1 Introduction Early detection and diagnosis of stable coronary artery disease (SCAD) is essential for proactive secondary prevention of myocardial infarction (MI), control of disease progress, and reduction of mo...1 Introduction Early detection and diagnosis of stable coronary artery disease (SCAD) is essential for proactive secondary prevention of myocardial infarction (MI), control of disease progress, and reduction of mortality. Clinical decision-making in modem medicine is increasingly dependent on cardiovascular imaging techniques. 2012 ACCF/AHA/ACP/AATS/ PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease has been issued by American Heart Association (AHA). European Society of Cardiology (ESC) has issued 2013 ESC guidelines on the management of stable coronary artery disease.展开更多
Autoimmune pancreatitis (AIP) is characterized by obstructive jaundice, a dramatic clinical response to steroids and pathologically by a lymphoplasmacytic infiltrate, with or without a pancreatic mass. Type 1 AIP is t...Autoimmune pancreatitis (AIP) is characterized by obstructive jaundice, a dramatic clinical response to steroids and pathologically by a lymphoplasmacytic infiltrate, with or without a pancreatic mass. Type 1 AIP is the pancreatic manifestation of an IgG4-related systemic disease and is characterized by elevated IgG4 serum levels, infiltration of IgG4-positive plasma cells and extrapancreatic lesions. Type 2 AIP usually has none or very few IgG4-positive plasma cells, no serum IgG4 elevation and appears to be a pancreas-specific disorder without extrapancreatic involvement. AIP is diagnosed in approximately 2%-6% of patients that undergo pancreatic resection for suspected pancreatic cancer. There are three patterns of autoimmune pancreatitis: diffuse disease is the most common type, with a diffuse, “sausage-like” pancreatic enlargement with sharp margins and loss of the lobular contours; focal disease is less common and manifests as a focal mass, often within the pancreatic head, mimicking a pancreatic malignancy. Multifocal involvement can also occur. In this paper we describe the features of AIP at ultrasonography, computed tomography, magnetic resonance and positron emission tomography/computed tomography imaging, focusing on diagnosis and differential diagnosis with pancreatic ductal adenocarcinoma. It is of utmost importance to make an early correct differential diagnosis between these two diseases in order to identify the optimal therapeutic strategy and to avoid unnecessary laparotomy or pancreatic resection in AIP patients. Non-invasive imaging plays also an important role in therapy monitoring, in follow-up and in early identification of disease recurrence.展开更多
Medical imaging technologies are acquiring an increasing relevance to assist clinicians in diagnosis and to guide management and therapeutic treatment of patients, thanks to their non invasive and high resolution prop...Medical imaging technologies are acquiring an increasing relevance to assist clinicians in diagnosis and to guide management and therapeutic treatment of patients, thanks to their non invasive and high resolution properties. Computed tomography, magnetic resonance imaging, and ultrasonography are the most used imaging modalities to provide detailed morphological reconstructions of tissues and organs. In addition, the use of contrast dyes or radionuclide-labeled tracers permits to get functional and quantitative information about tissue physiology and metabolism in normal and disease state. In recent years, the development of multimodal and hydrid imaging techniques is coming to be the new frontier of medical imaging for the possibility to overcome limitations of single modalities and to obtain physiological and pathophysiological measurements within an accurate anatomical framework. Moreover, the employment of molecular probes, such as ligands or antibodies, allows a selective in vivo targeting of biomolecules involved in specific cellular processes, so expanding the potentialities of imaging techniques for clinical and research applications. This review is aimed to give a survey of characteristics of main diagnostic non-invasive imaging techniques. Current clinical appliances and future perspectives of imaging in the diagnostic and prognostic assessment of diabetic complications affecting different organ systems will be particularly addressed.展开更多
