We present a new global model of collinear autocorrelation based on second harmonic generation nonlinearity.The model is rigorously derived from the nonlinear coupled wave equation specific to the autocorrelation meas...We present a new global model of collinear autocorrelation based on second harmonic generation nonlinearity.The model is rigorously derived from the nonlinear coupled wave equation specific to the autocorrelation measurement configuration,without requiring a specific form of the incident pulse function.A rigorous solution of the nonlinear coupled wave equation is obtained in the time domain and expressed in a general analytical form.The global model fully accounts for the nonlinear interaction and propagation effects within nonlinear crystals,which are not captured by the classical local model.To assess the performance of the global model compared to the classic local model,we investigate the autocorrelation signals obtained from both models for different incident pulse waveforms and different full-widthes at half-maximum(FWHMs).When the incident pulse waveform is Lorentzian with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 399.9 fs,while the classic local model predicts an FWHM of 331.4 fs.The difference between the two models is 68.6 fs,corresponding to an error of 17.2%.Similarly,for a sech-type incident pulse with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 343.9 fs,while the local model predicts an FWHM of 308.8 fs.The difference between the two models is 35.1 fs,with an error of 10.2%.We further examine the behavior of the models for Lorentzian pulses with FWHMs of 100 fs,200 fs and 500 fs.The differences between the global and local models are 17.1 fs,68.6 fs and 86.0 fs,respectively,with errors approximately around 17%.These comparative analyses clearly demonstrate the superior accuracy of the global model in intensity autocorrelation modeling.展开更多
The performance of clay-pile-pier system under earthquake shaking was comprehensively examined via three-dimensional finite element analyses,in which the complex stress-strain relationships of a clay and piled pier sy...The performance of clay-pile-pier system under earthquake shaking was comprehensively examined via three-dimensional finite element analyses,in which the complex stress-strain relationships of a clay and piled pier system were depicted by a hyperbolic-hysteretic and an equivalent elastoplastic model,respectively.One hundred twenty ground motions with varying peak accelerations were considered,along with the variations in bridge superstructure mass and pile flexural rigidity.Comprehensive comparison studies suggested that peak pile-cap acceleration and peak pile-cap velocity are the optimal ground motion intensity measures for seismic responses of the pier and the pile,respectively.Furthermore,based on two optimal ground motion intensity measures and using curvature ductility to quantify different damage states,seismic fragility analyses were performed.The pier generally had no evident damage except when the bridge girder mass was equal to 960 t,which seemed to be comparatively insensitive to the varying pile flexural rigidity.In comparison,the pile was found to be more vulnerable to seismic damage and its failure probabilities tended to clearly reduce with the increment of pile flexural rigidity,while the influence of the bridge girder mass was relatively minor.展开更多
Quasi-longitudinal waves are one type of structural waves, which are important at high frequencies. This paper studies the estimate theory and measurement technique of quasi-longitudinal waves, analyzes the bias error...Quasi-longitudinal waves are one type of structural waves, which are important at high frequencies. This paper studies the estimate theory and measurement technique of quasi-longitudinal waves, analyzes the bias error due to the effect of bending waves. In a two-dimensional quasi-longitudinal wave held, the intensity vector is the sum of the effective intensity vector and the intensity variation vector. Its axial component is proportional to two imaginary parts of cross spectral densities and in the measurement, it is measured by a pair of two-transducer arrays. In a one-dimensional quasi-longitudinal wave field, the intensity variation is zero, the intensity is proportional to only one imaginary part of a cross spectral density and it can be measured using a two-transducer array. If bending and quasi-longitudinal waves coexist and the contribution from bending waves cannot be eliminated or reduced to a certain extent, the measured quasi-longitudinal wave intensity will contain a large error. The results measured on the three-beam structure show that quasi-longitudinal wave intensity can be accurately measured using the intensity technique when bending waves are negligible in comparison with quasi-longitudinal waves.展开更多
A set of absorption curves was priorly prepared on transparent films to fit the background and peak intensities in continuous scanning X-ray stress measurement.It may be better to correct both background and absorptio...A set of absorption curves was priorly prepared on transparent films to fit the background and peak intensities in continuous scanning X-ray stress measurement.It may be better to correct both background and absorption of pure diffraction intensity.Experimental results revealed this to be a reliable correction method.展开更多
