With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In t...With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In this dynamic metasystem environment,frequent information exchanges necessitate robust security measures,with Authentication and Key Agreement(AKA)serving as the primary line of defense to ensure communication security.However,traditional AKA protocols fall short in meeting the low-latency requirements essential for synchronous interactions within the metaverse.To address this challenge and enable nearly latency-free interactions,a novel low-latency AKA protocol based on chaotic maps is proposed.This protocol not only ensures mutual authentication of entities within the metasystem but also generates secure session keys.The security of these session keys is rigorously validated through formal proofs,formal verification,and informal proofs.When confronted with the Dolev-Yao(DY)threat model,the session keys are formally demonstrated to be secure under the Real-or-Random(ROR)model.The proposed protocol is further validated through simulations conducted using VMware workstation compiled in HLPSL language and C language.The simulation results affirm the protocol’s effectiveness in resisting well-known attacks while achieving the desired low latency for optimal metaverse interactions.展开更多
Internet of Medical Things(IoMT)plays an essential role in collecting and managing personal medical data.In recent years,blockchain technology has put power in traditional IoMT systems for data sharing between differe...Internet of Medical Things(IoMT)plays an essential role in collecting and managing personal medical data.In recent years,blockchain technology has put power in traditional IoMT systems for data sharing between different medical institutions and improved the utilization of medical data.However,some problems in the information transfer process between wireless medical devices and mobile medical apps,such as information leakage and privacy disclosure.This paper first designs a cross-device key agreement model for blockchain-enabled IoMT.This model can establish a key agreement mechanism for secure medical data sharing.Meanwhile,a certificateless authenticated key agreement(KA)protocol has been proposed to strengthen the information transfer security in the cross-device key agreement model.The proposed KA protocol only requires one exchange of messages between the two parties,which can improve the protocol execution efficiency.Then,any unauthorized tampering of the transmitted signed message sent by the sender can be detected by the receiver,so this can guarantee the success of the establishment of a session key between the strange entities.The blockchain ledger can ensure that the medical data cannot be tampered with,and the certificateless mechanism can weaken the key escrow problem.Moreover,the security proof and performance analysis are given,which show that the proposed model and KA protocol are more secure and efficient than other schemes in similar literature.展开更多
In order to make the quantum key agreement process immune to participant attacks, it is necessary to introduce the authentication in the communication process. A quantum key agreement protocol with identity authentica...In order to make the quantum key agreement process immune to participant attacks, it is necessary to introduce the authentication in the communication process. A quantum key agreement protocol with identity authentication that exploits the measurement correlation of six-particle entangled states is proposed. In contrast to some recently proposed quantum key agreement protocols with authentication, this protocol requires neither a semi-trusted third party nor additional private keys in the authentication process. The entire process of authentication and key agreement can be achieved using only n six-particle entangled states, which saves communication costs and reduces the complexity of the authentication process.Finally, security analysis shows that this scheme is resistant to some important attacks.展开更多
With the exponential growth of intelligent Internet of Things(IoT)applications,Cloud-Edge(CE)paradigm is emerging as a solution that facilitates resource-efficient and timely services.However,it remains an underlying ...With the exponential growth of intelligent Internet of Things(IoT)applications,Cloud-Edge(CE)paradigm is emerging as a solution that facilitates resource-efficient and timely services.However,it remains an underlying issue that frequent end-edgecloud communication is over a public or adversarycontrolled channel.Additionally,with the presence of resource-constrained devices,it’s imperative to conduct the secure communication mechanism,while still guaranteeing efficiency.Physical unclonable functions(PUF)emerge as promising lightweight security primitives.Thus,we first construct a PUF-based security mechanism for vulnerable IoT devices.Further,a provably secure and PUF-based authentication key agreement scheme is proposed for establishing the secure channel in end-edge-cloud empowered IoT,without requiring pre-loaded master keys.The security of our scheme is rigorously proven through formal security analysis under the random oracle model,and security verification using AVISPA tool.The comprehensive security features are also elaborated.Moreover,the numerical results demonstrate that the proposed scheme outperforms existing related schemes in terms of computational and communication efficiency.展开更多