Introduction: The most commonly used predictor of aneurysm behavior in clinical decision-making is size. There are however small aneurysms that rupture and certain large aneurysms remain asymptomatic. There is growing...Introduction: The most commonly used predictor of aneurysm behavior in clinical decision-making is size. There are however small aneurysms that rupture and certain large aneurysms remain asymptomatic. There is growing evidence to suggest that other variables may provide better information on metabolic and physiological properties of aortic wall and therefore better predict aneurysm behavior. Methods: The literature was systematically reviewed from 1975-May 2011 to examine the evidence to support the use of non-invasive imaging modalities that might predict aneurysm behavior. Results: Ultrasound can be used to measure multiple dynamic aortic properties (i.e. distensibility and compliance) in addition to diameter. These parameters better predict aneurysm behavior. Computer tomography can utilize assessment of aortic calcification, presence of intra-luminal thrombus and distensibility. Finite element analysis model has been validated in-vivo to calculate peak wall stress, assess effects of intra-luminal thrombus and calcification. It however relies on assumptions related to aneurysm properties and therefore remains relatively inaccurate in the clinical setting. Small numbers of observational human studies have evaluated the role of 18F-FDG PET/CT in aneurysms. Larger studies are needed, as 18F-FDG uptake is patchy and heterogeneous even in small number of patients. It varies in the same patient with time, as aneurysms grow in intermittently. We discuss functional magnetic resonance imaging with novel tracers such as 99 mTc-annexin-V and nanoparticles. Conclusion: Multimodality imaging with complementary methods such as CT, functional MRI (fMRI), ultrasound and physiological measurements improve the definition of aneurysm pathobiology. Larger-scale clinical validation is beginning to promise a new paradigm in cardiovascular diagnostics.展开更多
BACKGROUND Non-invasive methods to diagnose non-alcoholic steatohepatitis(NASH),an inflammatory subtype of non-alcoholic fatty liver disease(NAFLD),are currently unavailable.AIM To develop an integrin αvβ3-targeted ...BACKGROUND Non-invasive methods to diagnose non-alcoholic steatohepatitis(NASH),an inflammatory subtype of non-alcoholic fatty liver disease(NAFLD),are currently unavailable.AIM To develop an integrin αvβ3-targeted molecular imaging modality to differentiate NASH.METHODS Integrinαvβ3 expression was assessed in Human LO2 hepatocytes Scultured with palmitic and oleic acids(FFA).Hepatic integrinαvβ3 expression was analyzed in rabbits fed a high-fat diet(HFD)and in rats fed a high-fat,high-carbohydrate diet(HFCD).After synthesis,cyclic arginine-glycine-aspartic acid peptide(cRGD)was labeled with gadolinium(Gd)and used as a contrast agent in magnetic resonance imaging(MRI)performed on mice fed with HFCD.RESULTS Integrin αvβ3 was markedly expressed on FFA-cultured hepatocytes,unlike the control hepatocytes.Hepatic integrin αvβ3 expression significantly increased in both HFD-fed rabbits and HFCD-fed rats as simple fatty liver(FL)progressed to steatohepatitis.The distribution of integrinαvβ3 in the liver of NASH cases largely overlapped with albumin-positive staining areas.In comparison to mice with simple FL,the relative liver MRI-T1 signal value at 60 minutes post-injection of Gd-labeled cRGD was significantly increased in mice with steatohepatitis(P<0.05),showing a positive correlation with the NAFLD activity score(r=0.945;P<0.01).Hepatic integrin αvβ3 expression was significantly upregulated during NASH development,with hepatocytes being the primary cells expressing integrin αvβ3.CONCLUSION After using Gd-labeled cRGD as a tracer,NASH was successfully distinguished by visualizing hepatic integrin αvβ3 expression with MRI.展开更多
The limited amount of data in the healthcare domain and the necessity of training samples for increased performance of deep learning models is a recurrent challenge,especially in medical imaging.Newborn Solutions aims...The limited amount of data in the healthcare domain and the necessity of training samples for increased performance of deep learning models is a recurrent challenge,especially in medical imaging.Newborn Solutions aims to enhance its non-invasive white blood cell counting device,Neosonics,by creating synthetic in vitro ultrasound images to facilitate a more efficient image generation process.This study addresses the data scarcity issue by designing and evaluating a continuous scalar conditional Generative Adversarial Network(GAN)to augment in vitro peritoneal dialysis ultrasound images,increasing both the volume and variability of training samples.The developed GAN architecture incorporates