Centralized training of deep learning models poses privacy risks that hinder their deployment.Federated learning(FL)has emerged as a solution to address these risks,allowing multiple clients to train deep learning mod...Centralized training of deep learning models poses privacy risks that hinder their deployment.Federated learning(FL)has emerged as a solution to address these risks,allowing multiple clients to train deep learning models collaborativelywithout sharing rawdata.However,FL is vulnerable to the impact of heterogeneous distributed data,which weakens convergence stability and suboptimal performance of the trained model on local data.This is due to the discarding of the old local model at each round of training,which results in the loss of personalized information in the model critical for maintaining model accuracy and ensuring robustness.In this paper,we propose FedTC,a personalized federated learning method with two classifiers that can retain personalized information in the local model and improve the model’s performance on local data.FedTC divides the model into two parts,namely,the extractor and the classifier,where the classifier is the last layer of the model,and the extractor consists of other layers.The classifier in the local model is always retained to ensure that the personalized information is not lost.After receiving the global model,the local extractor is overwritten by the globalmodel’s extractor,and the classifier of the globalmodel serves as anadditional classifier of the localmodel toguide local training.The FedTCintroduces a two-classifier training strategy to coordinate the two classifiers for local model updates.Experimental results on Cifar10 and Cifar100 datasets demonstrate that FedTC performs better on heterogeneous data than current studies,such as FedAvg,FedPer,and local training,achieving a maximum improvement of 27.95%in model classification test accuracy compared to FedAvg.展开更多
The influence of non-Independent Identically Distribution(non-IID)data on Federated Learning(FL)has been a serious concern.Clustered Federated Learning(CFL)is an emerging approach for reducing the impact of non-IID da...The influence of non-Independent Identically Distribution(non-IID)data on Federated Learning(FL)has been a serious concern.Clustered Federated Learning(CFL)is an emerging approach for reducing the impact of non-IID data,which employs the client similarity calculated by relevant metrics for clustering.Unfortunately,the existing CFL methods only pursue a single accuracy improvement,but ignore the convergence rate.Additionlly,the designed client selection strategy will affect the clustering results.Finally,traditional semi-supervised learning changes the distribution of data on clients,resulting in higher local costs and undesirable performance.In this paper,we propose a novel CFL method named ASCFL,which selects clients to participate in training and can dynamically adjust the balance between accuracy and convergence speed with datasets consisting of labeled and unlabeled data.To deal with unlabeled data,the prediction labels strategy predicts labels by encoders.The client selection strategy is to improve accuracy and reduce overhead by selecting clients with higher losses participating in the current round.What is more,the similarity-based clustering strategy uses a new indicator to measure the similarity between clients.Experimental results show that ASCFL has certain advantages in model accuracy and convergence speed over the three state-of-the-art methods with two popular datasets.展开更多
基金funded by Shenzhen Basic Research(Key Project)(No.JCYJ20200109113405927)Shenzhen Stable Supporting Program(General Project)(No.GXWD20201230155427003-20200821160539001)+1 种基金Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies(2022B1212010005)Peng Cheng Laboratory Project(Grant No.PCL2021A02),Ministry of Education’s Collaborative Education Project with Industry Cooperation(No.22077141140831).
文摘Centralized training of deep learning models poses privacy risks that hinder their deployment.Federated learning(FL)has emerged as a solution to address these risks,allowing multiple clients to train deep learning models collaborativelywithout sharing rawdata.However,FL is vulnerable to the impact of heterogeneous distributed data,which weakens convergence stability and suboptimal performance of the trained model on local data.This is due to the discarding of the old local model at each round of training,which results in the loss of personalized information in the model critical for maintaining model accuracy and ensuring robustness.In this paper,we propose FedTC,a personalized federated learning method with two classifiers that can retain personalized information in the local model and improve the model’s performance on local data.FedTC divides the model into two parts,namely,the extractor and the classifier,where the classifier is the last layer of the model,and the extractor consists of other layers.The classifier in the local model is always retained to ensure that the personalized information is not lost.After receiving the global model,the local extractor is overwritten by the globalmodel’s extractor,and the classifier of the globalmodel serves as anadditional classifier of the localmodel toguide local training.The FedTCintroduces a two-classifier training strategy to coordinate the two classifiers for local model updates.Experimental results on Cifar10 and Cifar100 datasets demonstrate that FedTC performs better on heterogeneous data than current studies,such as FedAvg,FedPer,and local training,achieving a maximum improvement of 27.95%in model classification test accuracy compared to FedAvg.
基金supported by the National Key Research and Development Program of China(No.2019YFC1520904)the National Natural Science Foundation of China(No.61973250).
文摘The influence of non-Independent Identically Distribution(non-IID)data on Federated Learning(FL)has been a serious concern.Clustered Federated Learning(CFL)is an emerging approach for reducing the impact of non-IID data,which employs the client similarity calculated by relevant metrics for clustering.Unfortunately,the existing CFL methods only pursue a single accuracy improvement,but ignore the convergence rate.Additionlly,the designed client selection strategy will affect the clustering results.Finally,traditional semi-supervised learning changes the distribution of data on clients,resulting in higher local costs and undesirable performance.In this paper,we propose a novel CFL method named ASCFL,which selects clients to participate in training and can dynamically adjust the balance between accuracy and convergence speed with datasets consisting of labeled and unlabeled data.To deal with unlabeled data,the prediction labels strategy predicts labels by encoders.The client selection strategy is to improve accuracy and reduce overhead by selecting clients with higher losses participating in the current round.What is more,the similarity-based clustering strategy uses a new indicator to measure the similarity between clients.Experimental results show that ASCFL has certain advantages in model accuracy and convergence speed over the three state-of-the-art methods with two popular datasets.