The differences among the extended Canetti & Krawezyk 2007 model (ECK2007) and other four models, i.e., the Bellare & Rogaway (1993, 1995)models (BR93,BR95), the Bellare, Pointcheval & Rogaway (2000) model ...The differences among the extended Canetti & Krawezyk 2007 model (ECK2007) and other four models, i.e., the Bellare & Rogaway (1993, 1995)models (BR93,BR95), the Bellare, Pointcheval & Rogaway (2000) model (BPR2000) and the Canetti & Krawczyk (2001) model (CK2001) are given. The relative strength of security among these models is analyzed. To support the implication or non-implication relation among these models, the formal proof or the counter-example is provided.展开更多
In the area of secure Web information system, mutual authentication and key agreement are essential between Web clients and servers. An efficient certificateless authenticated key agreement protocol for Web client/ser...In the area of secure Web information system, mutual authentication and key agreement are essential between Web clients and servers. An efficient certificateless authenticated key agreement protocol for Web client/server setting is proposed, which uses pairings on certain elliptic curves. We show that the newly proposed key agreement protocol is practical and of great efficiency, meanwhile, it satisfies every desired security require ments for key agreement protocols.展开更多
Certificateless public key cryptography was introduced to overcome the key escrow limitation of the identity-based cryptography. It combines the advantages of the identity-based cryptography and the traditional PKI. M...Certificateless public key cryptography was introduced to overcome the key escrow limitation of the identity-based cryptography. It combines the advantages of the identity-based cryptography and the traditional PKI. Many certificateless public key encryption and signature schemes have been proposed. However, the key agreement in CL-PKE is seldom discussed. In this paper, we present a new certificateless two party authentication key agreement protocol and prove its security attributes. Compared with the existing protocol, our protocol is more efficient.展开更多
An efficient authenticated key agreement protocol is proposed, which makesuse of bilinear pairings and self-certificd public keys. Its security is based on the securityassumptions of the bilinear Diff ie-Hellman probl...An efficient authenticated key agreement protocol is proposed, which makesuse of bilinear pairings and self-certificd public keys. Its security is based on the securityassumptions of the bilinear Diff ie-Hellman problem and the computational Diffie-Hellman problem.Users can choose their private keys independently. The public keys and identities of users can beverified implicitly when the session key being generating in a logically single step. A trusted KeyGeneration Center is no longer requiredas in the ID-based authenticated key agreement protocolsCompared with existing authenticated key agreement protocols from pairings, the. new proposedprotocol is more efficient and secure.展开更多
The certificateless authenticated key agreement protocol proposed by Mandt et al does not haVE the property of key-compromise impersonation (K-CI) resilience. An improved protocol with a simple modification of their...The certificateless authenticated key agreement protocol proposed by Mandt et al does not haVE the property of key-compromise impersonation (K-CI) resilience. An improved protocol with a simple modification of their protocol is proposed in this paper. In particular, our improved protocol is proved to be immune to the K-CI attack and at the same time possess other security properties.展开更多
Vehicle ad-hoc networks have developed rapidly these years,whose security and privacy issues are always concerned widely.In spite of a remarkable research on their security solutions,but in which there still lacks con...Vehicle ad-hoc networks have developed rapidly these years,whose security and privacy issues are always concerned widely.In spite of a remarkable research on their security solutions,but in which there still lacks considerations on how to secure vehicleto-vehicle communications,particularly when infrastructure is unavailable.In this paper,we propose a lightweight certificateless and oneround key agreement scheme without pairing,and further prove the security of the proposed scheme in the random oracle model.The proposed scheme is expected to not only resist known attacks with less computation cost,but also as an efficient way to relieve the workload of vehicle-to-vehicle authentication,especially in no available infrastructure circumstance.A comprehensive evaluation,including security analysis,efficiency analysis and simulation evaluation,is presented to confirm the security and feasibility of the proposed scheme.展开更多
