The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic proper...The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic properties of the peak lift and drag coefficients and base pressure drop over the cylinder with the uncertainties of viscosity coefficient and inflow boundary velocity. As for the numerical results of flows around a cylinder, influence of the inflow boundary velocity uncertainty is larger than that of viscosity. The results indeed demonstrate that a five-order degree of polynomial chaos expansion is enough to represent the solution of flow in this study.展开更多
This paper proposes a new non-intrusive hybrid interval method using derivative information for the dynamic response analysis of nonlinear systems with uncertain-but- bounded parameters and/or initial conditions. This...This paper proposes a new non-intrusive hybrid interval method using derivative information for the dynamic response analysis of nonlinear systems with uncertain-but- bounded parameters and/or initial conditions. This method provides tighter solution ranges compared to the existing polynomial approximation interval methods. Interval arith- metic using the Chebyshev basis and interval arithmetic using the general form modified affine basis for polynomials are developed to obtain tighter bounds for interval computation. To further reduce the overestimation caused by the "wrap- ping effect" of interval arithmetic, the derivative information of dynamic responses is used to achieve exact solutions when the dynamic responses are monotonic with respect to all the uncertain variables. Finally, two typical numerical examples with nonlinearity are applied to demonstrate the effective- ness of the proposed hybrid interval method, in particular, its ability to effectively control the overestimation for specific timepoints.展开更多
<div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I t...<div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I trajectory characteristics to a large extent, so it is widely used in load identification. However, using single binary V-I trajectory feature for load identification has certain limitations. In order to improve the accuracy of load identification, the power feature is added on the basis of the binary V-I trajectory feature in this paper. We change the initial binary V-I trajectory into a new 3D feature by mapping the power feature to the third dimension. In order to reduce the impact of imbalance samples on load identification, the SVM SMOTE algorithm is used to balance the samples. Based on the deep learning method, the convolutional neural network model is used to extract the newly produced 3D feature to achieve load identification in this paper. The results indicate the new 3D feature has better observability and the proposed model has higher identification performance compared with other classification models on the public data set PLAID. </div>展开更多
In this study,a novel non-intrusive temperature rise fault-identification method for a distribution cabinet based on tensor block-matching is proposed.Two-stage data repair is used to reconstruct the temperature-field...In this study,a novel non-intrusive temperature rise fault-identification method for a distribution cabinet based on tensor block-matching is proposed.Two-stage data repair is used to reconstruct the temperature-field information to support the demand for temperature rise fault-identification of non-intrusive distribution cabinets.In the coarse-repair stage,this method is based on the outside temperature information of the distribution cabinet,using tensor block-matching technology to search for an appropriate tensor block in the temperature-field tensor dictionary,filling the target space area from the outside to the inside,and realizing the reconstruction of the three-dimensional temperature field inside the distribution cabinet.In the fine-repair stage,tensor super-resolution technology is used to fill the temperature field obtained from coarse repair to realize the smoothing of the temperature-field information inside the distribution cabinet.Non-intrusive temperature rise fault-identification is realized by setting clustering rules and temperature thresholds to compare the location of the heat source with the location of the distribution cabinet components.The simulation results show that the temperature-field reconstruction error is reduced by 82.42%compared with the traditional technology,and the temperature rise fault-identification accuracy is greater than 86%,verifying the feasibility and effectiveness of the temperature-field reconstruction and temperature rise fault-identification.展开更多
Nowadays,the advancement of nonintrusive load monitoring(NILM)has been hastened by the ever-increasing requirements for the reasonable use of electricity by users and demand side management.Although existing researche...Nowadays,the advancement of nonintrusive load monitoring(NILM)has been hastened by the ever-increasing requirements for the reasonable use of electricity by users and demand side management.Although existing researches have tried their best to extract a wide variety of load features based on transient or steady state of electrical appliances,it is still very difficult for their algorithm to model the load decomposition problem of different electrical appliance types in a targeted manner to jointly mine their proposed features.This paper presents a very effective event-driven NILM solution,which aims to separately model different appliance types to mine the unique characteristics of appliances from multi-dimensional features,so that all electrical appliances can achieve the best classification performance.First,we convert the multi-classification problem into a serial multiple binary classification problem through a pre-sort model to simplify the original problem.Then,ConTrastive Loss K-Nearest Neighbour(CTLKNN)model with trainable weights is proposed to targeted mine appliance load characteristics.The simulation results show the effectiveness and stability of the proposed algorithm.Compared with existing algorithms,the proposed algorithm has improved the identification performance of all electrical appliance types.展开更多
Based on fuzzy Gaussian mixture model (FGMM) and support vector regression (SVR),an improved version of non-intrusive objective measurement for assessing quality of output speech without inputting clean speech is ...Based on fuzzy Gaussian mixture model (FGMM) and support vector regression (SVR),an improved version of non-intrusive objective measurement for assessing quality of output speech without inputting clean speech is proposed for narrowband speech.Its perceptual linear predictive (PLP) features extracted from clean speech and clustered by FGMM are used as an artificial reference model.Input speech is separated into three classes,for each a consistency parameter between each feature pair from test speech signals and its counterpart in the pre-trained FGMM reference model is calculated and mapped to an objective speech quality score using SVR method.The correlation degree between subjective mean opinion score (MOS) and objective MOS is analyzed.Experimental results show that the proposed method offers an effective technique and can give better performances than the ITU-T P.563 method under most of the test conditions for narrowband speech.展开更多
