Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,...Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,sound event localization and detection(SELD)has become a very active research topic.This paper presents a deep learning-based multioverlapping sound event localization and detection algorithm in three-dimensional space.Log-Mel spectrum and generalized cross-correlation spectrum are joined together in channel dimension as input features.These features are classified and regressed in parallel after training by a neural network to obtain sound recognition and localization results respectively.The channel attention mechanism is also introduced in the network to selectively enhance the features containing essential information and suppress the useless features.Finally,a thourough comparison confirms the efficiency and effectiveness of the proposed SELD algorithm.Field experiments show that the proposed algorithm is robust to reverberation and environment and can achieve higher recognition and localization accuracy compared with the baseline method.展开更多
Event detection(ED)is aimed at detecting event occurrences and categorizing them.This task has been previously solved via recognition and classification of event triggers(ETs),which are defined as the phrase or word m...Event detection(ED)is aimed at detecting event occurrences and categorizing them.This task has been previously solved via recognition and classification of event triggers(ETs),which are defined as the phrase or word most clearly expressing event occurrence.Thus,current approaches require both annotated triggers as well as event types in training data.Nevertheless,triggers are non-essential in ED,and it is time-wasting for annotators to identify the“most clearly”word from a sentence,particularly in longer sentences.To decrease manual effort,we evaluate event detectionwithout triggers.We propose a novel framework that combines Type-aware Attention and Graph Convolutional Networks(TA-GCN)for event detection.Specifically,the task is identified as a multi-label classification problem.We first encode the input sentence using a novel type-aware neural network with attention mechanisms.Then,a Graph Convolutional Networks(GCN)-based multilabel classification model is exploited for event detection.Experimental results demonstrate the effectiveness.展开更多
It has long been a challenging task to detect an anomaly in a crowded scene.In this paper,a selfsupervised framework called the abnormal event detection network(AED-Net),which is composed of a principal component anal...It has long been a challenging task to detect an anomaly in a crowded scene.In this paper,a selfsupervised framework called the abnormal event detection network(AED-Net),which is composed of a principal component analysis network(PCAnet)and kernel principal component analysis(kPCA),is proposed to address this problem.Using surveillance video sequences of different scenes as raw data,the PCAnet is trained to extract high-level semantics of the crowd’s situation.Next,kPCA,a one-class classifier,is trained to identify anomalies within the scene.In contrast to some prevailing deep learning methods,this framework is completely self-supervised because it utilizes only video sequences of a normal situation.Experiments in global and local abnormal event detection are carried out on Monitoring Human Activity dataset from University of Minnesota(UMN dataset)and Anomaly Detection dataset from University of California,San Diego(UCSD dataset),and competitive results that yield a better equal error rate(EER)and area under curve(AUC)than other state-of-the-art methods are observed.Furthermore,by adding a local response normalization(LRN)layer,we propose an improvement to the original AED-Net.The results demonstrate that this proposed version performs better by promoting the framework’s generalization capacity.展开更多
Business processes described by formal or semi-formal models are realized via information systems.Event logs generated from these systems are probably not consistent with the existing models due to insufficient design...Business processes described by formal or semi-formal models are realized via information systems.Event logs generated from these systems are probably not consistent with the existing models due to insufficient design of the information system or the system upgrade.By comparing an existing process model with event logs,we can detect inconsistencies called deviations,verify and extend the business process model,and accordingly improve the business process.In this paper,some abnormal activities in business processes are formally defined based on Petri nets.An efficient approach to detect deviations between the process model and event logs is proposed.Then,business process models are revised when abnormal activities exist.A clinical process in a healthcare information system is used as a case study to illustrate our work.Experimental results show the effectiveness and efficiency of the proposed approach.展开更多
Wi-Fi devices have limited battery life because of which conserving battery life is imperative. The 802.11 Wi-Fi standard provides power management feature that allows stations(STAs) to enter into sleep state to prese...Wi-Fi devices have limited battery life because of which conserving battery life is imperative. The 802.11 Wi-Fi standard provides power management feature that allows stations(STAs) to enter into sleep state to preserve energy without any frame losses. After the STA wakes up, it sends a null data or PS-Poll frame to retrieve frame(s) buffered by the access point(AP), if any during its sleep period. An attacker can launch a power save denial of service(PS-DoS) attack on the sleeping STA(s) by transmitting a spoofed null data or PS-Poll frame(s) to retrieve the buffered frame(s) of the sleeping STA(s) from the AP causing frame losses for the targeted STA(s). Current approaches to prevent or detect the PS-DoS attack require encryption,change in protocol or installation of proprietary hardware. These solutions suffer from expensive setup, maintenance, scalability and deployment issues. The PS-DoS attack does not differ in semantics or statistics under normal and attack circumstances.So signature and anomaly based intrusion detection system(IDS) are unfit to detect the PS-DoS attack. In this paper we propose a timed IDS based on real time discrete event system(RTDES) for detecting PS-DoS attack. The proposed DES based IDS overcomes the drawbacks of existing systems and detects the PS-DoS attack with high accuracy and detection rate. The correctness of the RTDES based IDS is proved by experimenting all possible attack scenarios.展开更多