During the past decade,rapid advances in wireless communication technologies have made it possible for users to access desired services using hand-held devices.Service providers have hosted multiple servers to ensure ...During the past decade,rapid advances in wireless communication technologies have made it possible for users to access desired services using hand-held devices.Service providers have hosted multiple servers to ensure seamless online services to end-users.To ensure the security of this online communication,researchers have proposed several multi-server authentication schemes incorporating various cryptographic primitives.Due to the low power and computational capacities of mobile devices,the hash-based multi-server authenticated key agreement schemes with offline Registration Server(RS)are the most efficient choice.Recently,Kumar-Om presented such a scheme and proved its security against all renowned attacks.However,we find that their scheme bears an incorrect login phase,and is unsafe to the trace attack,the Session-Specific Temporary Information Attack(SSTIA),and the Key Compromise Impersonation Attack(KCIA).In fact,all of the existing multi-server authentication schemes(hash-based with offline RS)do not withstand KCLA.To deal with this situation,we propose an improved hash-based multi-server authentication scheme(with offline RS).We analyze the security of the proposed scheme under the random oracle model and use the t4Automated Validation of Internet Security Protocols and Applications''(AVISPA)tool.The comparative analysis of communication overhead and computational complexity metrics shows the efficiency of the proposed scheme.展开更多
An authentication multiple key agreement protocol allows the users to compute more than one session keys in an authentication way. In the paper,an identity-based authentication multiple key agreement protocol is propo...An authentication multiple key agreement protocol allows the users to compute more than one session keys in an authentication way. In the paper,an identity-based authentication multiple key agreement protocol is proposed. Its authentication part is proven secure against existential forgery on adaptively chosen message and ID attacks under the random oracle model upon the CDH assumptions. The session keys are proven secure in a formal CK security model under the random oracle model upon the CBDH assumptions. Compared with the previous multiple key agreement protocols,it requires less communication cost.展开更多
There are various challenges that are faced in group communication, so it is necessary to ensure session key. Key agreement is the fundamental cryptographic primitive for establishing a secure communication. It is a p...There are various challenges that are faced in group communication, so it is necessary to ensure session key. Key agreement is the fundamental cryptographic primitive for establishing a secure communication. It is a process of computing a shared secret contributed by two or more entities such that no single node can predetermine the resulting value. An authenticated key agreement is attained by combining the key agreement protocol with digital signatures. After a brief introduction to existing key agreement in group communication, Making use of the additive-multiplicative homomorphism in the integer ring defined by Sander and Tschudin: A new protocols, called the homomorphism key agreement, was designed, which can be self-contributory, robust, scalable and applicable in group communication.展开更多
Multi-server authenticated key agreement schemes have attracted great attention to both academia and industry in recent years.However,traditional authenticated key agreement schemes in the single-server environment ar...Multi-server authenticated key agreement schemes have attracted great attention to both academia and industry in recent years.However,traditional authenticated key agreement schemes in the single-server environment are not suitable for the multi-server environment because the user has to register on each server when he/she wishes to log in various servers for different service.Moreover,it is unreasonable to consider all servers are trusted since the server in a multi-server environment may be a semi-trusted party.In order to overcome these difficulties,we designed a secure three-factor multi-server authenticated key agreement protocol based on elliptic curve cryptography,which needs the user to register only once at the registration center in order to access all semi-trusted servers.The proposed scheme can not only against various known attacks but also provides high computational efficiency.Besides,we have proved our scheme fulfills mutual authentication by using the authentication test method.展开更多
A new efficient two-party semi-quantum key agreement protocol is proposed with high-dimensional single-particle states.Different from the previous semi-quantum key agreement protocols based on the two-level quantum sy...A new efficient two-party semi-quantum key agreement protocol is proposed with high-dimensional single-particle states.Different from the previous semi-quantum key agreement protocols based on the two-level quantum system,the propounded protocol makes use of the advantage of the high-dimensional quantum system,which possesses higher efficiency and better robustness against eavesdropping.Besides,the protocol allows the classical participant to encode the secret key with qudit shifting operations without involving any quantum measurement abilities.The designed semi-quantum key agreement protocol could resist both participant attacks and outsider attacks.Meanwhile,the conjoint analysis of security and efficiency provides an appropriate choice for reference on the dimension of single-particle states and the number of decoy states.展开更多