Extensive field tests of non-intrusive sensors for traffic volume, speed and classification detection were conducted under a variety of traffic composition and road width conditions. The accuracy challenges of utilizi...Extensive field tests of non-intrusive sensors for traffic volume, speed and classification detection were conducted under a variety of traffic composition and road width conditions. The accuracy challenges of utilizing non-intrusive sensors for traffic data collection were studied. Both fixed and portable sensors with infrared, microwave and image recognition technologies were tested. Most sensors obtained accurate or fairly accurate measurements of volume and speed, but vehicle classification counts were problematic even when classes were reduced to 3 to 5 compared to FHWA’s 13-class standard scheme.展开更多
Non-intrusive measurement technology is of great interest for the electrical utilities in order to avoid an interruption in the normal operation of the supply network during diagnostics measurements and inspections. I...Non-intrusive measurement technology is of great interest for the electrical utilities in order to avoid an interruption in the normal operation of the supply network during diagnostics measurements and inspections. Inductively coupled electromagnetic sensing provides a possibility of non-intrusive measurements for online condition monitoring of the electrical components in a Medium Voltage (MV) distribution network. This is accomplished by employing Partial Discharge (PD) activity monitoring, one of the successful methods to assess the working condition of MV components but often requires specialized equipment for carrying out the measurements. In this paper, Rogowski coil sensor is presented as a robust solution for non-intrusive measurements of PD signals. A high frequency prototype of Rogowski coil is designed in the laboratory. Step-by-step approach of constructing the sensor system is presented and performance of its components (coil head, damping component, integrator and data acquisition system) is evaluated using practical and simulated environments. Alternative Transient Program-Electromagnetic Transient Program (ATP-EMTP) is used to analyze the designed model of the Rogowski coil. Real and simulated models of the coil are used to investigate the behavior of Rogowski coil sensor at its different stages of development from a transducer coil to a complete measuring device. Both models are compared to evaluate their accuracy for PD applications. Due to simple design, flexible hardware, and low cost of Rogowski coil, it can be considered as an efficient current measuring device for integrated monitoring applications where a large number of sensors are required to develop an automated online condition monitoring system for a distribution network.展开更多
The purpose of this paper is to investigate the effect of PD (partial discharge) activity within medium voltage XLPE (cross-linked polyethylene) cables. The effect of partial discharge was studied by means of a nu...The purpose of this paper is to investigate the effect of PD (partial discharge) activity within medium voltage XLPE (cross-linked polyethylene) cables. The effect of partial discharge was studied by means of a number of simulations. The simulations were based on the well-known three capacitor model for partial discharge. An equivalent circuit was derived for partial discharge due to a single void in the insulation material of a power cable. The results obtained from the simulations will form the basis of the design proses of a non-intrusive condition monitoring technique. The technique is based on the classification of discharge activity according to five levels of PD. Future work will include the improvement of the simulation model by investigating the high frequency model of a power cable as well as the statistical nature of PD activity. This will improve the accuracy of the simulation results when compared to actual measurements. The work discussed in this paper will be used to construct and calibrate a practical model which will make use of PD measurements for non-intrusive condition monitoring of medium voltage electrical cables.展开更多
In recent years,Non-Intrusive LoadMonitoring (NILM) has become an emerging approach that provides affordableenergy management solutions using aggregated load obtained from a single smart meter in the power grid.Furthe...In recent years,Non-Intrusive LoadMonitoring (NILM) has become an emerging approach that provides affordableenergy management solutions using aggregated load obtained from a single smart meter in the power grid.Furthermore, by integrating Machine Learning (ML), NILM can efficiently use electrical energy and offer less ofa burden for the energy monitoring process. However, conducted research works have limitations for real-timeimplementation due to the practical issues. This paper aims to identify the contribution of ML approaches todeveloping a reliable Energy Management (EM) solution with NILM. Firstly, phases of the NILM are discussed,along with the research works that have been conducted in the domain. Secondly, the contribution of machinelearning approaches in three aspects is discussed: Supervised learning, unsupervised learning, and hybridmodeling.It highlights the limitations in the applicability of ML approaches in the field. Then, the challenges in the realtimeimplementation are concerned with six use cases: Difficulty in recognizing multiple loads at a given time,cost of running the NILM system, lack of universal framework for appliance detection, anomaly detection andnew appliance identification, and complexity of the electricity loads and real-time demand side management.Furthermore, options for selecting an approach for an efficientNILMframework are suggested. Finally, suggestionsare provided for future research directions.展开更多