novel design features:varying kernel sizes in the generator’s transposed convolutional layers and a latent intermediate space,projecting noise and condition values for enhanced image resolution and specificity.The experimental results show that the GAN successfully generated diverse images of high visual quality,closely resembling real ultrasound samples.While visual results were promising,the use of GAN-based data augmentation did not consistently improve the performance of an image regressor in distinguishing features specific to varied white blood cell concentrations.Ultimately,while this continuous scalar conditional GAN model made strides in generating realistic images,further work is needed to achieve consistent gains in regression tasks,aiming for robust model generalization.展开更多
BACKGROUND Despite the developments in the field of kidney transplantation,the already existing diagnostic techniques for patient monitoring are considered insufficient.Protein biomarkers that can be derived from mode...BACKGROUND Despite the developments in the field of kidney transplantation,the already existing diagnostic techniques for patient monitoring are considered insufficient.Protein biomarkers that can be derived from modern approaches of proteomic analysis of liquid biopsies(serum,urine)represent a promising innovation in the monitoring of kidney transplant recipients.AIM To investigate the diagnostic utility of protein biomarkers derived from proteomics approaches in renal allograft assessment.METHODS A systematic review was conducted in accordance with PRISMA guidelines,based on research results from the PubMed and Scopus databases.The primary focus was on evaluating the role of biomarkers in the non-invasive diagnosis of transplant-related com-plications.Eligibility criteria included protein biomarkers and urine and blood samples,while exclusion criteria were language other than English and the use of low resolution and sensitivity methods.The selected research articles,were categorized based on the biological sample,condition and methodology and the significantly and reproducibly differentiated proteins were manually selected and extracted.Functional and network analysis of the selected proteins was performed.RESULTS In 17 included studies,58 proteins were studied,with the cytokine CXCL10 being the most investigated.Biological pathways related to immune response and fibrosis have shown to be enriched.Applications of biomarkers for the assessment of renal damage as well as the prediction of short-term and long-term function of the graft were reported.Overall,all studies have shown satisfactory diagnostic accuracy of proteins alone or in combination with conventional methods,as far as renal graft assessment is concerned.CONCLUSION Our review suggests that protein biomarkers,evaluated in specific biological fluids,can make a significant contribution to the timely,valid and non-invasive assessment of kidney graft.展开更多
Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to...Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to make the diagnosis and manage psychiatric disorders remains a distant goal.There have been several studies that examine brain imaging in psychiatric disorders,but more work is needed to elucidate the complexities of the human brain.In this editorial,we examine two articles by Xu et al and Stoyanov et al,that show developments in the direction of using neuroimaging to examine the brains of people with schizo-phrenia and depression.Xu et al used magnetic resonance imaging to examine the brain structure of patients with schizophrenia,in addition to examining neurotransmitter levels as biomarkers.Stoyanov et al used functional magnetic resonance imaging to look at modulation of different neural circuits by diagnostic-specific scales in patients with schizophrenia and depression.These two studies provide crucial evidence in advancing our understanding of the brain in prevalent psychiatric disorders.展开更多
BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features ...BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.展开更多
