomes in a wide variety of organisms. Caenorhabditis elegans is one of the most ... Genome editing using the Cas9 endonuclease of Streptococcus pyogenes has demonstrated unparalleled efficacy and facility for modifying genomes in a wide variety of organisms. Caenorhabditis elegans is one of the most convenient multicellular organisms for genetic analysis, and the application of this novel genome editing technique to this organism promises to revolutionize analysis of gene function in the future. CRISPR-Cas9 has been successfully used to generate imprecise insertions and deletions via non-homologous end-joining mechanisms and to create precise mutations by homology-directed repair from donor templates. Key variables are the methods used to deliver the Cas9 endonuclease and the efficiency of the single guide RNAs. CRISPR-Cas9-mediated editing appears to be highly specific in C. elegans, with no reported off-target effects. In this review, 1 briefly summarize recent progress in CRISPR-Cas9-based genome editing in C. elegans, highlighting technical improvements in mutagenesis and mutation detection, and discuss potential future appli- cations of this technique. 展开更多
关键词 Genome editing CRISPR: Cas9 non-homologous end-joining (NHEJ) Homology-directed repair (HDR) Somatic mutation C. elegans
原文传递
Recombination function and recombination kinetics of Escherichia coli single-stranded DNA-binding protein 被引量:1
16
作者 Ran Chai Chaohui Zhang +4 位作者 Fang Tian Huiru Li Qianlong Yang Andong Song Liyou Qiu 《Science Bulletin》 SCIE EI CAS CSCD 2016年第20期1594-1604,共11页
It is unknown whether the ss DNA-binding-protein(SSB) possesses the ability to catalyze DNA recombination.We investigated the recombination function of SSB and the recombination kinetics of Escherichia coli using a ne... It is unknown whether the ss DNA-binding-protein(SSB) possesses the ability to catalyze DNA recombination.We investigated the recombination function of SSB and the recombination kinetics of Escherichia coli using a new transformation method with a modified double-layered plate.We found that SSB catalysed intermolecular recombination in vitro.Its intermolecular recombination rate versus substrate concentration or homologous sequence length fitted the Hill equation,and while the plasmid intramolecular recombination rate versus substrate concentration fitted a positively linear correlation,the dominant intermolecular recombination was a non-homologous recombination in vivo,similar to Rec A.However,ssb-dependent recombination occurred later and at a lower recombination rate than the rec A-dependent,probably because ssb expression was about two-fold lower than rec A during the E.coli earlier growth stage.The affinity to substrate and the recombination efficiency of SSB was lower than Rec A,whereas SSB enhanced the catalytic efficiency of Rec A.Knocking out both rec A and ssb led to loss of recombination.Our results confirmed that as SSB has the recombination function itself as an allosteric enzyme,rec Aindependent recombination in E.coli should be ssb-dependent.ssb-dependent recombination may be the third DNA double-strand break repair pathway,in addition to rec Adependent recombination and non-homologous end joining. 展开更多
关键词 ss DNA-binding-protein Homologous recombination non-homologous recombination Recombination kinetics
原文传递
Exploiting DNA repair pathways for tumor sensitization,mitigation of resistance,and normal tissue protection in radiotherapy 被引量:4
17
作者 Jac A.Nickoloff Lynn Taylor +1 位作者 Neelam Sharma Takamitsu A.Kato 《Cancer Drug Resistance》 2021年第2期244-263,共20页
More than half of cancer patients are treated with radiotherapy,which kills tumor cells by directly and indirectly inducing DNA damage,including cytotoxic DNA double-strand breaks(DSBs).Tumor cells respond to these th... More than half of cancer patients are treated with radiotherapy,which kills tumor cells by directly and indirectly inducing DNA damage,including cytotoxic DNA double-strand breaks(DSBs).Tumor cells respond to these threats by activating a complex signaling network termed the DNA damage response(DDR).The DDR arrests the cell cycle,upregulates DNA repair,and triggers apoptosis when damage is excessive.The DDR signaling and DNA repair pathways are fertile terrain for therapeutic intervention.This review highlights strategies to improve therapeutic gain by targeting DDR and DNA repair pathways to radiosensitize tumor cells,overcome intrinsic and acquired tumor radioresistance,and protect normal tissue.Many biological and environmental factors determine tumor and normal cell responses to ionizing radiation and genotoxic chemotherapeutics.These include cell type and cell cycle phase distribution;tissue/tumor microenvironment and oxygen levels;DNA damage load and quality;DNA repair capacity;and susceptibility to apoptosis or other active or passive cell death pathways.We provide an overview of radiobiological parameters associated with X-ray,proton,and carbon ion radiotherapy;DNA repair and DNA damage signaling pathways;and other factors that regulate tumor and normal cell responses to radiation.We then focus on recent studies exploiting DSB repair pathways to enhance radiotherapy therapeutic gain. 展开更多
关键词 DNA repair DNA double-strand break repair non-homologous end-joining homologous recombination RADIOSENSITIZATION RADIOPROTECTION cancer therapy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部