Machine learning is an Artificial Intelligence (or AI) application, an idea that came into being by giving machines access to data and letting them learn by themselves. AI has been making headlines, especially since C...Machine learning is an Artificial Intelligence (or AI) application, an idea that came into being by giving machines access to data and letting them learn by themselves. AI has been making headlines, especially since ChatGPT was introduced. Malaysia has taken many significant steps to embrace and integrate the technology into various sectors. These include encouraging large companies to build AI infrastructure, creating AI training opportunities (for example, the local media reported Microsoft and Google plan to invest USD 2.2 billion and USD 2 billion, respectively, in the said activities), and, as part of AI Talent Roadmap 2024-2030, establishing AI faculty in one of its public universities (i.e., “Universiti Teknologi Malaysia”) leading the way in the integration and teaching of AI throughout the country. This article introduces several products developed by the author (for the energy and transportation industries) and recommends their improvement by incorporating Machine learning.展开更多
Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications.This is...Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications.This is all the more important when elements composed of brittle materials are exposed to dynamic environments,resulting in catastrophic fatigue failures.The authors propose the application of a non-intrusive polynomial chaos expansion method for probabilistic studies on brittle materials undergoing fatigue fracture when geometrical parameters and material properties are random independent variables.Understanding the probabilistic nature of fatigue fracture in brittle materials is crucial for ensuring the reliability and safety of engineering structures subjected to cyclic loading.Crack growth is modelled using a phase-field approach within a finite element framework.For modelling fatigue,fracture resistance is progressively degraded by modifying the regularised free energy functional using a fatigue degradation function.Number of cycles to failure is treated as the dependent variable of interest and is estimated within acceptable limits due to the randomness in independent properties.Multiple 2D benchmark problems are solved to demonstrate the ability of this approach to predict the dependent variable responses with significantly fewer simulations than the Monte Carlo method.This proposed approach can accurately predict results typically obtained through 105 or more runs in Monte Carlo simulations with a reduction of up to three orders of magnitude in required runs.The independent random variables’sensitivity to the system response is determined using Sobol’indices.The proposed approach has low computational overhead and can be useful for computationally intensive problems requiring rapid decision-making in sensitive applications like aerospace,nuclear and biomedical engineering.The technique does not require reformulating existing finite element code and can perform the stochastic study by direct pre/post-processing.展开更多
Generally,an accurate model can describe the operating states of a system more effectively and provide a more reliable theoretical basis for the system optimization and control.Different from the traditional intrusive...Generally,an accurate model can describe the operating states of a system more effectively and provide a more reliable theoretical basis for the system optimization and control.Different from the traditional intrusive modeling,a non-intrusive modeling method based on two-stage generative adversarial network(TS-GAN)is proposed for integrated energy system(IES).By using this method,non-intrusive modeling for the IES including photovoltaic,wind power,energy storage,and energy coupling equipment can be carried out.First,the characteristics of IES are analyzed and extracted based on the meteorological data,energy output,and energy price,and then the characteristic database is established.Meanwhile,the loads are classified as uncontrollable loads and schedulable loads based on frequency domain decomposition to facilitate energy management.Furthermore,TS-GAN algorithm based on the Stackelberg game is designed.In the TS-GAN,the first-stage GAN is used to generate the operating data of each equipment identified by non-invasive monitoring,and the second-stage GAN distinguishes the accumulated data generated by first-stage GAN and further modifies the generator models of the first-stage GAN.Finally,the effectiveness and accuracy of the proposed method are verified by the simulation of an energy region.展开更多
Non-intrusive load monitoring(NILM)is a technique which extracts individual appliance consumption and operation state change information from the aggregate power consumption made by a single residential or commercial ...Non-intrusive load monitoring(NILM)is a technique which extracts individual appliance consumption and operation state change information from the aggregate power consumption made by a single residential or commercial unit.NILM plays a pivotal role in modernizing building energy management by disaggregating total energy consumption into individual appliance-level insights.This enables informed decision-making,energy optimization,and cost reduction.However,NILM encounters substantial challenges like signal noise,data availability,and data privacy concerns,necessitating advanced algorithms and robust methodologies to ensure accurate and secure energy disaggregation in real-world scenarios.Deep learning techniques have recently shown some promising results in NILM research,but training these neural networks requires significant labeled data.Obtaining initial sets of labeled data for the research by installing smart meters at the end of consumers’appliances is laborious and expensive and exposes users to severe privacy risks.It is also important to mention that most NILM research uses empirical observations instead of proper mathematical approaches to obtain the threshold value for determining appliance operation states(On/Off)from their respective energy consumption value.This paper proposes a novel semi-supervised multilabel deep learning technique based on temporal convolutional network(TCN)and long short-term memory(LSTM)for classifying appliance operation states from labeled and unlabeled data.The two thresholding techniques,namely Middle-Point Thresholding and Variance-Sensitive Thresholding,which are needed to derive the threshold values for determining appliance operation states,are also compared thoroughly.The superiority of the proposed model,along with finding the appliance states through the Middle-Point Thresholding method,is demonstrated through 15%improved overall improved F1micro score and almost 26%improved Hamming loss,F1 and Specificity score for the performance of individual appliance when compared to the benchmarking techniques that also used semi-supervised learning approach.展开更多
