期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
FedTC:A Personalized Federated LearningMethod with Two Classifiers 被引量:1
1
作者 Yang Liu Jiabo Wang +4 位作者 Qinbo Liu Mehdi Gheisari Wanyin Xu Zoe L.Jiang Jiajia Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第9期3013-3027,共15页
Centralized training of deep learning models poses privacy risks that hinder their deployment.Federated learning(FL)has emerged as a solution to address these risks,allowing multiple clients to train deep learning mod... Centralized training of deep learning models poses privacy risks that hinder their deployment.Federated learning(FL)has emerged as a solution to address these risks,allowing multiple clients to train deep learning models collaborativelywithout sharing rawdata.However,FL is vulnerable to the impact of heterogeneous distributed data,which weakens convergence stability and suboptimal performance of the trained model on local data.This is due to the discarding of the old local model at each round of training,which results in the loss of personalized information in the model critical for maintaining model accuracy and ensuring robustness.In this paper,we propose FedTC,a personalized federated learning method with two classifiers that can retain personalized information in the local model and improve the model’s performance on local data.FedTC divides the model into two parts,namely,the extractor and the classifier,where the classifier is the last layer of the model,and the extractor consists of other layers.The classifier in the local model is always retained to ensure that the personalized information is not lost.After receiving the global model,the local extractor is overwritten by the globalmodel’s extractor,and the classifier of the globalmodel serves as anadditional classifier of the localmodel toguide local training.The FedTCintroduces a two-classifier training strategy to coordinate the two classifiers for local model updates.Experimental results on Cifar10 and Cifar100 datasets demonstrate that FedTC performs better on heterogeneous data than current studies,such as FedAvg,FedPer,and local training,achieving a maximum improvement of 27.95%in model classification test accuracy compared to FedAvg. 展开更多
关键词 distributed machine learning federated learning data hetero-geneity non-independent identically distributed
下载PDF
ASCFL:Accurate and Speedy Semi-Supervised Clustering Federated Learning 被引量:3
2
作者 Jingyi He Biyao Gong +3 位作者 Jiadi Yang Hai Wang Pengfei Xu Tianzhang Xing 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2023年第5期823-837,共15页
The influence of non-Independent Identically Distribution(non-IID)data on Federated Learning(FL)has been a serious concern.Clustered Federated Learning(CFL)is an emerging approach for reducing the impact of non-IID da... The influence of non-Independent Identically Distribution(non-IID)data on Federated Learning(FL)has been a serious concern.Clustered Federated Learning(CFL)is an emerging approach for reducing the impact of non-IID data,which employs the client similarity calculated by relevant metrics for clustering.Unfortunately,the existing CFL methods only pursue a single accuracy improvement,but ignore the convergence rate.Additionlly,the designed client selection strategy will affect the clustering results.Finally,traditional semi-supervised learning changes the distribution of data on clients,resulting in higher local costs and undesirable performance.In this paper,we propose a novel CFL method named ASCFL,which selects clients to participate in training and can dynamically adjust the balance between accuracy and convergence speed with datasets consisting of labeled and unlabeled data.To deal with unlabeled data,the prediction labels strategy predicts labels by encoders.The client selection strategy is to improve accuracy and reduce overhead by selecting clients with higher losses participating in the current round.What is more,the similarity-based clustering strategy uses a new indicator to measure the similarity between clients.Experimental results show that ASCFL has certain advantages in model accuracy and convergence speed over the three state-of-the-art methods with two popular datasets. 展开更多
关键词 federated learning clustered federated learning non-independent identically distribution(non-iid)data similarity indicator client selection semi-supervised learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部