The interior structures of planets are attracting more and more detailed attention;these studies could be of great value in improving our understanding of the early evolution of Earth. Seismological investigations of ...The interior structures of planets are attracting more and more detailed attention;these studies could be of great value in improving our understanding of the early evolution of Earth. Seismological investigations of planet interiors rely primarily on seismic waves excited by seismic events. Since tectonic activities are much weaker on other planets, e.g. Mars, the magnitudes of their seismic events are much smaller than those on Earth. It is therefore a challenge to detect seismic events on planets using such conventional techniques as short-time average/long-time average (STA/LTA) triggers. In pursuit of an effective and robust scheme to detect smallmagnitude events on Mars in the near future, we have taken Apollo lunar seismic observations as an example of weak-activity data and developed an event-detection scheme. The scheme reported here is actually a two-step processing approach: the first step involves a despike filter to remove large-amplitude impulses arising from large temperature variations;the second step employs a matched filter to unmask the seismic signals from a weak event hidden in the ambient and scattering noise. The proposed scheme has been used successfully to detect a moonquake that was not in the known moonquake catalogue, demonstrating that the two-step strategy is a feasible method for detecting seismic events on planets. Our scheme will provide a powerful tool for seismic data analysis of the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission, and China’s future lunar missions.展开更多
As the main communication mediums in industrial control networks,industrial communication protocols are always vulnerable to extreme exploitations,and it is very difficult to take protective measures due to their seri...As the main communication mediums in industrial control networks,industrial communication protocols are always vulnerable to extreme exploitations,and it is very difficult to take protective measures due to their serious privacy.Based on the SDN(Software Defined Network)technology,this paper proposes a novel event-based anomaly detection approach to identify misbehaviors using non-public industrial communication protocols,and this approach can be installed in SDN switches as a security software appliance in SDN-based control systems.Furthermore,aiming at the unknown protocol specification and message format,this approach first restructures the industrial communication sessions and merges the payloads from industrial communication packets.After that,the feature selection and event sequence extraction can be carried out by using the N-gram model and K-means algorithm.Based on the obtained event sequences,this approach finally trains an event-based HMM(Hidden Markov Model)to identify aberrant industrial communication behaviors.Experimental results clearly show that the proposed approach has obvious advantages of classification accuracy and detection efficiency.展开更多
In this paper, we present an approach to improve the accuracy of environmental sound event detection in a wireless acoustic sensor network for home monitoring. Wireless acoustic sensor nodes can capture sounds in the ...In this paper, we present an approach to improve the accuracy of environmental sound event detection in a wireless acoustic sensor network for home monitoring. Wireless acoustic sensor nodes can capture sounds in the home and simultaneously deliver them to a sink node for sound event detection. The proposed approach is mainly composed of three modules, including signal estimation, reliable sensor channel selection, and sound event detection. During signal estimation, lost packets are recovered to improve the signal quality. Next, reliable channels are selected using a multi-channel cross-correlation coefficient to improve the computational efficiency for distant sound event detection without sacrificing performance. Finally, the signals of the selected two channels are used for environmental sound event detection based on bidirectional gated recurrent neural networks using two-channel audio features. Experiments show that the proposed approach achieves superior performances compared to the baseline.展开更多
Falls are the most common concern among older adults or disabled peo-ple who use scooters and wheelchairs.The early detection of disabled persons’falls is required to increase the living rate of an individual or prov...Falls are the most common concern among older adults or disabled peo-ple who use scooters and wheelchairs.The early detection of disabled persons’falls is required to increase the living rate of an individual or provide support to them whenever required.In recent times,the arrival of the Internet of Things(IoT),smartphones,Artificial Intelligence(AI),wearables and so on make it easy to design fall detection mechanisms for smart homecare.The current study devel-ops an Automated Disabled People Fall Detection using Cuckoo Search Optimi-zation with Mobile Networks(ADPFD-CSOMN)model.The proposed model’s major aim is to detect and distinguish fall events from non-fall events automati-cally.To attain this,the presented ADPFD-CSOMN technique incorporates the design of the MobileNet model for the feature extraction process.Next,the CSO-based hyperparameter tuning process is executed for the MobileNet model,which shows the paper’s novelty.Finally,the Radial Basis Function(RBF)clas-sification model recognises and classifies the instances as either fall or non-fall.In order to validate the betterment of the proposed ADPFD-CSOMN model,a com-prehensive experimental analysis was conducted.The results confirmed the enhanced fall classification outcomes of the ADPFD-CSOMN model over other approaches with an accuracy of 99.17%.展开更多
Supervised machine learning approaches are effective in text mining,but their success relies heavily on manually annotated corpora.However,there are limited numbers of annotated biomedical event corpora,and the availa...Supervised machine learning approaches are effective in text mining,but their success relies heavily on manually annotated corpora.However,there are limited numbers of annotated biomedical event corpora,and the available datasets contain insufficient examples for training classifiers;the common cure is to seek large amounts of training samples from unlabeled data,but such data sets often contain many mislabeled samples,which will degrade the performance of classifiers.Therefore,this study proposes a novel error data detection approach suitable for reducing noise in unlabeled biomedical event data.First,we construct the mislabeled dataset through error data analysis with the development dataset.The sample pairs’vector representations are then obtained by the means of sequence patterns and the joint model of convolutional neural network and long short-term memory recurrent neural network.Following this,the sample identification strategy is proposed,using error detection based on pair representation for unlabeled data.With the latter,the selected samples are added to enrich the training dataset and improve the classification performance.In the BioNLP Shared Task GENIA,the experiments results indicate that the proposed approach is competent in extract the biomedical event from biomedical literature.Our approach can effectively filter some noisy examples and build a satisfactory prediction model.展开更多