Group Key Agreement(GKA)is a cryptographic primitive allowing two or more entities to negotiate a shared session key over public networks.In existing GKA models,it is an open problem to construct a one-round multi-par...Group Key Agreement(GKA)is a cryptographic primitive allowing two or more entities to negotiate a shared session key over public networks.In existing GKA models,it is an open problem to construct a one-round multi-party GKA protocol.Wu et al.recently proposed the concept of asymmetric group key agreement(ASGKA)and realized a one-round ASGKA protocol,which affirmatively answers the above open problem in a relaxed way.However,the ASGKA protocol only applies to static groups.To fill this gap,this paper proposes an extended ASGKA protocol based on the Wu et al.protocol.The extension allows any member to join and leave at any point,provided that the resulting group size is not greater than n.To validate the proposal,extensive experiments are performed and the experimental results show that our protocol is more effective than a plain realization of the Wu et al.protocol for dynamic groups.The extended protocol is also more efficient than the up-to-date dynamic GKA protocol in terms of communication and computation.展开更多
Protocols for authentication and key establishment have special requirements in a wireless environment. This paper presents a new key agreement protocol HAKA (home server aided key agreement) for roaming scenario. I...Protocols for authentication and key establishment have special requirements in a wireless environment. This paper presents a new key agreement protocol HAKA (home server aided key agreement) for roaming scenario. It is carried out by a mobile user and a foreign server with the aid of a home server, which provides all necessary authentications of the three parties. The session key can be obtained by no one except for the mobile user and the foreign server. HAKA is based on Diffie-Hellman key exchange and a secure hash function without using any asymmetric encryption. The protocol is proved secure in Canetti-Krawczyk (CK) model.展开更多
The basic idea behind an ID-based cryptosystem is that end user's public key can be determined by his identity information.Comparing with the traditional certificate-based cryptography,identity-based cryptography ...The basic idea behind an ID-based cryptosystem is that end user's public key can be determined by his identity information.Comparing with the traditional certificate-based cryptography,identity-based cryptography can eliminate much of the overhead associated with the deployment and management of certificate.However,exposure of private keys can be the most devastating attack on a public key based cryptosystem since such that all security guarantees are lost.In this paper,an ID-based authenticated key agreement protocol was presented.For solving the problem of key exposure of the basic scheme,the technique of key insulation was applied and a key insulated version is developed.展开更多
When accessing remote services over public networks, a user authentication mechanism is required because these activities are executed in an insecure communication environment. Recently, Wang et al. proposed an authen...When accessing remote services over public networks, a user authentication mechanism is required because these activities are executed in an insecure communication environment. Recently, Wang et al. proposed an authentication and key agreement scheme preserving the privacy of secret keys and providing user anonymity. Later, Chang et al. indicated that their scheme suffers from two security flaws. First, it cannot resist DoS (denial-of-service) attack because the indicators for the next session are not consistent. Second, the user password may be modified by a malicious attacker because no authentication mechanism is applied before the user password is updated. To eliminate the security flaws and preserve the advantages of Wang et aL's scheme, we propose an improvement in this paper.展开更多
Tele-medical information system provides an efficient and convenient way to connect patients at home with medical personnel in clinical centers.In this system,service providers consider user authentication as a critic...Tele-medical information system provides an efficient and convenient way to connect patients at home with medical personnel in clinical centers.In this system,service providers consider user authentication as a critical requirement.To address this crucial requirement,various types of validation and key agreement protocols have been employed.The main problem with the two-way authentication of patients and medical servers is not built with thorough and comprehensive analysis that makes the protocol design yet has flaws.This paper analyzes carefully all aspects of security requirements including the perfect forward secrecy in order to develop an efficient and robust lightweight authentication and key agreement protocol.The secureness of the proposed protocol undergoes an informal analysis,whose findings show that different security features are provided,including perfect forward secrecy and a resistance to DoS attacks.Furthermore,it is simulated and formally analyzed using Scyther tool.Simulation results indicate the protocol’s robustness,both in perfect forward security and against various attacks.In addition,the proposed protocol was compared with those of other related protocols in term of time complexity and communication cost.The time complexity of the proposed protocol only involves time of performing a hash function Th,i.e.,:O(12Th).Average time required for executing the authentication is 0.006 seconds;with number of bit exchange is 704,both values are the lowest among the other protocols.The results of the comparison point to a superior performance by the proposed protocol.展开更多
基金This work has received funding from National Natural Science Foundation of China(No.42275157).