Transverse waves are a type of structural waves and should be considered in the analysis of high frequency vibration because the energy carried by transverse waves increases with the increase of frequency and becomes ...Transverse waves are a type of structural waves and should be considered in the analysis of high frequency vibration because the energy carried by transverse waves increases with the increase of frequency and becomes important at high frequencies. This paper studies the estimate theory and measuring technique of the transverse wave intensity in two-dimensional homogeneous structures. In general, the intensity vector is the sum of the effective intensity vector and the intensity variation vector. Each axial intensity component is proportional to two imaginary parts of cross spectral densities and its estimate is complicated. For the special case where transverse waves propagate in one direction, the intensity variation is zero and the estimate of the intensity is simplified. The intensity technique is formed based on the finite difference principle. Transverse wave intensity can be measured using a pair of two-transducer arrays lying in the orthogonal direction for the general case or a two-transducer array lying in the propagating direction for the special case. In order to assess the measurement accuracy of transverse wave intensify, the coupling loss factors from bending to transverse waves in building structures were measured using the intensity technique and compared with the results predicted and measured using the conventional method. It is shown that the agreement between the results measured using the intensity technique and that by the conventional method is good.展开更多
A combined unit, which has the ability to measure the current and emittance of the high intensity direct current(DC)ion beam, is developed at Peking University(PKU). It is a multi-slit single-wire(MSSW)-type bea...A combined unit, which has the ability to measure the current and emittance of the high intensity direct current(DC)ion beam, is developed at Peking University(PKU). It is a multi-slit single-wire(MSSW)-type beam emittance meter combined with a water-cooled Faraday Cup, named high intensity beam emittance measurement unit-6(HIBEMU-6). It takes about 15 seconds to complete one measurement of the beam current and its emittance. The emittance of a 50-mA@50-kV DC proton beam is measured.展开更多
The present study is aimed to investigate the ability of different intensity measures (IMs), including response spectral acceleration at the fundamental period of the structure, Sa(T1), as a common scalar IM and t...The present study is aimed to investigate the ability of different intensity measures (IMs), including response spectral acceleration at the fundamental period of the structure, Sa(T1), as a common scalar IM and twelve vector-valued IMs for seismic collapse assessment of structures. The vector-valued IMs consist of two components, with S(T1) as the first component and different parameters that are ratios of scalar IMs, as well as the spectral shape proxies εSa and N, as the second component. After investigating the properties of an optimal IM, a new vector-valued IM that includes the ratio of Sa(T1) to the displacement spectrum intensity (DSI) as the second component is proposed. The new IM is more efficient than other IMs for predicting the collapse capacity of structures. It is also sufficient with respect to magnitude, source-to-site distance, and scale factor for collapse capacity prediction of structures. To satisfy the predictability criterion, a ground motion prediction equation (GMPE) is determined for Sa(T1)/DSI by using the existing GMPEs. Furthermore, an empirical equation is proposed for obtaining the correlation between the components of the proposed IM. The results of this study show that using the new vector-valued IM leads to a more reliable seismic collapse assessment of structures.展开更多
This paper presents a method for seismic vulnerability analysis of bridge structures based on vector-valued intensity measure (viM), which predicts the limit-state capacities efficiently with multi-intensity measure...This paper presents a method for seismic vulnerability analysis of bridge structures based on vector-valued intensity measure (viM), which predicts the limit-state capacities efficiently with multi-intensity measures of seismic event. Accounting for the uncertainties of the bridge model, ten single-bent overpass bridge structures are taken as samples statistically using Latin hypercube sampling approach. 200 earthquake records are chosen randomly for the uncertainties of ground motions according to the site condition of the bridges. The uncertainties of structural capacity and seismic demand are evaluated with the ratios of demand to capacity in different damage state. By comparing the relative importance of different intensity measures, Sa(T1) and Sa(T2) are chosen as viM. Then, the vector-valued fragility functions of different bridge components are developed. Finally, the system-level vulnerability of the bridge based on viM is studied with Duunett- Sobel class correlation matrix which can consider the correlation effects of different bridge components. The study indicates that an increment IMs from a scalar IM to viM results in a significant reduction in the dispersion of fragility functions and in the uncertainties in evaluating earthquake risk. The feasibility and validity of the proposed vulnerability analysis method is validated and the bridge is more vulnerable than any components.展开更多
Ground-motion Intensity Measures (IMs) are used to quantify the strength of ground motions and evaluate the response of structures. IMs act as a link between seismic demand and seismic hazard analysis and therefore, h...Ground-motion Intensity Measures (IMs) are used to quantify the strength of ground motions and evaluate the response of structures. IMs act as a link between seismic demand and seismic hazard analysis and therefore, have a key role in performance-based earthquake engineering. Many studies have been carried out on the determination of suitable IMs in terms of effi ciency, suffi ciency and scaling robustness. The majority of these investigations focused on ordinary structures such as buildings and bridges, and only a few were about buried pipelines. In the current study, the optimal IMs for predicting the seismic demand of continuous buried steel pipelines under near-fi eld pulse-like ground motion records is investigated. Incremental dynamic analysis is performed using twenty ground motion records. Using the results of the regression analysis, the optimality of 23 potential IMs are studied. It is concluded that specifi c energy density (SED) followed by VSI[ω1(PGD+RMSd )] are the optimal IMs based on effi ciency, suffi ciency and scaling robustness for seismic response evaluation of buried pipelines under near-fi eld ground motions.展开更多