The analysis and exploration of auroral dynamics are very significant for studying auroral mechanisms. This paper proposes a method based on auroral dynamic processes for detecting auroral events automatically. We fir...The analysis and exploration of auroral dynamics are very significant for studying auroral mechanisms. This paper proposes a method based on auroral dynamic processes for detecting auroral events automatically. We first obtained the motion fields using the multiscale fluid flow estimator. Then, the auroral video frame sequence was represented by the spatiotemporal statistics of local motion vectors. Finally, automatic auroral event detection was achieved. The experimental results show that our methods could detect the required auroral events effectively and accurately, and that the detections were independent on any specific auroral event. The proposed method makes it feasible to statistically analyze a large number of continuous observations based on the auroral dynamic process.展开更多
Recently, the Internet of Things (loT) has attracted more and more attention. Multimedia sensor network plays an important role in the IoT, and audio event detection in the multimedia sensor net- works is one of the...Recently, the Internet of Things (loT) has attracted more and more attention. Multimedia sensor network plays an important role in the IoT, and audio event detection in the multimedia sensor net- works is one of the most important applications for the Internet of Things. In practice, it is hard to get enough real-world samples to generate the classifi- ers for some special audio events (e.g., car-crash- ing in the smart traffic system). In this paper, we introduce a TrAdaBoost-based method to solve the above problem. By using the proposed approach, we can train a strong classifier by using only a tiny amount of real-world data and a large number of more easily collected samples (e.g., collected from TV programs), even when the real-world data is not sufficient to train a model alone. We deploy this ap- proach in a smart traffic system to evaluate its per- formance, and the experiment evaluations demonstrate that our method can achieve satisfying results.展开更多
Current Chinese event detection methods commonly use word embedding to capture semantic representation,but these methods find it difficult to capture the dependence relationship between the trigger words and other wor...Current Chinese event detection methods commonly use word embedding to capture semantic representation,but these methods find it difficult to capture the dependence relationship between the trigger words and other words in the same sentence.Based on the simple evaluation,it is known that a dependency parser can effectively capture dependency relationships and improve the accuracy of event categorisation.This study proposes a novel architecture that models a hybrid representation to summarise semantic and structural information from both characters and words.This model can capture rich semantic features for the event detection task by incorporating the semantic representation generated from the dependency parser.The authors evaluate different models on kbp 2017 corpus.The experimental results show that the proposed method can significantly improve performance in Chinese event detection.展开更多
Online social media networks are gaining attention worldwide,with an increasing number of people relying on them to connect,communicate and share their daily pertinent event-related information.Event detection is now ...Online social media networks are gaining attention worldwide,with an increasing number of people relying on them to connect,communicate and share their daily pertinent event-related information.Event detection is now increasingly leveraging online social networks for highlighting events happening around the world via the Internet of People.In this paper,a novel Event Detection model based on Scoring and Word Embedding(ED-SWE)is proposed for discovering key events from a large volume of data streams of tweets and for generating an event summary using keywords and top-k tweets.The proposed ED-SWE model can distill high-quality tweets,reduce the negative impact of the advent of spam,and identify latent events in the data streams automatically.Moreover,a word embedding algorithm is used to learn a real-valued vector representation for a predefined fixed-sized vocabulary from a corpus of Twitter data.In order to further improve the performance of the Expectation-Maximization(EM)iteration algorithm,a novel initialization method based on the authority values of the tweets is also proposed in this paper to detect live events efficiently and precisely.Finally,a novel automatic identification method based on the cosine measure is used to automatically evaluate whether a given topic can form a live event.Experiments conducted on a real-world dataset demonstrate that the ED-SWE model exhibits better efficiency and accuracy than several state-of-art event detection models.展开更多
A semantic unit based event detection scheme in soccer videos is proposed in this paper.The scheme can be characterized as a three-layer framework. At the lowest layer, low-level featuresincluding color, texture, edge...A semantic unit based event detection scheme in soccer videos is proposed in this paper.The scheme can be characterized as a three-layer framework. At the lowest layer, low-level featuresincluding color, texture, edge, shape, and motion are extracted. High-level semantic events aredefined at the highest layer. In order to connect low-level features and high-level semantics, wedesign and define some semantic units at the intermediate layer. A semantic unit is composed of asequence of consecutives frames with the same cue that is deduced from low-level features. Based onsemantic units, a Bayesian network is used to reason the probabilities of events. The experiments forshoot and card event detection in soccer videos show that the proposed method has an encouragingperformance.展开更多