BACKGROUND Focal nodular hyperplasia(FNH)-like lesions are hyperplastic formations in patients with micronodular cirrhosis and a history of alcohol abuse.Although pathologically similar to hepatocellular carcinoma(HCC...BACKGROUND Focal nodular hyperplasia(FNH)-like lesions are hyperplastic formations in patients with micronodular cirrhosis and a history of alcohol abuse.Although pathologically similar to hepatocellular carcinoma(HCC)lesions,they are benign.As such,it is important to develop methods to distinguish between FNH-like lesions and HCC.AIM To evaluate diagnostically differential radiological findings between FNH-like lesions and HCC.METHODS We studied pathologically confirmed FNH-like lesions in 13 patients with alco-holic cirrhosis[10 men and 3 women;mean age:54.5±12.5(33-72)years]who were negative for hepatitis-B surface antigen and hepatitis-C virus antibody and underwent dynamic computed tomography(CT)and magnetic resonance imaging(MRI),including superparamagnetic iron oxide(SPIO)and/or gadoxetic acid-enhanced MRI.Seven patients also underwent angiography-assisted CT.RESULTS The evaluated lesion features included arterial enhancement pattern,washout appearance(low density compared with that of surrounding liver parenchyma),signal intensity on T1-weighted image(T1WI)and T2-weighted image(T2WI),central scar presence,chemical shift on in-and out-of-phase images,and uptake pattern on gadoxetic acid-enhanced MRI hepatobiliary phase and SPIO-enhanced MRI.Eleven patients had multiple small lesions(<1.5 cm).Radiological features of FNH-like lesions included hypervascularity despite small lesions,lack of“corona-like”enhancement in the late phase on CT during hepatic angiography(CTHA),high-intensity on T1WI,slightly high-or iso-intensity on T2WI,no signal decrease in out-of-phase images,and complete SPIO uptake or incomplete/partial uptake of gadoxetic acid.Pathologically,similar to HCC,FNH-like lesions showed many unpaired arteries and sinusoidal capillarization.CONCLUSION Overall,the present study showed that FNH-like lesions have unique radiological findings useful for differential diagnosis.Specifically,SPIO-and/or gadoxetic acid-enhanced MRI and CTHA features might facilitate differential diagnosis of FNH-like lesions and HCC.展开更多
BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study...BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study aims to investigate the application value of a combined machine learning(ML)based model based on the multiparameter magnetic resonance imaging for prediction of rectal metachronous liver metastasis(MLM).AIM To investigate the efficacy of radiomics based on multiparametric magnetic resonance imaging images of preoperative first diagnosed rectal cancer in predicting MLM from rectal cancer.METHODS We retrospectively analyzed 301 patients with rectal cancer confirmed by surgical pathology at Jingzhou Central Hospital from January 2017 to December 2023.All participants were randomly assigned to the training or validation queue in a 7:3 ratio.We first apply generalized linear regression model(GLRM)and random forest model(RFM)algorithm to construct an MLM prediction model in the training queue,and evaluate the discriminative power of the MLM prediction model using area under curve(AUC)and decision curve analysis(DCA).Then,the robustness and generalizability of the MLM prediction model were evaluated based on the internal validation set between the validation queue groups.RESULTS Among the 301 patients included in the study,16.28%were ultimately diagnosed with MLM through pathological examination.Multivariate analysis showed that carcinoembryonic antigen,and magnetic resonance imaging radiomics were independent predictors of MLM.Then,the GLRM prediction model was developed with a comprehensive nomogram to achieve satisfactory differentiation.The prediction performance of GLRM in the training and validation queue was 0.765[95%confidence interval(CI):0.710-0.820]and 0.767(95%CI:0.712-0.822),respectively.Compared with GLRM,RFM achieved superior performance with AUC of 0.919(95%CI:0.868-0.970)and 0.901(95%CI:0.850-0.952)in the training and validation queue,respectively.The DCA indicated that the predictive ability and net profit of clinical RFM were improved.CONCLUSION By combining multiparameter magnetic resonance imaging with the effectiveness and robustness of ML-based predictive models,the proposed clinical RFM can serve as an insight tool for preoperative assessment of MLM risk stratification and provide important information for individual diagnosis and treatment of rectal cancer patients.展开更多
Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed asse...Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.展开更多
Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopme...Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD.展开更多
Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals an...Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.展开更多
Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism....Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.展开更多