In this study the probable seismic behavior of skewed bridges with continuous decks under earthquake excitations from different directions is investigated. A 45° skewed bridge is studied. A suite of 20 records is...In this study the probable seismic behavior of skewed bridges with continuous decks under earthquake excitations from different directions is investigated. A 45° skewed bridge is studied. A suite of 20 records is used to perform an Incremental Dynamic Analysis (IDA) for fragility curves. Four different earthquake directions have been considered: -45°, 0°, 22.5, 45°. A sensitivity analysis on different spectral intensity measures is presented; efficiency and practicality of different intensity measures have been studied. The fragility curves obtained indicate that the critical direction for skewed bridges is the skew direction as well as the longitudinal direction. The study shows the importance of finding the most critical earthquake in understanding and predicting the behavior of skewed bridges.展开更多
High-precision angle measurement of pulsars is critical for realizing pulsar navigation.Compared to visible light and radio waves,the wavelength of X-rays is incredibly short,which provides the possibility of achievin...High-precision angle measurement of pulsars is critical for realizing pulsar navigation.Compared to visible light and radio waves,the wavelength of X-rays is incredibly short,which provides the possibility of achieving better spatial resolution.However,due to the lack of applicable X-ray apparatus,extracting the angle information of pulsars through conventional X-ray methods is challenging.Here,we propose an approach of pulsar angle measurement based on spatially modulated X-ray intensity correlation(SMXIC),in which the angle information is obtained by measuring the spatial intensity correlation between two radiation fields.The theoretical model for this method has been established,and a proof-of-concept experiment was carried out.The SMXIC measurement of observing angles has been demonstrated,and the experimental results are consistent with the theoretical values.The potential of this method in future applications is discussed,and theoretically,the angular measurement at the level of micro-arcsecond can be expected.The sphere of pulsar navigation may benefit from our fresh insights.展开更多
Intensive care unit-acquired weakness(ICU-AW)significantly hampers patient recovery and increases morbidity.With the absence of established preventive strategies,this study utilizes advanced machine learning methodolo...Intensive care unit-acquired weakness(ICU-AW)significantly hampers patient recovery and increases morbidity.With the absence of established preventive strategies,this study utilizes advanced machine learning methodologies to unearth key predictors of ICU-AW.Employing a sophisticated multilayer perceptron neural network,the research methodically assesses the predictive power for ICU-AW,pinpointing the length of ICU stay and duration of mechanical ventilation as pivotal risk factors.The findings advocate for minimizing these elements as a preventive approach,offering a novel perspective on combating ICU-AW.This research illuminates critical risk factors and lays the groundwork for future explorations into effective prevention and intervention strategies.展开更多
The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), pea...The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), peak ground displacement (DPG), spectral acceleration at the first-mode period of vibration [As(T1)] and ratio of VPG to APG are used as IM parameters, and the correlation is characterized by correlation coefficients p. The numerical results obtained by nonlinear dynamic analyses have shown good correlation between As(T1) or VPG and deformation demands. Furthermore, the effect of As(T1) and VPG as IM on the dispersion of the mean value of deformation demands is also investigated for SDOF systems with three different periods T=0.3 s, 1.0 s, 3.0 s respectively.展开更多
Based on the multiple stripes analysis method,an investigation of the estimation of aleatory randomness by S_(a)(T_(1))-based intensity measures(IMs)in the fragility analysis is carried out for two typical low-and med...Based on the multiple stripes analysis method,an investigation of the estimation of aleatory randomness by S_(a)(T_(1))-based intensity measures(IMs)in the fragility analysis is carried out for two typical low-and mediumrise reinforced concrete(RC)frame structures with 4 and 8 stories,respectively.The sensitivity of the aleatory randomness estimated in fragility curves to various S_(a)(T_(1))-based IMs is analyzed at three damage limit states,i.e.,immediate occupancy,life safety,and collapse prevention.In addition,the effect of characterization methods of bidirectional ground motion intensity on the record-to-record variability is investigated.It is found that the damage limit state of the structure has an important influence on the applicability of the ground motion IM.The S_(a)(T_(1))-based IMs,considering the effect of softened period,can maintain lower record-to-record variability in the three limit states,and the S_(a)(T_(1))-based IMs,considering the effect of higher modes,do not show their advantage over S_(a)(T_(1)).Furthermore,the optimal multiplier C and exponentαin the dual-parameter ground motion IM are proposed to obtain a lower record-to-record variability in the fragility analysis of different damage limit state.Finally,the improved dual-parameter ground motion IM is applied in the risk assessment of the 8-story frame structure.展开更多