An outdoor flapping wing micro air vehicle (FWMAV) should be able to withstand unpredictable perturbations in the flight condition. The responses of the time-averaged thrust coefficient and the propulsive efficiency...An outdoor flapping wing micro air vehicle (FWMAV) should be able to withstand unpredictable perturbations in the flight condition. The responses of the time-averaged thrust coefficient and the propulsive efficiency with respect to a stochastic flight velocity deviation were numerically investigated. The deviation was assumed to obey the Gauss distribution with a mean value of zero and a specified standard deviation. The probability distributions of the flapping performances were quantified by the non-intrusive polynomial chaos method. It was observed that both of the time-averaged thrust coefficient and the propulsive efficiency obeyed Gauss-like but not the exact Gauss distribution. The velocity deviation had a large effect on the time-averaged thrust coefficient and a small effect on the propulsive efficiency.展开更多
Home energy management systems (HEMs) are used to provide comfortable life for consumers as well as to save energy. An essential component of HEMs is a home area network (HAN) that is used to remotely control the ...Home energy management systems (HEMs) are used to provide comfortable life for consumers as well as to save energy. An essential component of HEMs is a home area network (HAN) that is used to remotely control the electric devices at homes and buildings. Although HAN prices have dropped in ~ecent years but they are still expensive enough to prohibit a mass scale deployments. In this paper, a very low cost alternative to the expensive HANs is presented. We have applied a combination of non-intrusive load monitoring (NILM) and very low cost one-way HAN to develop a HEM. By using NILM and machine learning algorithms we find the status of devices and their energy consumption from a central meter and communicate with devices through the one-way HAN. The evaluations show that the proposed machine learning algorithm for NILM achieves up to 99% accuracy in certain cases. On the other hand our radio frequency (RF)-based one-way HAN achieves a range of 80 feet in all settings.展开更多
The significance of U values in buildings’ shell energy performance is well known in the scientific community as well as in the construction sector. In addition, conducting a validation of the energy performance of a...The significance of U values in buildings’ shell energy performance is well known in the scientific community as well as in the construction sector. In addition, conducting a validation of the energy performance of a building often requires the knowledge of real U value figures, since their theoretical peers may deviate considerably from the real ones. The theoretical U value of a shell element may be calculated using complex material and surface related information, while its practical validation is conducted usually by equipment that requires tedious installation and constant contact with the examined element. Aim of this paper is to introduce an easily deployed, plug and play, contact less technology, able to provide a reasonable approximation of the building element U value and its variation with external air speed as well as an accurate estimation of the U value change in case of a shell (wall or window) retrofit.展开更多
Non-intrusive load monitoring is a technique for monitoring the operating conditions of electrical appliances by collecting the aggregated electrical information at the household power inlet.Despite several studies on...Non-intrusive load monitoring is a technique for monitoring the operating conditions of electrical appliances by collecting the aggregated electrical information at the household power inlet.Despite several studies on the mining of unique load characteristics,few studies have extensively considered the high computational burden and sample training.Based on lowfrequency sampling data,a non-intrusive load monitoring algorithm utilizing the graph total variation(GTV)is proposed in this study.The algorithm can effectively depict the load state without the need for prior training.First,the combined Kmeans clustering algorithm and graph signals are used to build concise and accurate graph structures as load models.The GTV representing the internal structure of the graph signal is introduced as the optimization model and solved using the augmented Lagrangian iterative algorithm.The introduction of the difference operator reduces the computing cost and addresses the inaccurate reconstruction of the graph signal.With low-frequency sampling data,the algorithm only requires a little prior data and no training,thereby reducing the computing cost.Experiments conducted using the reference energy disaggregation dataset and almanac of minutely power dataset demonstrated the stable superiority of the algorithm and its low computational burden.展开更多
This paper explores the application of non-intrusive load monitoring techniques in the industrial sector for disaggregating the energy consumption of machinery in manufacturing processes. With an increasing focus on e...This paper explores the application of non-intrusive load monitoring techniques in the industrial sector for disaggregating the energy consumption of machinery in manufacturing processes. With an increasing focus on energy efficiency and decarbonization measures, achieving energy transparency in production becomes crucial. Utilizing non-intrusive load monitoring, energy data analysis and processing can provide valuable insights for informed decision-making on energy efficiency improvements and emission reductions. While non-intrusive load monitoring has been extensively researched in the building and residential sectors, the application in the industrial manufacturing domain needs to be further explored. This paper addresses this research gap by adapting established non-intrusive load monitoring techniques to an industrial dataset. By employing artificial neural networks for energy disaggregation, the determination of energy consumption of industrial machinery is made possible. Therefore, a generally applicable cross-energy carrier method to disaggregate the energy consumption of machinery in manufacturing processes is developed using a design science research approach and validated through a practical case study utilizing a compressed air demonstrator. The results show that the utilization of artificial neural networks is well-suited for energy disaggregation of industrial data, effectively identifying on and off states, multi-level states and continuously variable states. Non-intrusive load monitoring should be further considered in the research of emerging artificial intelligence technologies in energy consumption evaluation. It can be a viable alternative for intrusive load monitoring and is a prerequisite to installing energy meters for every machine.展开更多