Fault detection caused by single event effect( SEE) in system was studied,and an improved fault detection algorithm by fusing multi-information entropy for detecting soft error was proposed based on multi-objective de...Fault detection caused by single event effect( SEE) in system was studied,and an improved fault detection algorithm by fusing multi-information entropy for detecting soft error was proposed based on multi-objective detection approach and classification management method. In the improved fault detection algorithm, the analysis model of posteriori information with corresponding multi-fault alternative detection points was formulated through correlation information matrix, and the maximum incremental information entropy was chosen as the classification principle for the optimal detection points. A system design example was given to prove the rationality and feasibility of this algorithm.This fault detection algorithm can achieve the purpose of fault detection and resource configuration with high efficiency.展开更多
The analytical and monitoring capabilities of central event re-positories, such as log servers and intrusion detection sys-tems, are limited by the amount of structured information ex-tracted from the events they rece...The analytical and monitoring capabilities of central event re-positories, such as log servers and intrusion detection sys-tems, are limited by the amount of structured information ex-tracted from the events they receive. Diverse networks and ap-plications log their events in many different formats, and this makes it difficult to identify the type of logs being received by the central repository. The way events are logged by IT systems is problematic for developers of host-based intrusion-detection systems (specifically, host-based systems), develop-ers of security-information systems, and developers of event-management systems. These problems preclude the develop-ment of more accurate, intrusive security solutions that obtain results from data included in the logs being processed. We propose a new method for dynamically normalizing events into a unified super-event that is loosely based on the Common Event Expression standard developed by Mitre Corporation. We explain how our solution can normalize seemingly unrelat-ed events into a single, unified format.展开更多
The occurrence of microseismic is not random but is related to the physical properties of the underground medium.Due to the low intensity and the influence of noise,microseismic eventually lead to poor signal-to-noise...The occurrence of microseismic is not random but is related to the physical properties of the underground medium.Due to the low intensity and the influence of noise,microseismic eventually lead to poor signal-to-noise ratio.We proposed a method for automatic detection of microseismic events by adoption of multiscale top-hat transformation.The method is based on the difference between the signal and noise in the multiscale top-hat transform section and achieves the detection on a specific section.The microseismic data are decomposed into different scales by multiscale morphology top-hat transformation firstly.Then the potential microseismic events could be detected by picking up the peak value in the multiscale top-hat section,and the characteristic profile obtains the start point with a specific threshold value.Finally,the synthetic data experiences demonstrate the advantages of this method under strong and weak noisy conditions,and the filed data example also shows its reliability and adaptability.展开更多
How to quickly and accurately detect new topics from massive data online becomes a main problem of public opinion monitoring in cyberspace. This paperpresents a new event detection method for the current new event det...How to quickly and accurately detect new topics from massive data online becomes a main problem of public opinion monitoring in cyberspace. This paperpresents a new event detection method for the current new event detection system, based on sorted subtopic matching algorithm and constructs the entire design framework. In this p^per, the subtopics contained in old topics (or news stories) are sorted in descending order according to their importance to the topic(or news stories), and form a sorted subtopic sequence. In the process of subtopic matching, subtopic scoring matrix is used to determine whether a new story is reporting a new event. Experimental results show that the sorted subtopic matching model improved the accuracy and effectiveness ofthenew event detection system in cyberspace.展开更多
Social media like Twitter who serves as a novel news medium and has become increasingly popular since its establishment. Large scale first-hand user-generated tweets motivate automatic event detection on Twitter. Prev...Social media like Twitter who serves as a novel news medium and has become increasingly popular since its establishment. Large scale first-hand user-generated tweets motivate automatic event detection on Twitter. Previous unsupervised approaches detected events by clustering words. These methods detect events using burstiness,which measures surging frequencies of words at certain time windows. However,event clusters represented by a set of individual words are difficult to understand. This issue is addressed by building a document-level event detection model that directly calculates the burstiness of tweets,leveraging distributed word representations for modeling semantic information,thereby avoiding sparsity. Results show that the document-level model not only offers event summaries that are directly human-readable,but also gives significantly improved accuracies compared to previous methods on unsupervised tweet event detection,which are based on words/segments.展开更多
基金supported by the National Natural Science Foundation of China(61877067)the Foundation of Science and Technology on Near-Surface Detection Laboratory(TCGZ2019A002,TCGZ2021C003,6142414200511)the Natural Science Basic Research Program of Shaanxi(2021JZ-19)。
文摘Acoustic source localization(ASL)and sound event detection(SED)are two widely pursued independent research fields.In recent years,in order to achieve a more complete spatial and temporal representation of sound field,sound event localization and detection(SELD)has become a very active research topic.This paper presents a deep learning-based multioverlapping sound event localization and detection algorithm in three-dimensional space.Log-Mel spectrum and generalized cross-correlation spectrum are joined together in channel dimension as input features.These features are classified and regressed in parallel after training by a neural network to obtain sound recognition and localization results respectively.The channel attention mechanism is also introduced in the network to selectively enhance the features containing essential information and suppress the useless features.Finally,a thourough comparison confirms the efficiency and effectiveness of the proposed SELD algorithm.Field experiments show that the proposed algorithm is robust to reverberation and environment and can achieve higher recognition and localization accuracy compared with the baseline method.