This work investigates the correlation between a large number of widely used ground motion intensity measures(IMs) and the corresponding liquefaction potential of a soil deposit during earthquake loading. In order to ...This work investigates the correlation between a large number of widely used ground motion intensity measures(IMs) and the corresponding liquefaction potential of a soil deposit during earthquake loading. In order to accomplish this purpose the seismic responses of 32 sloping liquefiable site models consisting of layered cohesionless soil were subjected to 139 earthquake ground motions. Two sets of ground motions, consisting of 80 ordinary records and 59 pulse-like near-fault records are used in the dynamic analyses. The liquefaction potential of the site is expressed in terms of the the mean pore pressure ratio, the maximum ground settlement, the maximum ground horizontal displacement and the maximum ground horizontal acceleration. For each individual accelerogram, the values of the aforementioned liquefaction potential measures are determined. Then, the correlation between the liquefaction potential measures and the IMs is evaluated. The results reveal that the velocity spectrum intensity(VSI) shows the strongest correlation with the liquefaction potential of sloping site. VSI is also proven to be a sufficient intensity measure with respect to earthquake magnitude and source-to-site distance, and has a good predictability, thus making it a prime candidate for the seismic liquefaction hazard evaluation.展开更多
Based on the value sensitivity of options to underlying and corresponding treaty clauses, this paper poses a measuring method of path dependence intensity, which breaks the setup where the path dependence intensity is...Based on the value sensitivity of options to underlying and corresponding treaty clauses, this paper poses a measuring method of path dependence intensity, which breaks the setup where the path dependence intensity is only classified roughly and which becomes a deep study on path-dependent options. Then, its feasibility, instructions, and application to compare the path dependence intensity of sorts of options will be discussed.展开更多
Ash dense(non-soluble sediment density,NSDD) is attached to the insulator surface material that can't dissolve in water,it is divided by the result of surface area and used for quantitative content of insulator su...Ash dense(non-soluble sediment density,NSDD) is attached to the insulator surface material that can't dissolve in water,it is divided by the result of surface area and used for quantitative content of insulator surface non-soluble residues. Based on high voltage measurement,surface of outer insulation of ash can be used for the product line insulator pollution situation and determine whether it is able to withstand a variety of adverse factors. This paper proposes a method based on BH1750 FVI light intensity sensor for ash dense measurement.展开更多
The study on seismic intensity can be traced prior to the time that modern seismology was established. In its early stage the seismic intensity was designed to serve as a measure in scaling the severity of earthquake ...The study on seismic intensity can be traced prior to the time that modern seismology was established. In its early stage the seismic intensity was designed to serve as a measure in scaling the severity of earthquake damage to civil engineering and environmental structures. Also the seismic intensity is usually assigned by engineers and seismologists with one or two characteristic parameters of earthquake ground motions to reflect earthquake damage potential so as to be able to serve as an input earthquake load for seismic design of structures. So choosing a proper parameter to reflect the action of seismic intensity is the main objective of the research on physical measure of seismic intensity. However, since various kinds of structures have quite different damage mechanisms, there will exist great differences in damages to different structures located at the same area during the same earthquake. Particularly, in some cases, quite different damages have happened even to the structures of same kind due to many other factors such as different construction materials, different configurations or on the different types of sites where structures located. In addition, the ground motion parameters, which result in damage to structures, are not the single peak value of ground motion. Hence, this paper emphasizes that the research on new physical measure of seismic intensity should not only consider the structural characteristics but also take into account other parameters such as duration, energy of ground motion and so on. In particular, as the physical measures of intensity, different ground motion parameter should be adopted for different structures.展开更多
Small radiation fields are abundantly used in modern radiotherapy techniques like in IMRT and SRS. In order to commission these techniques, dosimetric data for small fields is required. The purpose of this study is to...Small radiation fields are abundantly used in modern radiotherapy techniques like in IMRT and SRS. In order to commission these techniques, dosimetric data for small fields is required. The purpose of this study is to compare dosimetric measurements with two different ion chambers cc13, and cc01 for smaller fields. Dosimetric measurements are beam profile, output factor, pdds, and collimator factor. Dosimetric data is acquired in water phantom for two different photon beam energies 6 MV and 15 MV with zero gantry angle. In beam profiles cc13 chamber, measure wider penumbra as compare to cc01. And this wider measurement of penumbra occurs for smaller as well as for larger field sizes. Accumulated relative error in the measurement of penumbra for number of field sizes and 6 MV at dmax, and at 10 cm depth are 34.32% and 