A Non-Intrusive Reduced-Order Model(NIROM)based on Proper Orthogonal Decomposition(POD)has been proposed for predicting the flow fields of transonic airfoils with geometry parameters.To provide a better reduced-order ...A Non-Intrusive Reduced-Order Model(NIROM)based on Proper Orthogonal Decomposition(POD)has been proposed for predicting the flow fields of transonic airfoils with geometry parameters.To provide a better reduced-order subspace to approximate the real flow field,a domain decomposition method has been used to separate the hard-to-predict regions from the full field and POD has been adopted in the regions individually.An Artificial Neural Network(ANN)has replaced the Radial Basis Function(RBF)to interpolate the coefficients of the POD modes,aiming at improving the approximation accuracy of the NIROM for non-samples.When predicting the flow fields of transonic airfoils,the proposed NIROM has demonstrated a high performance.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11371069the Young Foundation of Institute of Applied Physics and Computational Mathematics under Grant No ZYSZ1518-13the Science Foundation of China Academy of Engineering Physics under Grant No 2013A0101004
文摘The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic properties of the peak lift and drag coefficients and base pressure drop over the cylinder with the uncertainties of viscosity coefficient and inflow boundary velocity. As for the numerical results of flows around a cylinder, influence of the inflow boundary velocity uncertainty is larger than that of viscosity. The results indeed demonstrate that a five-order degree of polynomial chaos expansion is enough to represent the solution of flow in this study.
文摘This paper proposes a new non-intrusive hybrid interval method using derivative information for the dynamic response analysis of nonlinear systems with uncertain-but- bounded parameters and/or initial conditions. This method provides tighter solution ranges compared to the existing polynomial approximation interval methods. Interval arith- metic using the Chebyshev basis and interval arithmetic using the general form modified affine basis for polynomials are developed to obtain tighter bounds for interval computation. To further reduce the overestimation caused by the "wrap- ping effect" of interval arithmetic, the derivative information of dynamic responses is used to achieve exact solutions when the dynamic responses are monotonic with respect to all the uncertain variables. Finally, two typical numerical examples with nonlinearity are applied to demonstrate the effective- ness of the proposed hybrid interval method, in particular, its ability to effectively control the overestimation for specific timepoints.
文摘<div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I trajectory characteristics to a large extent, so it is widely used in load identification. However, using single binary V-I trajectory feature for load identification has certain limitations. In order to improve the accuracy of load identification, the power feature is added on the basis of the binary V-I trajectory feature in this paper. We change the initial binary V-I trajectory into a new 3D feature by mapping the power feature to the third dimension. In order to reduce the impact of imbalance samples on load identification, the SVM SMOTE algorithm is used to balance the samples. Based on the deep learning method, the convolutional neural network model is used to extract the newly produced 3D feature to achieve load identification in this paper. The results indicate the new 3D feature has better observability and the proposed model has higher identification performance compared with other classification models on the public data set PLAID. </div>
基金supported by the CEPRI project“Key Technologies for Sparse Acquisition of Power Equipment State Sensing Data”(AI83-21-004)National Key R&D Program of China(2020YFB0905900).
文摘In this study,a novel non-intrusive temperature rise fault-identification method for a distribution cabinet based on tensor block-matching is proposed.Two-stage data repair is used to reconstruct the temperature-field information to support the demand for temperature rise fault-identification of non-intrusive distribution cabinets.In the coarse-repair stage,this method is based on the outside temperature information of the distribution cabinet,using tensor block-matching technology to search for an appropriate tensor block in the temperature-field tensor dictionary,filling the target space area from the outside to the inside,and realizing the reconstruction of the three-dimensional temperature field inside the distribution cabinet.In the fine-repair stage,tensor super-resolution technology is used to fill the temperature field obtained from coarse repair to realize the smoothing of the temperature-field information inside the distribution cabinet.Non-intrusive temperature rise fault-identification is realized by setting clustering rules and temperature thresholds to compare the location of the heat source with the location of the distribution cabinet components.The simulation results show that the temperature-field reconstruction error is reduced by 82.42%compared with the traditional technology,and the temperature rise fault-identification accuracy is greater than 86%,verifying the feasibility and effectiveness of the temperature-field reconstruction and temperature rise fault-identification.
基金supported by National Natural Science Foundation of China(No.61531007).
文摘Nowadays,the advancement of nonintrusive load monitoring(NILM)has been hastened by the ever-increasing requirements for the reasonable use of electricity by users and demand side management.Although existing researches have tried their best to extract a wide variety of load features based on transient or steady state of electrical appliances,it is still very difficult for their algorithm to model the load decomposition problem of different electrical appliance types in a targeted manner to jointly mine their proposed features.This paper presents a very effective event-driven NILM solution,which aims to separately model different appliance types to mine the unique characteristics of appliances from multi-dimensional features,so that all electrical appliances can achieve the best classification performance.First,we convert the multi-classification problem into a serial multiple binary classification problem through a pre-sort model to simplify the original problem.Then,ConTrastive Loss K-Nearest Neighbour(CTLKNN)model with trainable weights is proposed to targeted mine appliance load characteristics.The simulation results show the effectiveness and stability of the proposed algorithm.Compared with existing algorithms,the proposed algorithm has improved the identification performance of all electrical appliance types.