文摘With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In this dynamic metasystem environment,frequent information exchanges necessitate robust security measures,with Authentication and Key Agreement(AKA)serving as the primary line of defense to ensure communication security.However,traditional AKA protocols fall short in meeting the low-latency requirements essential for synchronous interactions within the metaverse.To address this challenge and enable nearly latency-free interactions,a novel low-latency AKA protocol based on chaotic maps is proposed.This protocol not only ensures mutual authentication of entities within the metasystem but also generates secure session keys.The security of these session keys is rigorously validated through formal proofs,formal verification,and informal proofs.When confronted with the Dolev-Yao(DY)threat model,the session keys are formally demonstrated to be secure under the Real-or-Random(ROR)model.The proposed protocol is further validated through simulations conducted using VMware workstation compiled in HLPSL language and C language.The simulation results affirm the protocol’s effectiveness in resisting well-known attacks while achieving the desired low latency for optimal metaverse interactions.
基金supported by the National Natural Science Foundation of China under Grant 92046001,61962009,the JSPS KAKENHI Grant Numbers JP19K20250,JP20H04174,JP22K11989Leading Initiative for Excellent Young Researchers (LEADER),MEXT,Japan,and JST,PRESTO Grant Number JPMJPR21P3+1 种基金Japan.Mianxiong Dong is the corresponding author,the Doctor Scientific Research Fund of Zhengzhou University of Light Industry under Grant 2021BSJJ033Key Scientific Research Project of Colleges and Universities in Henan Province (CN)under Grant No.22A413010.
文摘Internet of Medical Things(IoMT)plays an essential role in collecting and managing personal medical data.In recent years,blockchain technology has put power in traditional IoMT systems for data sharing between different medical institutions and improved the utilization of medical data.However,some problems in the information transfer process between wireless medical devices and mobile medical apps,such as information leakage and privacy disclosure.This paper first designs a cross-device key agreement model for blockchain-enabled IoMT.This model can establish a key agreement mechanism for secure medical data sharing.Meanwhile,a certificateless authenticated key agreement(KA)protocol has been proposed to strengthen the information transfer security in the cross-device key agreement model.The proposed KA protocol only requires one exchange of messages between the two parties,which can improve the protocol execution efficiency.Then,any unauthorized tampering of the transmitted signed message sent by the sender can be detected by the receiver,so this can guarantee the success of the establishment of a session key between the strange entities.The blockchain ledger can ensure that the medical data cannot be tampered with,and the certificateless mechanism can weaken the key escrow problem.Moreover,the security proof and performance analysis are given,which show that the proposed model and KA protocol are more secure and efficient than other schemes in similar literature.
基金the National Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC0534)Major Science, and Techonolgy Application Demonstration Project in Chengdu (Grant No. 2021-YF09-0116-GX)。
文摘In order to make the quantum key agreement process immune to participant attacks, it is necessary to introduce the authentication in the communication process. A quantum key agreement protocol with identity authentication that exploits the measurement correlation of six-particle entangled states is proposed. In contrast to some recently proposed quantum key agreement protocols with authentication, this protocol requires neither a semi-trusted third party nor additional private keys in the authentication process. The entire process of authentication and key agreement can be achieved using only n six-particle entangled states, which saves communication costs and reduces the complexity of the authentication process.Finally, security analysis shows that this scheme is resistant to some important attacks.
基金supported by the National Key Research and Development Program of China,“Joint Research of IoT Security System and Key Technologies Based on Quantum Key,”under project number 2020YFE0200600.