27.72% respectively. Accumulated relative error in the measurement of penumbra for number of field sizes and 15 MV at dmax, and at 10 cm depth are 28.49% and 23.92%. In case of output factor for smaller fields cc13 underestimates the output factor relative to cc01, with non-linear increase for smaller fields. But for larger fields, this increase in output factor is almost linear difference of two chambers is decreased. For very smaller fields × 2 cm, relative error in output factor of cc13 and cc01 is greater than 5% and rapidly increases with decreasing field size. But for lager fields, this relative error is negligible. In measurement of pdds after the buildup region difference occurs in the response of two chambers cc13 and cc01 for smaller fields. For field sizes ≤2 cm × 2 cm average cc13-cc01 at various depths 30 cm, 40 cm, 50 cm, 60 cm, 70 cm, and 80 cm is almost greater than 0.5 cm. And similarly as output factor, this difference (cc13-cc01) increases with field size decreasing.展开更多
基金Project supported by the Science and Technology Project of Guangdong(Grant No.2020B010190001)the National Natural Science Foundation of China(Grant No.11974119)+1 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06C594)the National Key R&D Program of China(Grant No.2018YFA0306200)。
文摘We present a new global model of collinear autocorrelation based on second harmonic generation nonlinearity.The model is rigorously derived from the nonlinear coupled wave equation specific to the autocorrelation measurement configuration,without requiring a specific form of the incident pulse function.A rigorous solution of the nonlinear coupled wave equation is obtained in the time domain and expressed in a general analytical form.The global model fully accounts for the nonlinear interaction and propagation effects within nonlinear crystals,which are not captured by the classical local model.To assess the performance of the global model compared to the classic local model,we investigate the autocorrelation signals obtained from both models for different incident pulse waveforms and different full-widthes at half-maximum(FWHMs).When the incident pulse waveform is Lorentzian with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 399.9 fs,while the classic local model predicts an FWHM of 331.4 fs.The difference between the two models is 68.6 fs,corresponding to an error of 17.2%.Similarly,for a sech-type incident pulse with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 343.9 fs,while the local model predicts an FWHM of 308.8 fs.The difference between the two models is 35.1 fs,with an error of 10.2%.We further examine the behavior of the models for Lorentzian pulses with FWHMs of 100 fs,200 fs and 500 fs.The differences between the global and local models are 17.1 fs,68.6 fs and 86.0 fs,respectively,with errors approximately around 17%.These comparative analyses clearly demonstrate the superior accuracy of the global model in intensity autocorrelation modeling.
基金National Natural Science Foundation of China under Grant Nos.52178353,51808421the Fundamental Research Funds for the Central Universities(WUT:2020III043)。
文摘The performance of clay-pile-pier system under earthquake shaking was comprehensively examined via three-dimensional finite element analyses,in which the complex stress-strain relationships of a clay and piled pier system were depicted by a hyperbolic-hysteretic and an equivalent elastoplastic model,respectively.One hundred twenty ground motions with varying peak accelerations were considered,along with the variations in bridge superstructure mass and pile flexural rigidity.Comprehensive comparison studies suggested that peak pile-cap acceleration and peak pile-cap velocity are the optimal ground motion intensity measures for seismic responses of the pier and the pile,respectively.Furthermore,based on two optimal ground motion intensity measures and using curvature ductility to quantify different damage states,seismic fragility analyses were performed.The pier generally had no evident damage except when the bridge girder mass was equal to 960 t,which seemed to be comparatively insensitive to the varying pile flexural rigidity.In comparison,the pile was found to be more vulnerable to seismic damage and its failure probabilities tended to clearly reduce with the increment of pile flexural rigidity,while the influence of the bridge girder mass was relatively minor.
文摘Quasi-longitudinal waves are one type of structural waves, which are important at high frequencies. This paper studies the estimate theory and measurement technique of quasi-longitudinal waves, analyzes the bias error due to the effect of bending waves. In a two-dimensional quasi-longitudinal wave held, the intensity vector is the sum of the effective intensity vector and the intensity variation vector. Its axial component is proportional to two imaginary parts of cross spectral densities and in the measurement, it is measured by a pair of two-transducer arrays. In a one-dimensional quasi-longitudinal wave field, the intensity variation is zero, the intensity is proportional to only one imaginary part of a cross spectral density and it can be measured using a two-transducer array. If bending and quasi-longitudinal waves coexist and the contribution from bending waves cannot be eliminated or reduced to a certain extent, the measured quasi-longitudinal wave intensity will contain a large error. The results measured on the three-beam structure show that quasi-longitudinal wave intensity can be accurately measured using the intensity technique when bending waves are negligible in comparison with quasi-longitudinal waves.
文摘A set of absorption curves was priorly prepared on transparent films to fit the background and peak intensities in continuous scanning X-ray stress measurement.It may be better to correct both background and absorption of pure diffraction intensity.Experimental results revealed this to be a reliable correction method.