文摘Based on fuzzy Gaussian mixture model (FGMM) and support vector regression (SVR),an improved version of non-intrusive objective measurement for assessing quality of output speech without inputting clean speech is proposed for narrowband speech.Its perceptual linear predictive (PLP) features extracted from clean speech and clustered by FGMM are used as an artificial reference model.Input speech is separated into three classes,for each a consistency parameter between each feature pair from test speech signals and its counterpart in the pre-trained FGMM reference model is calculated and mapped to an objective speech quality score using SVR method.The correlation degree between subjective mean opinion score (MOS) and objective MOS is analyzed.Experimental results show that the proposed method offers an effective technique and can give better performances than the ITU-T P.563 method under most of the test conditions for narrowband speech.
文摘Extensive field tests of non-intrusive sensors for traffic volume, speed and classification detection were conducted under a variety of traffic composition and road width conditions. The accuracy challenges of utilizing non-intrusive sensors for traffic data collection were studied. Both fixed and portable sensors with infrared, microwave and image recognition technologies were tested. Most sensors obtained accurate or fairly accurate measurements of volume and speed, but vehicle classification counts were problematic even when classes were reduced to 3 to 5 compared to FHWA’s 13-class standard scheme.
文摘Non-intrusive measurement technology is of great interest for the electrical utilities in order to avoid an interruption in the normal operation of the supply network during diagnostics measurements and inspections. Inductively coupled electromagnetic sensing provides a possibility of non-intrusive measurements for online condition monitoring of the electrical components in a Medium Voltage (MV) distribution network. This is accomplished by employing Partial Discharge (PD) activity monitoring, one of the successful methods to assess the working condition of MV components but often requires specialized equipment for carrying out the measurements. In this paper, Rogowski coil sensor is presented as a robust solution for non-intrusive measurements of PD signals. A high frequency prototype of Rogowski coil is designed in the laboratory. Step-by-step approach of constructing the sensor system is presented and performance of its components (coil head, damping component, integrator and data acquisition system) is evaluated using practical and simulated environments. Alternative Transient Program-Electromagnetic Transient Program (ATP-EMTP) is used to analyze the designed model of the Rogowski coil. Real and simulated models of the coil are used to investigate the behavior of Rogowski coil sensor at its different stages of development from a transducer coil to a complete measuring device. Both models are compared to evaluate their accuracy for PD applications. Due to simple design, flexible hardware, and low cost of Rogowski coil, it can be considered as an efficient current measuring device for integrated monitoring applications where a large number of sensors are required to develop an automated online condition monitoring system for a distribution network.
文摘The purpose of this paper is to investigate the effect of PD (partial discharge) activity within medium voltage XLPE (cross-linked polyethylene) cables. The effect of partial discharge was studied by means of a number of simulations. The simulations were based on the well-known three capacitor model for partial discharge. An equivalent circuit was derived for partial discharge due to a single void in the insulation material of a power cable. The results obtained from the simulations will form the basis of the design proses of a non-intrusive condition monitoring technique. The technique is based on the classification of discharge activity according to five levels of PD. Future work will include the improvement of the simulation model by investigating the high frequency model of a power cable as well as the statistical nature of PD activity. This will improve the accuracy of the simulation results when compared to actual measurements. The work discussed in this paper will be used to construct and calibrate a practical model which will make use of PD measurements for non-intrusive condition monitoring of medium voltage electrical cables.
文摘In recent years,Non-Intrusive LoadMonitoring (NILM) has become an emerging approach that provides affordableenergy management solutions using aggregated load obtained from a single smart meter in the power grid.Furthermore, by integrating Machine Learning (ML), NILM can efficiently use electrical energy and offer less ofa burden for the energy monitoring process. However, conducted research works have limitations for real-timeimplementation due to the practical issues. This paper aims to identify the contribution of ML approaches todeveloping a reliable Energy Management (EM) solution with NILM. Firstly, phases of the NILM are discussed,along with the research works that have been conducted in the domain. Secondly, the contribution of machinelearning approaches in three aspects is discussed: Supervised learning, unsupervised learning, and hybridmodeling.It highlights the limitations in the applicability of ML approaches in the field. Then, the challenges in the realtimeimplementation are concerned with six use cases: Difficulty in recognizing multiple loads at a given time,cost of running the NILM system, lack of universal framework for appliance detection, anomaly detection andnew appliance identification, and complexity of the electricity loads and real-time demand side management.Furthermore, options for selecting an approach for an efficientNILMframework are suggested. Finally, suggestionsare provided for future research directions.