文摘With the exponential growth of intelligent Internet of Things(IoT)applications,Cloud-Edge(CE)paradigm is emerging as a solution that facilitates resource-efficient and timely services.However,it remains an underlying issue that frequent end-edgecloud communication is over a public or adversarycontrolled channel.Additionally,with the presence of resource-constrained devices,it’s imperative to conduct the secure communication mechanism,while still guaranteeing efficiency.Physical unclonable functions(PUF)emerge as promising lightweight security primitives.Thus,we first construct a PUF-based security mechanism for vulnerable IoT devices.Further,a provably secure and PUF-based authentication key agreement scheme is proposed for establishing the secure channel in end-edge-cloud empowered IoT,without requiring pre-loaded master keys.The security of our scheme is rigorously proven through formal security analysis under the random oracle model,and security verification using AVISPA tool.The comprehensive security features are also elaborated.Moreover,the numerical results demonstrate that the proposed scheme outperforms existing related schemes in terms of computational and communication efficiency.
文摘The differences among the extended Canetti & Krawezyk 2007 model (ECK2007) and other four models, i.e., the Bellare & Rogaway (1993, 1995)models (BR93,BR95), the Bellare, Pointcheval & Rogaway (2000) model (BPR2000) and the Canetti & Krawczyk (2001) model (CK2001) are given. The relative strength of security among these models is analyzed. To support the implication or non-implication relation among these models, the formal proof or the counter-example is provided.
基金Supported bythe National Natural Science Foundationof China (60225007 ,60572155) the Science and Technology ResearchProject of Shanghai (04DZ07067)
文摘In the area of secure Web information system, mutual authentication and key agreement are essential between Web clients and servers. An efficient certificateless authenticated key agreement protocol for Web client/server setting is proposed, which uses pairings on certain elliptic curves. We show that the newly proposed key agreement protocol is practical and of great efficiency, meanwhile, it satisfies every desired security require ments for key agreement protocols.
基金Supported by the National Natural Science Foundation of China (19501032)
文摘Certificateless public key cryptography was introduced to overcome the key escrow limitation of the identity-based cryptography. It combines the advantages of the identity-based cryptography and the traditional PKI. Many certificateless public key encryption and signature schemes have been proposed. However, the key agreement in CL-PKE is seldom discussed. In this paper, we present a new certificateless two party authentication key agreement protocol and prove its security attributes. Compared with the existing protocol, our protocol is more efficient.
文摘An efficient authenticated key agreement protocol is proposed, which makesuse of bilinear pairings and self-certificd public keys. Its security is based on the securityassumptions of the bilinear Diff ie-Hellman problem and the computational Diffie-Hellman problem.Users can choose their private keys independently. The public keys and identities of users can beverified implicitly when the session key being generating in a logically single step. A trusted KeyGeneration Center is no longer requiredas in the ID-based authenticated key agreement protocolsCompared with existing authenticated key agreement protocols from pairings, the. new proposedprotocol is more efficient and secure.
基金the National Natural Science Foundation of China (60773086)
文摘The certificateless authenticated key agreement protocol proposed by Mandt et al does not haVE the property of key-compromise impersonation (K-CI) resilience. An improved protocol with a simple modification of their protocol is proposed in this paper. In particular, our improved protocol is proved to be immune to the K-CI attack and at the same time possess other security properties.
基金This work was supported in part by the National Natural Science Foundation of China under Grant No.61170217,61272469,61303212,61332019,and Grant No.U1135004,and by the Fundamental Research Founds for National University,China University of Geosciences
文摘Vehicle ad-hoc networks have developed rapidly these years,whose security and privacy issues are always concerned widely.In spite of a remarkable research on their security solutions,but in which there still lacks considerations on how to secure vehicleto-vehicle communications,particularly when infrastructure is unavailable.In this paper,we propose a lightweight certificateless and oneround key agreement scheme without pairing,and further prove the security of the proposed scheme in the random oracle model.The proposed scheme is expected to not only resist known attacks with less computation cost,but also as an efficient way to relieve the workload of vehicle-to-vehicle authentication,especially in no available infrastructure circumstance.A comprehensive evaluation,including security analysis,efficiency analysis and simulation evaluation,is presented to confirm the security and feasibility of the proposed scheme.