基金This work is financed by the National Natural Science Foundation of China
文摘Transverse waves are a type of structural waves and should be considered in the analysis of high frequency vibration because the energy carried by transverse waves increases with the increase of frequency and becomes important at high frequencies. This paper studies the estimate theory and measuring technique of the transverse wave intensity in two-dimensional homogeneous structures. In general, the intensity vector is the sum of the effective intensity vector and the intensity variation vector. Each axial intensity component is proportional to two imaginary parts of cross spectral densities and its estimate is complicated. For the special case where transverse waves propagate in one direction, the intensity variation is zero and the estimate of the intensity is simplified. The intensity technique is formed based on the finite difference principle. Transverse wave intensity can be measured using a pair of two-transducer arrays lying in the orthogonal direction for the general case or a two-transducer array lying in the propagating direction for the special case. In order to assess the measurement accuracy of transverse wave intensify, the coupling loss factors from bending to transverse waves in building structures were measured using the intensity technique and compared with the results predicted and measured using the conventional method. It is shown that the agreement between the results measured using the intensity technique and that by the conventional method is good.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB845502)the National Natural Science Foundation of China(Grant No.91126004)
文摘A combined unit, which has the ability to measure the current and emittance of the high intensity direct current(DC)ion beam, is developed at Peking University(PKU). It is a multi-slit single-wire(MSSW)-type beam emittance meter combined with a water-cooled Faraday Cup, named high intensity beam emittance measurement unit-6(HIBEMU-6). It takes about 15 seconds to complete one measurement of the beam current and its emittance. The emittance of a 50-mA@50-kV DC proton beam is measured.
文摘The present study is aimed to investigate the ability of different intensity measures (IMs), including response spectral acceleration at the fundamental period of the structure, Sa(T1), as a common scalar IM and twelve vector-valued IMs for seismic collapse assessment of structures. The vector-valued IMs consist of two components, with S(T1) as the first component and different parameters that are ratios of scalar IMs, as well as the spectral shape proxies εSa and N, as the second component. After investigating the properties of an optimal IM, a new vector-valued IM that includes the ratio of Sa(T1) to the displacement spectrum intensity (DSI) as the second component is proposed. The new IM is more efficient than other IMs for predicting the collapse capacity of structures. It is also sufficient with respect to magnitude, source-to-site distance, and scale factor for collapse capacity prediction of structures. To satisfy the predictability criterion, a ground motion prediction equation (GMPE) is determined for Sa(T1)/DSI by using the existing GMPEs. Furthermore, an empirical equation is proposed for obtaining the correlation between the components of the proposed IM. The results of this study show that using the new vector-valued IM leads to a more reliable seismic collapse assessment of structures.
基金National Program on Key Basic Research Project of China(973)under Grant No.2011CB013603National Natural Science Foundation of China under Grant Nos.51378341,91315301Tianjin Municipal Natural Science Foundation under Grant No.13JCQNJC07200
文摘This paper presents a method for seismic vulnerability analysis of bridge structures based on vector-valued intensity measure (viM), which predicts the limit-state capacities efficiently with multi-intensity measures of seismic event. Accounting for the uncertainties of the bridge model, ten single-bent overpass bridge structures are taken as samples statistically using Latin hypercube sampling approach. 200 earthquake records are chosen randomly for the uncertainties of ground motions according to the site condition of the bridges. The uncertainties of structural capacity and seismic demand are evaluated with the ratios of demand to capacity in different damage state. By comparing the relative importance of different intensity measures, Sa(T1) and Sa(T2) are chosen as viM. Then, the vector-valued fragility functions of different bridge components are developed. Finally, the system-level vulnerability of the bridge based on viM is studied with Duunett- Sobel class correlation matrix which can consider the correlation effects of different bridge components. The study indicates that an increment IMs from a scalar IM to viM results in a significant reduction in the dispersion of fragility functions and in the uncertainties in evaluating earthquake risk. The feasibility and validity of the proposed vulnerability analysis method is validated and the bridge is more vulnerable than any components.
文摘Ground-motion Intensity Measures (IMs) are used to quantify the strength of ground motions and evaluate the response of structures. IMs act as a link between seismic demand and seismic hazard analysis and therefore, have a key role in performance-based earthquake engineering. Many studies have been carried out on the determination of suitable IMs in terms of effi ciency, suffi ciency and scaling robustness. The majority of these investigations focused on ordinary structures such as buildings and bridges, and only a few were about buried pipelines. In the current study, the optimal IMs for predicting the seismic demand of continuous buried steel pipelines under near-fi eld pulse-like ground motion records is investigated. Incremental dynamic analysis is performed using twenty ground motion records. Using the results of the regression analysis, the optimality of 23 potential IMs are studied. It is concluded that specifi c energy density (SED) followed by VSI[ω1(PGD+RMSd )] are the optimal IMs based on effi ciency, suffi ciency and scaling robustness for seismic response evaluation of buried pipelines under near-fi eld ground motions.