文摘Machine learning is an Artificial Intelligence (or AI) application, an idea that came into being by giving machines access to data and letting them learn by themselves. AI has been making headlines, especially since ChatGPT was introduced. Malaysia has taken many significant steps to embrace and integrate the technology into various sectors. These include encouraging large companies to build AI infrastructure, creating AI training opportunities (for example, the local media reported Microsoft and Google plan to invest USD 2.2 billion and USD 2 billion, respectively, in the said activities), and, as part of AI Talent Roadmap 2024-2030, establishing AI faculty in one of its public universities (i.e., “Universiti Teknologi Malaysia”) leading the way in the integration and teaching of AI throughout the country. This article introduces several products developed by the author (for the energy and transportation industries) and recommends their improvement by incorporating Machine learning.
文摘Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications.This is all the more important when elements composed of brittle materials are exposed to dynamic environments,resulting in catastrophic fatigue failures.The authors propose the application of a non-intrusive polynomial chaos expansion method for probabilistic studies on brittle materials undergoing fatigue fracture when geometrical parameters and material properties are random independent variables.Understanding the probabilistic nature of fatigue fracture in brittle materials is crucial for ensuring the reliability and safety of engineering structures subjected to cyclic loading.Crack growth is modelled using a phase-field approach within a finite element framework.For modelling fatigue,fracture resistance is progressively degraded by modifying the regularised free energy functional using a fatigue degradation function.Number of cycles to failure is treated as the dependent variable of interest and is estimated within acceptable limits due to the randomness in independent properties.Multiple 2D benchmark problems are solved to demonstrate the ability of this approach to predict the dependent variable responses with significantly fewer simulations than the Monte Carlo method.This proposed approach can accurately predict results typically obtained through 105 or more runs in Monte Carlo simulations with a reduction of up to three orders of magnitude in required runs.The independent random variables’sensitivity to the system response is determined using Sobol’indices.The proposed approach has low computational overhead and can be useful for computationally intensive problems requiring rapid decision-making in sensitive applications like aerospace,nuclear and biomedical engineering.The technique does not require reformulating existing finite element code and can perform the stochastic study by direct pre/post-processing.
基金supported by the National Key Research and Development Program of China(2018YFA0702200)National Natural Science Foundation of China(No.62073065).
文摘Generally,an accurate model can describe the operating states of a system more effectively and provide a more reliable theoretical basis for the system optimization and control.Different from the traditional intrusive modeling,a non-intrusive modeling method based on two-stage generative adversarial network(TS-GAN)is proposed for integrated energy system(IES).By using this method,non-intrusive modeling for the IES including photovoltaic,wind power,energy storage,and energy coupling equipment can be carried out.First,the characteristics of IES are analyzed and extracted based on the meteorological data,energy output,and energy price,and then the characteristic database is established.Meanwhile,the loads are classified as uncontrollable loads and schedulable loads based on frequency domain decomposition to facilitate energy management.Furthermore,TS-GAN algorithm based on the Stackelberg game is designed.In the TS-GAN,the first-stage GAN is used to generate the operating data of each equipment identified by non-invasive monitoring,and the second-stage GAN distinguishes the accumulated data generated by first-stage GAN and further modifies the generator models of the first-stage GAN.Finally,the effectiveness and accuracy of the proposed method are verified by the simulation of an energy region.
基金The completion of this research was made possible thanks to The Natural Sciences and Engineering Research Council of Canada(NSERC)and a start-up grant from Concordia University.
文摘Non-intrusive load monitoring(NILM)is a technique which extracts individual appliance consumption and operation state change information from the aggregate power consumption made by a single residential or commercial unit.NILM plays a pivotal role in modernizing building energy management by disaggregating total energy consumption into individual appliance-level insights.This enables informed decision-making,energy optimization,and cost reduction.However,NILM encounters substantial challenges like signal noise,data availability,and data privacy concerns,necessitating advanced algorithms and robust methodologies to ensure accurate and secure energy disaggregation in real-world scenarios.Deep learning techniques have recently shown some promising results in NILM research,but training these neural networks requires significant labeled data.Obtaining initial sets of labeled data for the research by installing smart meters at the end of consumers’appliances is laborious and expensive and exposes users to severe privacy risks.It is also important to mention that most NILM research uses empirical observations instead of proper mathematical approaches to obtain the threshold value for determining appliance operation states(On/Off)from their respective energy consumption value.This paper proposes a novel semi-supervised multilabel deep learning technique based on temporal convolutional network(TCN)and long short-term memory(LSTM)for classifying appliance operation states from labeled and unlabeled data.The two thresholding techniques,namely Middle-Point Thresholding and Variance-Sensitive Thresholding,which are needed to derive the threshold values for determining appliance operation states,are also compared thoroughly.The superiority of the proposed model,along with finding the appliance states through the Middle-Point Thresholding method,is demonstrated through 15%improved overall improved F1micro score and almost 26%improved Hamming loss,F1 and Specificity score for the performance of individual appliance when compared to the benchmarking techniques that also used semi-supervised learning approach.