基金supported by the Hunan Provincial Natural Science Foundation of China(Grant No.2020JJ4624)the National Social Science Fund of China(Grant No.20&ZD047)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(Grant No.19A020)the National University of Defense Technology Research Project ZK20-46 and the Young Elite Scientists Sponsorship Program 2021-JCJQ-QT-050.
文摘Event detection(ED)is aimed at detecting event occurrences and categorizing them.This task has been previously solved via recognition and classification of event triggers(ETs),which are defined as the phrase or word most clearly expressing event occurrence.Thus,current approaches require both annotated triggers as well as event types in training data.Nevertheless,triggers are non-essential in ED,and it is time-wasting for annotators to identify the“most clearly”word from a sentence,particularly in longer sentences.To decrease manual effort,we evaluate event detectionwithout triggers.We propose a novel framework that combines Type-aware Attention and Graph Convolutional Networks(TA-GCN)for event detection.Specifically,the task is identified as a multi-label classification problem.We first encode the input sentence using a novel type-aware neural network with attention mechanisms.Then,a Graph Convolutional Networks(GCN)-based multilabel classification model is exploited for event detection.Experimental results demonstrate the effectiveness.
基金This work is partially supported by the National Key Research and Development Program of China(2016YFE0204200)the National Natural Science Foundation of China(61503017)+3 种基金the Fundamental Research Funds for the Central Universities(YWF-18-BJ-J-221)the Aeronautical Science Foundation of China(2016ZC51022)the Platform CAPSEC(capteurs pour la sécurité)funded by Région Champagne-ArdenneFEDER(fonds européen de développement régional).
文摘It has long been a challenging task to detect an anomaly in a crowded scene.In this paper,a selfsupervised framework called the abnormal event detection network(AED-Net),which is composed of a principal component analysis network(PCAnet)and kernel principal component analysis(kPCA),is proposed to address this problem.Using surveillance video sequences of different scenes as raw data,the PCAnet is trained to extract high-level semantics of the crowd’s situation.Next,kPCA,a one-class classifier,is trained to identify anomalies within the scene.In contrast to some prevailing deep learning methods,this framework is completely self-supervised because it utilizes only video sequences of a normal situation.Experiments in global and local abnormal event detection are carried out on Monitoring Human Activity dataset from University of Minnesota(UMN dataset)and Anomaly Detection dataset from University of California,San Diego(UCSD dataset),and competitive results that yield a better equal error rate(EER)and area under curve(AUC)than other state-of-the-art methods are observed.Furthermore,by adding a local response normalization(LRN)layer,we propose an improvement to the original AED-Net.The results demonstrate that this proposed version performs better by promoting the framework’s generalization capacity.
基金supported by the National Natural Science Foundation of China(61170078,61472228,61903229,61902222)the “Taishan Scholar” Construction Project of Shandong Province,China,the Natural Science Foundation of Shandong Province(ZR2018MF001)+1 种基金the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(2017RCJJ044)the Key Research and Development Program of Shandong Province(2018GGX101011)
文摘Business processes described by formal or semi-formal models are realized via information systems.Event logs generated from these systems are probably not consistent with the existing models due to insufficient design of the information system or the system upgrade.By comparing an existing process model with event logs,we can detect inconsistencies called deviations,verify and extend the business process model,and accordingly improve the business process.In this paper,some abnormal activities in business processes are formally defined based on Petri nets.An efficient approach to detect deviations between the process model and event logs is proposed.Then,business process models are revised when abnormal activities exist.A clinical process in a healthcare information system is used as a case study to illustrate our work.Experimental results show the effectiveness and efficiency of the proposed approach.
基金supported by TATA Consultancy Servies(TCS)Research Fellowship Program,India
文摘Wi-Fi devices have limited battery life because of which conserving battery life is imperative. The 802.11 Wi-Fi standard provides power management feature that allows stations(STAs) to enter into sleep state to preserve energy without any frame losses. After the STA wakes up, it sends a null data or PS-Poll frame to retrieve frame(s) buffered by the access point(AP), if any during its sleep period. An attacker can launch a power save denial of service(PS-DoS) attack on the sleeping STA(s) by transmitting a spoofed null data or PS-Poll frame(s) to retrieve the buffered frame(s) of the sleeping STA(s) from the AP causing frame losses for the targeted STA(s). Current approaches to prevent or detect the PS-DoS attack require encryption,change in protocol or installation of proprietary hardware. These solutions suffer from expensive setup, maintenance, scalability and deployment issues. The PS-DoS attack does not differ in semantics or statistics under normal and attack circumstances.So signature and anomaly based intrusion detection system(IDS) are unfit to detect the PS-DoS attack. In this paper we propose a timed IDS based on real time discrete event system(RTDES) for detecting PS-DoS attack. The proposed DES based IDS overcomes the drawbacks of existing systems and detects the PS-DoS attack with high accuracy and detection rate. The correctness of the RTDES based IDS is proved by experimenting all possible attack scenarios.