文摘During the past decade,rapid advances in wireless communication technologies have made it possible for users to access desired services using hand-held devices.Service providers have hosted multiple servers to ensure seamless online services to end-users.To ensure the security of this online communication,researchers have proposed several multi-server authentication schemes incorporating various cryptographic primitives.Due to the low power and computational capacities of mobile devices,the hash-based multi-server authenticated key agreement schemes with offline Registration Server(RS)are the most efficient choice.Recently,Kumar-Om presented such a scheme and proved its security against all renowned attacks.However,we find that their scheme bears an incorrect login phase,and is unsafe to the trace attack,the Session-Specific Temporary Information Attack(SSTIA),and the Key Compromise Impersonation Attack(KCIA).In fact,all of the existing multi-server authentication schemes(hash-based with offline RS)do not withstand KCLA.To deal with this situation,we propose an improved hash-based multi-server authentication scheme(with offline RS).We analyze the security of the proposed scheme under the random oracle model and use the t4Automated Validation of Internet Security Protocols and Applications''(AVISPA)tool.The comparative analysis of communication overhead and computational complexity metrics shows the efficiency of the proposed scheme.
基金supported by a grant from the National Natural Science Foundation of China (10961013)
文摘An authentication multiple key agreement protocol allows the users to compute more than one session keys in an authentication way. In the paper,an identity-based authentication multiple key agreement protocol is proposed. Its authentication part is proven secure against existential forgery on adaptively chosen message and ID attacks under the random oracle model upon the CDH assumptions. The session keys are proven secure in a formal CK security model under the random oracle model upon the CBDH assumptions. Compared with the previous multiple key agreement protocols,it requires less communication cost.
基金National Natural Science Foundation of China(No.90104005)
文摘There are various challenges that are faced in group communication, so it is necessary to ensure session key. Key agreement is the fundamental cryptographic primitive for establishing a secure communication. It is a process of computing a shared secret contributed by two or more entities such that no single node can predetermine the resulting value. An authenticated key agreement is attained by combining the key agreement protocol with digital signatures. After a brief introduction to existing key agreement in group communication, Making use of the additive-multiplicative homomorphism in the integer ring defined by Sander and Tschudin: A new protocols, called the homomorphism key agreement, was designed, which can be self-contributory, robust, scalable and applicable in group communication.
基金This work is supported by the Sichuan education department research project(No.16226483)Sichuan Science and Technology Program(No.2018GZDZX0008)+1 种基金Chengdu Science and Technology Program(No.2018-YF08-00007-GX)the National Natural Science Foundation of China(No.61872087).
文摘Multi-server authenticated key agreement schemes have attracted great attention to both academia and industry in recent years.However,traditional authenticated key agreement schemes in the single-server environment are not suitable for the multi-server environment because the user has to register on each server when he/she wishes to log in various servers for different service.Moreover,it is unreasonable to consider all servers are trusted since the server in a multi-server environment may be a semi-trusted party.In order to overcome these difficulties,we designed a secure three-factor multi-server authenticated key agreement protocol based on elliptic curve cryptography,which needs the user to register only once at the registration center in order to access all semi-trusted servers.The proposed scheme can not only against various known attacks but also provides high computational efficiency.Besides,we have proved our scheme fulfills mutual authentication by using the authentication test method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61871205 and 61561033)the Major Academic Discipline and Technical Leader of Jiangxi Province,China(Grant No.20162BCB22011).
文摘A new efficient two-party semi-quantum key agreement protocol is proposed with high-dimensional single-particle states.Different from the previous semi-quantum key agreement protocols based on the two-level quantum system,the propounded protocol makes use of the advantage of the high-dimensional quantum system,which possesses higher efficiency and better robustness against eavesdropping.Besides,the protocol allows the classical participant to encode the secret key with qudit shifting operations without involving any quantum measurement abilities.The designed semi-quantum key agreement protocol could resist both participant attacks and outsider attacks.Meanwhile,the conjoint analysis of security and efficiency provides an appropriate choice for reference on the dimension of single-particle states and the number of decoy states.