Colorectal cancer is one of the few malignant tumors in which synchronous or metachronous liver metastases [colorectal liver metastases(CRLMs)] may be treated with surgery. It has been demonstrated that resection of C...Colorectal cancer is one of the few malignant tumors in which synchronous or metachronous liver metastases [colorectal liver metastases(CRLMs)] may be treated with surgery. It has been demonstrated that resection of CRLMs improves the long-term prognosis. On the other hand, patients with un-resectable CRLMs may benefit from chemotherapy alone or in addition to liverdirected therapies. The choice of the most appropriate therapeutic management of CRLMs depends mostly on the diagnostic imaging. Nowadays, multiple non-invasive imaging modalities are available and those have a pivotal role in the workup of patients with CRLMs. Although extensive research has been performed with regards to the diagnostic performance of ultrasonography, computed tomography, positron emission tomography and magnetic resonance for the detection of CRLMs, the optimal imaging strategies for staging and follow up are still to be established. This largely due to the progressive technological and pharmacological advances which are constantly improving the accuracy of each imaging modality. This review describes the non-invasive imaging approaches of CRLMs reporting the technical features, the clinical indications, the advantages and the potential limitations of each modality, as well as including some information on the development of new imaging modalities, the role of new contrast media and the feasibility of using parametric image analysis as diagnostic marker of presence of CRLMs.展开更多
Dysregulated energy metabolism has recently been recognized as an emerging hallmark of cancer.Tumor cells,which are characterized by abnormal glycolysis,exhibit a lower extracellular pH(6.5–7.0)than nor-mal tissues(...Dysregulated energy metabolism has recently been recognized as an emerging hallmark of cancer.Tumor cells,which are characterized by abnormal glycolysis,exhibit a lower extracellular pH(6.5–7.0)than nor-mal tissues(7.2–7.4),providing a promising target for tumor-specific imaging and therapy.However,most pH-sensitive materials are unable to distinguish such a subtle pH difference owing to their wide and continuous pH-responsive range.In this study,we developed an efficient strategy for the fabrication of a tumor metabolic acidity-activatable calcium phosphate(CaP)fluorescent probe(termed MACaP9).Unlike traditional CaP-based biomedical nanomaterials,which only work within more acidic organelles,such as endosomes and lysosomes(pH 4.0–6.0),MACaP9 could not only specifically respond to the tumor extra-cellular pH but also rapidly convert pH variations into a distinct fluorescence signal to visually dis-tinguish tumor from normal tissues.The superior sensitivity and specificity of MACaP9 enabled high-contrast visualization of a broad range of tumors,as well as small tumor lesions.展开更多
AIM:To evaluate a high-resolution functional imaging device that yields quantitative data regarding macular blood flow and capillary network features in eyes with diabetic retinopathy(DR).METHODS:Prospective,cross-sec...AIM:To evaluate a high-resolution functional imaging device that yields quantitative data regarding macular blood flow and capillary network features in eyes with diabetic retinopathy(DR).METHODS:Prospective,cross-sectional comparative case-series in which blood flow velocities(BFVs)and noninvasive capillary perfusion maps(nCPMs)in macular vessels were measured in patients with DR and in healthy controls using the Retinal Functional Imager(RFI)device.RESULTS:A total of 27 eyes of 21 subjects were studied[9 eyes nonproliferative diabetic retinopathy(NPDR),9 eyes proliferative diabetic retinopathy(PDR)and 9 controls].All diabetic patients were type 2.All patients with NPDR and 5 eyes with PDR also had diabetic macular edema(DME).The NPDR group included eyes with severe(n=3)and moderate NPDR(n=6),and were symptomatic.A significant decrease in venular BFVs was observed in the macular region of PDR eyes when compared to controls(2.61±0.6 mm/s and 2.92±0.72 mm/s in PDR and controls,respectively,P=0.019)as well as PDR eyes with DME compared to NPDR eyes(2.36±0.51 mm/s and 2.94±1.09 mm/s in PDR with DME and NPDR,respectively,P=0.01).CONCLUSION:The RFI,a non-invasive imaging tool,provides high-resolution functional imaging of the retinal microvasculature and quantitative measurement of BFVs in visually impaired DR patients.The isolated diminish venular BFVs in PDR eyes compared to healthy eyes and PDR eyes with DME in comparison to NPDR eyes may indicate the possibility of more retinal vein compromise than suspected in advanced DR.展开更多
