In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term ...In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.展开更多
Centralized training of deep learning models poses privacy risks that hinder their deployment.Federated learning(FL)has emerged as a solution to address these risks,allowing multiple clients to train deep learning mod...Centralized training of deep learning models poses privacy risks that hinder their deployment.Federated learning(FL)has emerged as a solution to address these risks,allowing multiple clients to train deep learning models collaborativelywithout sharing rawdata.However,FL is vulnerable to the impact of heterogeneous distributed data,which weakens convergence stability and suboptimal performance of the trained model on local data.This is due to the discarding of the old local model at each round of training,which results in the loss of personalized information in the model critical for maintaining model accuracy and ensuring robustness.In this paper,we propose FedTC,a personalized federated learning method with two classifiers that can retain personalized information in the local model and improve the model’s performance on local data.FedTC divides the model into two parts,namely,the extractor and the classifier,where the classifier is the last layer of the model,and the extractor consists of other layers.The classifier in the local model is always retained to ensure that the personalized information is not lost.After receiving the global model,the local extractor is overwritten by the globalmodel’s extractor,and the classifier of the globalmodel serves as anadditional classifier of the localmodel toguide local training.The FedTCintroduces a two-classifier training strategy to coordinate the two classifiers for local model updates.Experimental results on Cifar10 and Cifar100 datasets demonstrate that FedTC performs better on heterogeneous data than current studies,such as FedAvg,FedPer,and local training,achieving a maximum improvement of 27.95%in model classification test accuracy compared to FedAvg.展开更多
文摘In this in-depth exploration, I delve into the complex implications and costs of cybersecurity breaches. Venturing beyond just the immediate repercussions, the research unearths both the overt and concealed long-term consequences that businesses encounter. This study integrates findings from various research, including quantitative reports, drawing upon real-world incidents faced by both small and large enterprises. This investigation emphasizes the profound intangible costs, such as trade name devaluation and potential damage to brand reputation, which can persist long after the breach. By collating insights from industry experts and a myriad of research, the study provides a comprehensive perspective on the profound, multi-dimensional impacts of cybersecurity incidents. The overarching aim is to underscore the often-underestimated scope and depth of these breaches, emphasizing the entire timeline post-incident and the urgent need for fortified preventative and reactive measures in the digital domain.
基金funded by Shenzhen Basic Research(Key Project)(No.JCYJ20200109113405927)Shenzhen Stable Supporting Program(General Project)(No.GXWD20201230155427003-20200821160539001)+1 种基金Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies(2022B1212010005)Peng Cheng Laboratory Project(Grant No.PCL2021A02),Ministry of Education’s Collaborative Education Project with Industry Cooperation(No.22077141140831).
文摘Centralized training of deep learning models poses privacy risks that hinder their deployment.Federated learning(FL)has emerged as a solution to address these risks,allowing multiple clients to train deep learning models collaborativelywithout sharing rawdata.However,FL is vulnerable to the impact of heterogeneous distributed data,which weakens convergence stability and suboptimal performance of the trained model on local data.This is due to the discarding of the old local model at each round of training,which results in the loss of personalized information in the model critical for maintaining model accuracy and ensuring robustness.In this paper,we propose FedTC,a personalized federated learning method with two classifiers that can retain personalized information in the local model and improve the model’s performance on local data.FedTC divides the model into two parts,namely,the extractor and the classifier,where the classifier is the last layer of the model,and the extractor consists of other layers.The classifier in the local model is always retained to ensure that the personalized information is not lost.After receiving the global model,the local extractor is overwritten by the globalmodel’s extractor,and the classifier of the globalmodel serves as anadditional classifier of the localmodel toguide local training.The FedTCintroduces a two-classifier training strategy to coordinate the two classifiers for local model updates.Experimental results on Cifar10 and Cifar100 datasets demonstrate that FedTC performs better on heterogeneous data than current studies,such as FedAvg,FedPer,and local training,achieving a maximum improvement of 27.95%in model classification test accuracy compared to FedAvg.