基金National Natural Science Foundation of China under Grant No. 60970116,60970115 and 90718006
文摘Group Key Agreement(GKA)is a cryptographic primitive allowing two or more entities to negotiate a shared session key over public networks.In existing GKA models,it is an open problem to construct a one-round multi-party GKA protocol.Wu et al.recently proposed the concept of asymmetric group key agreement(ASGKA)and realized a one-round ASGKA protocol,which affirmatively answers the above open problem in a relaxed way.However,the ASGKA protocol only applies to static groups.To fill this gap,this paper proposes an extended ASGKA protocol based on the Wu et al.protocol.The extension allows any member to join and leave at any point,provided that the resulting group size is not greater than n.To validate the proposal,extensive experiments are performed and the experimental results show that our protocol is more effective than a plain realization of the Wu et al.protocol for dynamic groups.The extended protocol is also more efficient than the up-to-date dynamic GKA protocol in terms of communication and computation.
基金the National High Technology Research and Development Program of China (2007AA01Z43)
文摘Protocols for authentication and key establishment have special requirements in a wireless environment. This paper presents a new key agreement protocol HAKA (home server aided key agreement) for roaming scenario. It is carried out by a mobile user and a foreign server with the aid of a home server, which provides all necessary authentications of the three parties. The session key can be obtained by no one except for the mobile user and the foreign server. HAKA is based on Diffie-Hellman key exchange and a secure hash function without using any asymmetric encryption. The protocol is proved secure in Canetti-Krawczyk (CK) model.
文摘The basic idea behind an ID-based cryptosystem is that end user's public key can be determined by his identity information.Comparing with the traditional certificate-based cryptography,identity-based cryptography can eliminate much of the overhead associated with the deployment and management of certificate.However,exposure of private keys can be the most devastating attack on a public key based cryptosystem since such that all security guarantees are lost.In this paper,an ID-based authenticated key agreement protocol was presented.For solving the problem of key exposure of the basic scheme,the technique of key insulation was applied and a key insulated version is developed.
基金supported by National Science Council under Grant No. 98-2221-E-025-007- and 99-2410-H-025-010-MY2
文摘When accessing remote services over public networks, a user authentication mechanism is required because these activities are executed in an insecure communication environment. Recently, Wang et al. proposed an authentication and key agreement scheme preserving the privacy of secret keys and providing user anonymity. Later, Chang et al. indicated that their scheme suffers from two security flaws. First, it cannot resist DoS (denial-of-service) attack because the indicators for the next session are not consistent. Second, the user password may be modified by a malicious attacker because no authentication mechanism is applied before the user password is updated. To eliminate the security flaws and preserve the advantages of Wang et aL's scheme, we propose an improvement in this paper.
文摘Tele-medical information system provides an efficient and convenient way to connect patients at home with medical personnel in clinical centers.In this system,service providers consider user authentication as a critical requirement.To address this crucial requirement,various types of validation and key agreement protocols have been employed.The main problem with the two-way authentication of patients and medical servers is not built with thorough and comprehensive analysis that makes the protocol design yet has flaws.This paper analyzes carefully all aspects of security requirements including the perfect forward secrecy in order to develop an efficient and robust lightweight authentication and key agreement protocol.The secureness of the proposed protocol undergoes an informal analysis,whose findings show that different security features are provided,including perfect forward secrecy and a resistance to DoS attacks.Furthermore,it is simulated and formally analyzed using Scyther tool.Simulation results indicate the protocol’s robustness,both in perfect forward security and against various attacks.In addition,the proposed protocol was compared with those of other related protocols in term of time complexity and communication cost.The time complexity of the proposed protocol only involves time of performing a hash function Th,i.e.,:O(12Th).Average time required for executing the authentication is 0.006 seconds;with number of bit exchange is 704,both values are the lowest among the other protocols.The results of the comparison point to a superior performance by the proposed protocol.