基金Supported by the National Natural Science Foundation of China(10972034)the National Science Foundation for Postdoctoral Scientists of China(20090460216)the National Defense Fundamental Research Foundation of China(B222006060)
文摘An outdoor flapping wing micro air vehicle (FWMAV) should be able to withstand unpredictable perturbations in the flight condition. The responses of the time-averaged thrust coefficient and the propulsive efficiency with respect to a stochastic flight velocity deviation were numerically investigated. The deviation was assumed to obey the Gauss distribution with a mean value of zero and a specified standard deviation. The probability distributions of the flapping performances were quantified by the non-intrusive polynomial chaos method. It was observed that both of the time-averaged thrust coefficient and the propulsive efficiency obeyed Gauss-like but not the exact Gauss distribution. The velocity deviation had a large effect on the time-averaged thrust coefficient and a small effect on the propulsive efficiency.
文摘Home energy management systems (HEMs) are used to provide comfortable life for consumers as well as to save energy. An essential component of HEMs is a home area network (HAN) that is used to remotely control the electric devices at homes and buildings. Although HAN prices have dropped in ~ecent years but they are still expensive enough to prohibit a mass scale deployments. In this paper, a very low cost alternative to the expensive HANs is presented. We have applied a combination of non-intrusive load monitoring (NILM) and very low cost one-way HAN to develop a HEM. By using NILM and machine learning algorithms we find the status of devices and their energy consumption from a central meter and communicate with devices through the one-way HAN. The evaluations show that the proposed machine learning algorithm for NILM achieves up to 99% accuracy in certain cases. On the other hand our radio frequency (RF)-based one-way HAN achieves a range of 80 feet in all settings.
文摘The significance of U values in buildings’ shell energy performance is well known in the scientific community as well as in the construction sector. In addition, conducting a validation of the energy performance of a building often requires the knowledge of real U value figures, since their theoretical peers may deviate considerably from the real ones. The theoretical U value of a shell element may be calculated using complex material and surface related information, while its practical validation is conducted usually by equipment that requires tedious installation and constant contact with the examined element. Aim of this paper is to introduce an easily deployed, plug and play, contact less technology, able to provide a reasonable approximation of the building element U value and its variation with external air speed as well as an accurate estimation of the U value change in case of a shell (wall or window) retrofit.
基金supported by National Natural Science Foundation of China(No.52107117)。
文摘Non-intrusive load monitoring is a technique for monitoring the operating conditions of electrical appliances by collecting the aggregated electrical information at the household power inlet.Despite several studies on the mining of unique load characteristics,few studies have extensively considered the high computational burden and sample training.Based on lowfrequency sampling data,a non-intrusive load monitoring algorithm utilizing the graph total variation(GTV)is proposed in this study.The algorithm can effectively depict the load state without the need for prior training.First,the combined Kmeans clustering algorithm and graph signals are used to build concise and accurate graph structures as load models.The GTV representing the internal structure of the graph signal is introduced as the optimization model and solved using the augmented Lagrangian iterative algorithm.The introduction of the difference operator reduces the computing cost and addresses the inaccurate reconstruction of the graph signal.With low-frequency sampling data,the algorithm only requires a little prior data and no training,thereby reducing the computing cost.Experiments conducted using the reference energy disaggregation dataset and almanac of minutely power dataset demonstrated the stable superiority of the algorithm and its low computational burden.
文摘This paper explores the application of non-intrusive load monitoring techniques in the industrial sector for disaggregating the energy consumption of machinery in manufacturing processes. With an increasing focus on energy efficiency and decarbonization measures, achieving energy transparency in production becomes crucial. Utilizing non-intrusive load monitoring, energy data analysis and processing can provide valuable insights for informed decision-making on energy efficiency improvements and emission reductions. While non-intrusive load monitoring has been extensively researched in the building and residential sectors, the application in the industrial manufacturing domain needs to be further explored. This paper addresses this research gap by adapting established non-intrusive load monitoring techniques to an industrial dataset. By employing artificial neural networks for energy disaggregation, the determination of energy consumption of industrial machinery is made possible. Therefore, a generally applicable cross-energy carrier method to disaggregate the energy consumption of machinery in manufacturing processes is developed using a design science research approach and validated through a practical case study utilizing a compressed air demonstrator. The results show that the utilization of artificial neural networks is well-suited for energy disaggregation of industrial data, effectively identifying on and off states, multi-level states and continuously variable states. Non-intrusive load monitoring should be further considered in the research of emerging artificial intelligence technologies in energy consumption evaluation. It can be a viable alternative for intrusive load monitoring and is a prerequisite to installing energy meters for every machine.
基金supported by the National Natural Science Foundation of China(No.11802245).
文摘A Non-Intrusive Reduced-Order Model(NIROM)based on Proper Orthogonal Decomposition(POD)has been proposed for predicting the flow fields of transonic airfoils with geometry parameters.To provide a better reduced-order subspace to approximate the real flow field,a domain decomposition method has been used to separate the hard-to-predict regions from the full field and POD has been adopted in the regions individually.An Artificial Neural Network(ANN)has replaced the Radial Basis Function(RBF)to interpolate the coefficients of the POD modes,aiming at improving the approximation accuracy of the NIROM for non-samples.When predicting the flow fields of transonic airfoils,the proposed NIROM has demonstrated a high performance.