基金Support from the Youth Innovation Promotion Association CAS (2017094)sponsored by National Natural Science Foundation of China (grant no. 41720104006 and 41774060)
文摘The interior structures of planets are attracting more and more detailed attention;these studies could be of great value in improving our understanding of the early evolution of Earth. Seismological investigations of planet interiors rely primarily on seismic waves excited by seismic events. Since tectonic activities are much weaker on other planets, e.g. Mars, the magnitudes of their seismic events are much smaller than those on Earth. It is therefore a challenge to detect seismic events on planets using such conventional techniques as short-time average/long-time average (STA/LTA) triggers. In pursuit of an effective and robust scheme to detect smallmagnitude events on Mars in the near future, we have taken Apollo lunar seismic observations as an example of weak-activity data and developed an event-detection scheme. The scheme reported here is actually a two-step processing approach: the first step involves a despike filter to remove large-amplitude impulses arising from large temperature variations;the second step employs a matched filter to unmask the seismic signals from a weak event hidden in the ambient and scattering noise. The proposed scheme has been used successfully to detect a moonquake that was not in the known moonquake catalogue, demonstrating that the two-step strategy is a feasible method for detecting seismic events on planets. Our scheme will provide a powerful tool for seismic data analysis of the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission, and China’s future lunar missions.
基金This work is supported by the Hainan Provincial Natural Science Foundation of China(618QN219)the National Natural Science Foundation of China(Grant No.61501447)the General Project of Scientific Research of Liaoning Provincial Department of Education(LYB201616).
文摘As the main communication mediums in industrial control networks,industrial communication protocols are always vulnerable to extreme exploitations,and it is very difficult to take protective measures due to their serious privacy.Based on the SDN(Software Defined Network)technology,this paper proposes a novel event-based anomaly detection approach to identify misbehaviors using non-public industrial communication protocols,and this approach can be installed in SDN switches as a security software appliance in SDN-based control systems.Furthermore,aiming at the unknown protocol specification and message format,this approach first restructures the industrial communication sessions and merges the payloads from industrial communication packets.After that,the feature selection and event sequence extraction can be carried out by using the N-gram model and K-means algorithm.Based on the obtained event sequences,this approach finally trains an event-based HMM(Hidden Markov Model)to identify aberrant industrial communication behaviors.Experimental results clearly show that the proposed approach has obvious advantages of classification accuracy and detection efficiency.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF2015R1D1A1A01059804)the MSIP (Ministry of Science,ICT and Future Planning),Korea,under the ITRC(Information Technology Research Center) support program (IITP-2016-R2718-16-0011) supervised by the IITP(Institute for Information & communications Technology Promotion)the present Research has been conducted by the Research Grant of Kwangwoon University in 2017
文摘In this paper, we present an approach to improve the accuracy of environmental sound event detection in a wireless acoustic sensor network for home monitoring. Wireless acoustic sensor nodes can capture sounds in the home and simultaneously deliver them to a sink node for sound event detection. The proposed approach is mainly composed of three modules, including signal estimation, reliable sensor channel selection, and sound event detection. During signal estimation, lost packets are recovered to improve the signal quality. Next, reliable channels are selected using a multi-channel cross-correlation coefficient to improve the computational efficiency for distant sound event detection without sacrificing performance. Finally, the signals of the selected two channels are used for environmental sound event detection based on bidirectional gated recurrent neural networks using two-channel audio features. Experiments show that the proposed approach achieves superior performances compared to the baseline.
文摘Falls are the most common concern among older adults or disabled peo-ple who use scooters and wheelchairs.The early detection of disabled persons’falls is required to increase the living rate of an individual or provide support to them whenever required.In recent times,the arrival of the Internet of Things(IoT),smartphones,Artificial Intelligence(AI),wearables and so on make it easy to design fall detection mechanisms for smart homecare.The current study devel-ops an Automated Disabled People Fall Detection using Cuckoo Search Optimi-zation with Mobile Networks(ADPFD-CSOMN)model.The proposed model’s major aim is to detect and distinguish fall events from non-fall events automati-cally.To attain this,the presented ADPFD-CSOMN technique incorporates the design of the MobileNet model for the feature extraction process.Next,the CSO-based hyperparameter tuning process is executed for the MobileNet model,which shows the paper’s novelty.Finally,the Radial Basis Function(RBF)clas-sification model recognises and classifies the instances as either fall or non-fall.In order to validate the betterment of the proposed ADPFD-CSOMN model,a com-prehensive experimental analysis was conducted.The results confirmed the enhanced fall classification outcomes of the ADPFD-CSOMN model over other approaches with an accuracy of 99.17%.