文摘In this study the probable seismic behavior of skewed bridges with continuous decks under earthquake excitations from different directions is investigated. A 45° skewed bridge is studied. A suite of 20 records is used to perform an Incremental Dynamic Analysis (IDA) for fragility curves. Four different earthquake directions have been considered: -45°, 0°, 22.5, 45°. A sensitivity analysis on different spectral intensity measures is presented; efficiency and practicality of different intensity measures have been studied. The fragility curves obtained indicate that the critical direction for skewed bridges is the skew direction as well as the longitudinal direction. The study shows the importance of finding the most critical earthquake in understanding and predicting the behavior of skewed bridges.
基金financially supported by the National Natural Science Foundation of China(No.11627811)the National Key Research and Development Program of China(No.2017YFB0503303)Zhangjiang Laboratory。
文摘High-precision angle measurement of pulsars is critical for realizing pulsar navigation.Compared to visible light and radio waves,the wavelength of X-rays is incredibly short,which provides the possibility of achieving better spatial resolution.However,due to the lack of applicable X-ray apparatus,extracting the angle information of pulsars through conventional X-ray methods is challenging.Here,we propose an approach of pulsar angle measurement based on spatially modulated X-ray intensity correlation(SMXIC),in which the angle information is obtained by measuring the spatial intensity correlation between two radiation fields.The theoretical model for this method has been established,and a proof-of-concept experiment was carried out.The SMXIC measurement of observing angles has been demonstrated,and the experimental results are consistent with the theoretical values.The potential of this method in future applications is discussed,and theoretically,the angular measurement at the level of micro-arcsecond can be expected.The sphere of pulsar navigation may benefit from our fresh insights.
文摘Intensive care unit-acquired weakness(ICU-AW)significantly hampers patient recovery and increases morbidity.With the absence of established preventive strategies,this study utilizes advanced machine learning methodologies to unearth key predictors of ICU-AW.Employing a sophisticated multilayer perceptron neural network,the research methodically assesses the predictive power for ICU-AW,pinpointing the length of ICU stay and duration of mechanical ventilation as pivotal risk factors.The findings advocate for minimizing these elements as a preventive approach,offering a novel perspective on combating ICU-AW.This research illuminates critical risk factors and lays the groundwork for future explorations into effective prevention and intervention strategies.
基金National Natural Science Foundation of China (50578007)
文摘The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), peak ground displacement (DPG), spectral acceleration at the first-mode period of vibration [As(T1)] and ratio of VPG to APG are used as IM parameters, and the correlation is characterized by correlation coefficients p. The numerical results obtained by nonlinear dynamic analyses have shown good correlation between As(T1) or VPG and deformation demands. Furthermore, the effect of As(T1) and VPG as IM on the dispersion of the mean value of deformation demands is also investigated for SDOF systems with three different periods T=0.3 s, 1.0 s, 3.0 s respectively.
基金the Jiangsu Youth Fund Projects(SBK2021044269)the National Natural Science Foundation of China Youth Fund(52108457,52108133)+4 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(20KJB560014)Fundamental Research Funds for the Central Universities(B210201019)High-level Talent Research Fund of Nanjing Forestry University(163050115)Nanjing Forestry University Undergraduate Innovation Training Program(2021NFUSPITP0221,2020NFUSPITP0352 and 2020NFUSPITP0373)Jiangsu Undergraduate Innovation Training Program(202110298079Y).
文摘Based on the multiple stripes analysis method,an investigation of the estimation of aleatory randomness by S_(a)(T_(1))-based intensity measures(IMs)in the fragility analysis is carried out for two typical low-and mediumrise reinforced concrete(RC)frame structures with 4 and 8 stories,respectively.The sensitivity of the aleatory randomness estimated in fragility curves to various S_(a)(T_(1))-based IMs is analyzed at three damage limit states,i.e.,immediate occupancy,life safety,and collapse prevention.In addition,the effect of characterization methods of bidirectional ground motion intensity on the record-to-record variability is investigated.It is found that the damage limit state of the structure has an important influence on the applicability of the ground motion IM.The S_(a)(T_(1))-based IMs,considering the effect of softened period,can maintain lower record-to-record variability in the three limit states,and the S_(a)(T_(1))-based IMs,considering the effect of higher modes,do not show their advantage over S_(a)(T_(1)).Furthermore,the optimal multiplier C and exponentαin the dual-parameter ground motion IM are proposed to obtain a lower record-to-record variability in the fragility analysis of different damage limit state.Finally,the improved dual-parameter ground motion IM is applied in the risk assessment of the 8-story frame structure.