基金This work was supported by the National Natural Science Foundation of China(No.61672301)Jilin Provincial Science&Technology Development(20180101054JC)+1 种基金Science and Technology Innovation Guide Project of Inner Mongolia Autonomous Region of China(2017)Talent Development Fund of Jilin Province(2018).
文摘Supervised machine learning approaches are effective in text mining,but their success relies heavily on manually annotated corpora.However,there are limited numbers of annotated biomedical event corpora,and the available datasets contain insufficient examples for training classifiers;the common cure is to seek large amounts of training samples from unlabeled data,but such data sets often contain many mislabeled samples,which will degrade the performance of classifiers.Therefore,this study proposes a novel error data detection approach suitable for reducing noise in unlabeled biomedical event data.First,we construct the mislabeled dataset through error data analysis with the development dataset.The sample pairs’vector representations are then obtained by the means of sequence patterns and the joint model of convolutional neural network and long short-term memory recurrent neural network.Following this,the sample identification strategy is proposed,using error detection based on pair representation for unlabeled data.With the latter,the selected samples are added to enrich the training dataset and improve the classification performance.In the BioNLP Shared Task GENIA,the experiments results indicate that the proposed approach is competent in extract the biomedical event from biomedical literature.Our approach can effectively filter some noisy examples and build a satisfactory prediction model.
基金supported by the National Natural Science Foundation of China(Grant nos.41274164,41031064)the Ocean Public Welfare Scientific Research Project of China(Grant no.201005017)+1 种基金the Foundation of Shaanxi Educational Committee(Grant no.12JK0543)the Youth Research Project of the Xi'an University of Posts and Telecommunications(Grant no.ZL2012-01)
文摘The analysis and exploration of auroral dynamics are very significant for studying auroral mechanisms. This paper proposes a method based on auroral dynamic processes for detecting auroral events automatically. We first obtained the motion fields using the multiscale fluid flow estimator. Then, the auroral video frame sequence was represented by the spatiotemporal statistics of local motion vectors. Finally, automatic auroral event detection was achieved. The experimental results show that our methods could detect the required auroral events effectively and accurately, and that the detections were independent on any specific auroral event. The proposed method makes it feasible to statistically analyze a large number of continuous observations based on the auroral dynamic process.
基金supported by the National Natural Science Foundation of China(No.60821001)the National Basic Research Program of China(No.2007CB311203)
文摘Recently, the Internet of Things (loT) has attracted more and more attention. Multimedia sensor network plays an important role in the IoT, and audio event detection in the multimedia sensor net- works is one of the most important applications for the Internet of Things. In practice, it is hard to get enough real-world samples to generate the classifi- ers for some special audio events (e.g., car-crash- ing in the smart traffic system). In this paper, we introduce a TrAdaBoost-based method to solve the above problem. By using the proposed approach, we can train a strong classifier by using only a tiny amount of real-world data and a large number of more easily collected samples (e.g., collected from TV programs), even when the real-world data is not sufficient to train a model alone. We deploy this ap- proach in a smart traffic system to evaluate its per- formance, and the experiment evaluations demonstrate that our method can achieve satisfying results.
基金973 Program,Grant/Award Number:2014CB340504The State Key Program of National Natural Science of China,Grant/Award Number:61533018+3 种基金National Natural Science Foundation of China,Grant/Award Number:61402220The Philosophy and Social Science Foundation of Hunan Province,Grant/Award Number:16YBA323Natural Science Foundation of Hunan Province,Grant/Award Number:2020JJ4525Scientific Research Fund of Hunan Provincial Education Department,Grant/Award Number:18B279,19A439。
文摘Current Chinese event detection methods commonly use word embedding to capture semantic representation,but these methods find it difficult to capture the dependence relationship between the trigger words and other words in the same sentence.Based on the simple evaluation,it is known that a dependency parser can effectively capture dependency relationships and improve the accuracy of event categorisation.This study proposes a novel architecture that models a hybrid representation to summarise semantic and structural information from both characters and words.This model can capture rich semantic features for the event detection task by incorporating the semantic representation generated from the dependency parser.The authors evaluate different models on kbp 2017 corpus.The experimental results show that the proposed method can significantly improve performance in Chinese event detection.
基金The work reported in this paper has been supported by UK-Jiangsu 20-20 World Class University Initiative programme.
文摘Online social media networks are gaining attention worldwide,with an increasing number of people relying on them to connect,communicate and share their daily pertinent event-related information.Event detection is now increasingly leveraging online social networks for highlighting events happening around the world via the Internet of People.In this paper,a novel Event Detection model based on Scoring and Word Embedding(ED-SWE)is proposed for discovering key events from a large volume of data streams of tweets and for generating an event summary using keywords and top-k tweets.The proposed ED-SWE model can distill high-quality tweets,reduce the negative impact of the advent of spam,and identify latent events in the data streams automatically.Moreover,a word embedding algorithm is used to learn a real-valued vector representation for a predefined fixed-sized vocabulary from a corpus of Twitter data.In order to further improve the performance of the Expectation-Maximization(EM)iteration algorithm,a novel initialization method based on the authority values of the tweets is also proposed in this paper to detect live events efficiently and precisely.Finally,a novel automatic identification method based on the cosine measure is used to automatically evaluate whether a given topic can form a live event.Experiments conducted on a real-world dataset demonstrate that the ED-SWE model exhibits better efficiency and accuracy than several state-of-art event detection models.
文摘A semantic unit based event detection scheme in soccer videos is proposed in this paper.The scheme can be characterized as a three-layer framework. At the lowest layer, low-level featuresincluding color, texture, edge, shape, and motion are extracted. High-level semantic events aredefined at the highest layer. In order to connect low-level features and high-level semantics, wedesign and define some semantic units at the intermediate layer. A semantic unit is composed of asequence of consecutives frames with the same cue that is deduced from low-level features. Based onsemantic units, a Bayesian network is used to reason the probabilities of events. The experiments forshoot and card event detection in soccer videos show that the proposed method has an encouragingperformance.
文摘Fault detection caused by single event effect( SEE) in system was studied,and an improved fault detection algorithm by fusing multi-information entropy for detecting soft error was proposed based on multi-objective detection approach and classification management method. In the improved fault detection algorithm, the analysis model of posteriori information with corresponding multi-fault alternative detection points was formulated through correlation information matrix, and the maximum incremental information entropy was chosen as the classification principle for the optimal detection points. A system design example was given to prove the rationality and feasibility of this algorithm.This fault detection algorithm can achieve the purpose of fault detection and resource configuration with high efficiency.
文摘The analytical and monitoring capabilities of central event re-positories, such as log servers and intrusion detection sys-tems, are limited by the amount of structured information ex-tracted from the events they receive. Diverse networks and ap-plications log their events in many different formats, and this makes it difficult to identify the type of logs being received by the central repository. The way events are logged by IT systems is problematic for developers of host-based intrusion-detection systems (specifically, host-based systems), develop-ers of security-information systems, and developers of event-management systems. These problems preclude the develop-ment of more accurate, intrusive security solutions that obtain results from data included in the logs being processed. We propose a new method for dynamically normalizing events into a unified super-event that is loosely based on the Common Event Expression standard developed by Mitre Corporation. We explain how our solution can normalize seemingly unrelat-ed events into a single, unified format.
基金supported in part by the National Natural Science Foundation of China under Grant 41904098Fundamental Research Funds for the Central Universities,under Grant 2462018YJRC020 and Grant 2462020YXZZ006。
文摘The occurrence of microseismic is not random but is related to the physical properties of the underground medium.Due to the low intensity and the influence of noise,microseismic eventually lead to poor signal-to-noise ratio.We proposed a method for automatic detection of microseismic events by adoption of multiscale top-hat transformation.The method is based on the difference between the signal and noise in the multiscale top-hat transform section and achieves the detection on a specific section.The microseismic data are decomposed into different scales by multiscale morphology top-hat transformation firstly.Then the potential microseismic events could be detected by picking up the peak value in the multiscale top-hat section,and the characteristic profile obtains the start point with a specific threshold value.Finally,the synthetic data experiences demonstrate the advantages of this method under strong and weak noisy conditions,and the filed data example also shows its reliability and adaptability.
基金Funded by the Planning Project of National Language Committee in the "12th 5-year Plan"(No.YB125-49)the Foundation for Key Program of Ministry of Education,China(No.212167)the Fundamental Research Funds for the Central Universities(No.SWJTU12CX096)
文摘How to quickly and accurately detect new topics from massive data online becomes a main problem of public opinion monitoring in cyberspace. This paperpresents a new event detection method for the current new event detection system, based on sorted subtopic matching algorithm and constructs the entire design framework. In this p^per, the subtopics contained in old topics (or news stories) are sorted in descending order according to their importance to the topic(or news stories), and form a sorted subtopic sequence. In the process of subtopic matching, subtopic scoring matrix is used to determine whether a new story is reporting a new event. Experimental results show that the sorted subtopic matching model improved the accuracy and effectiveness ofthenew event detection system in cyberspace.
基金Supported by the National High Technology Research and Development Programme of China(No.2015AA015405)
文摘Social media like Twitter who serves as a novel news medium and has become increasingly popular since its establishment. Large scale first-hand user-generated tweets motivate automatic event detection on Twitter. Previous unsupervised approaches detected events by clustering words. These methods detect events using burstiness,which measures surging frequencies of words at certain time windows. However,event clusters represented by a set of individual words are difficult to understand. This issue is addressed by building a document-level event detection model that directly calculates the burstiness of tweets,leveraging distributed word representations for modeling semantic information,thereby avoiding sparsity. Results show that the document-level model not only offers event summaries that are directly human-readable,but also gives significantly improved accuracies compared to previous methods on unsupervised tweet event detection,which are based on words/segments.