基金Project(5141001028)supported by International Cooperation and Exchanges of NSFC,ChinaProjects(51308566,51308565,51409025)supported by the National Natural Science Foundation of ChinaProject(CDJZR12200002)supported by the Fundamental Research Funds for the Central Universities,China
文摘This work investigates the correlation between a large number of widely used ground motion intensity measures(IMs) and the corresponding liquefaction potential of a soil deposit during earthquake loading. In order to accomplish this purpose the seismic responses of 32 sloping liquefiable site models consisting of layered cohesionless soil were subjected to 139 earthquake ground motions. Two sets of ground motions, consisting of 80 ordinary records and 59 pulse-like near-fault records are used in the dynamic analyses. The liquefaction potential of the site is expressed in terms of the the mean pore pressure ratio, the maximum ground settlement, the maximum ground horizontal displacement and the maximum ground horizontal acceleration. For each individual accelerogram, the values of the aforementioned liquefaction potential measures are determined. Then, the correlation between the liquefaction potential measures and the IMs is evaluated. The results reveal that the velocity spectrum intensity(VSI) shows the strongest correlation with the liquefaction potential of sloping site. VSI is also proven to be a sufficient intensity measure with respect to earthquake magnitude and source-to-site distance, and has a good predictability, thus making it a prime candidate for the seismic liquefaction hazard evaluation.
文摘Based on the value sensitivity of options to underlying and corresponding treaty clauses, this paper poses a measuring method of path dependence intensity, which breaks the setup where the path dependence intensity is only classified roughly and which becomes a deep study on path-dependent options. Then, its feasibility, instructions, and application to compare the path dependence intensity of sorts of options will be discussed.
文摘Ash dense(non-soluble sediment density,NSDD) is attached to the insulator surface material that can't dissolve in water,it is divided by the result of surface area and used for quantitative content of insulator surface non-soluble residues. Based on high voltage measurement,surface of outer insulation of ash can be used for the product line insulator pollution situation and determine whether it is able to withstand a variety of adverse factors. This paper proposes a method based on BH1750 FVI light intensity sensor for ash dense measurement.
基金Specialized Research Fund for the Doctoral Program of Higher Education (20030213042) and Natural Science Foundation of Heilongjiang Province (ZJG03-03).
文摘The study on seismic intensity can be traced prior to the time that modern seismology was established. In its early stage the seismic intensity was designed to serve as a measure in scaling the severity of earthquake damage to civil engineering and environmental structures. Also the seismic intensity is usually assigned by engineers and seismologists with one or two characteristic parameters of earthquake ground motions to reflect earthquake damage potential so as to be able to serve as an input earthquake load for seismic design of structures. So choosing a proper parameter to reflect the action of seismic intensity is the main objective of the research on physical measure of seismic intensity. However, since various kinds of structures have quite different damage mechanisms, there will exist great differences in damages to different structures located at the same area during the same earthquake. Particularly, in some cases, quite different damages have happened even to the structures of same kind due to many other factors such as different construction materials, different configurations or on the different types of sites where structures located. In addition, the ground motion parameters, which result in damage to structures, are not the single peak value of ground motion. Hence, this paper emphasizes that the research on new physical measure of seismic intensity should not only consider the structural characteristics but also take into account other parameters such as duration, energy of ground motion and so on. In particular, as the physical measures of intensity, different ground motion parameter should be adopted for different structures.
文摘Small radiation fields are abundantly used in modern radiotherapy techniques like in IMRT and SRS. In order to commission these techniques, dosimetric data for small fields is required. The purpose of this study is to compare dosimetric measurements with two different ion chambers cc13, and cc01 for smaller fields. Dosimetric measurements are beam profile, output factor, pdds, and collimator factor. Dosimetric data is acquired in water phantom for two different photon beam energies 6 MV and 15 MV with zero gantry angle. In beam profiles cc13 chamber, measure wider penumbra as compare to cc01. And this wider measurement of penumbra occurs for smaller as well as for larger field sizes. Accumulated relative error in the measurement of penumbra for number of field sizes and 6 MV at dmax, and at 10 cm depth are 34.32% and 27.72% respectively. Accumulated relative error in the measurement of penumbra for number of field sizes and 15 MV at dmax, and at 10 cm depth are 28.49% and 23.92%. In case of output factor for smaller fields cc13 underestimates the output factor relative to cc01, with non-linear increase for smaller fields. But for larger fields, this increase in output factor is almost linear difference of two chambers is decreased. For very smaller fields × 2 cm, relative error in output factor of cc13 and cc01 is greater than 5% and rapidly increases with decreasing field size. But for lager fields, this relative error is negligible. In measurement of pdds after the buildup region difference occurs in the response of two chambers cc13 and cc01 for smaller fields. For field sizes ≤2 cm × 2 cm average cc13-cc01 at various depths 30 cm, 40 cm, 50 cm, 60 cm, 70 cm, and 80 cm is almost greater than 0.5 cm. And similarly as output factor, this difference (cc13-cc01) increases with field size decreasing.