Photoacoustic imaging is a potential candidate for in vivo brain imaging,whereas,its imaging performance could be degraded by inhomogeneous multi-layered media,consisted of scalp and skull.In this work,we propose a lo...Photoacoustic imaging is a potential candidate for in vivo brain imaging,whereas,its imaging performance could be degraded by inhomogeneous multi-layered media,consisted of scalp and skull.In this work,we propose a low-artifact photoacoustic microscopy(LAPAM)scheme,which combines conventional acoustic-resolution photoacoustic microscopy with scanning acoustic microscopy to suppress the reflection artifacts induced by multi-layers.Based on similar propagation characteristics of photoacoustic signals and ultrasonic echoes,the ultrasonic echoes can be employed as the filters to suppress the reflection artifacts to obtain low-artifact photoacoustic images.Phantom experiment is used to validate the effectiveness of this method.Furthermore,LAPAM is applied for in-vivo imaging mouse brain without removing the scalp and the skull.Experimental results show that the proposed method successfully achieves the low-artifact brain image,which demonstrates the practical applicability of LAPAM.This work might improve the photoacoustic imaging quality in many biomedical applications which involve tissues with complex acoustic properties,such as brain imaging through scalp and skull.展开更多
In the world,nonalcoholic fatty liver disease(NAFLD)accounts for majority of diffuse hepatic diseases.Notably,substantial liver fat accumulation can trigger and accelerate hepatic fibrosis,thus contributing to disease...In the world,nonalcoholic fatty liver disease(NAFLD)accounts for majority of diffuse hepatic diseases.Notably,substantial liver fat accumulation can trigger and accelerate hepatic fibrosis,thus contributing to disease progression.Moreover,the presence of NAFLD not only puts adverse influences for liver but is also associated with an increased risk of type 2 diabetes and cardiovascular diseases.Therefore,early detection and quantified measurement of hepatic fat content are of great importance.Liver biopsy is currently the most accurate method for the evaluation of hepatic steatosis.However,liver biopsy has several limitations,namely,its invasiveness,sampling error,high cost and moderate intraobserver and interobserver reproducibility.Recently,various quantitative imaging techniques have been developed for the diagnosis and quantified measurement of hepatic fat content,including ultrasound-or magnetic resonancebased methods.These quantitative imaging techniques can provide objective continuous metrics associated with liver fat content and be recorded for comparison when patients receive check-ups to evaluate changes in liver fat content,which is useful for longitudinal follow-up.In this review,we introduce several imaging techniques and describe their diagnostic performance for the diagnosis and quantified measurement of hepatic fat content.展开更多
文摘1 Introduction Early detection and diagnosis of stable coronary artery disease (SCAD) is essential for proactive secondary prevention of myocardial infarction (MI), control of disease progress, and reduction of mortality. Clinical decision-making in modem medicine is increasingly dependent on cardiovascular imaging techniques. 2012 ACCF/AHA/ACP/AATS/ PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease has been issued by American Heart Association (AHA). European Society of Cardiology (ESC) has issued 2013 ESC guidelines on the management of stable coronary artery disease.
文摘Autoimmune pancreatitis (AIP) is characterized by obstructive jaundice, a dramatic clinical response to steroids and pathologically by a lymphoplasmacytic infiltrate, with or without a pancreatic mass. Type 1 AIP is the pancreatic manifestation of an IgG4-related systemic disease and is characterized by elevated IgG4 serum levels, infiltration of IgG4-positive plasma cells and extrapancreatic lesions. Type 2 AIP usually has none or very few IgG4-positive plasma cells, no serum IgG4 elevation and appears to be a pancreas-specific disorder without extrapancreatic involvement. AIP is diagnosed in approximately 2%-6% of patients that undergo pancreatic resection for suspected pancreatic cancer. There are three patterns of autoimmune pancreatitis: diffuse disease is the most common type, with a diffuse, “sausage-like” pancreatic enlargement with sharp margins and loss of the lobular contours; focal disease is less common and manifests as a focal mass, often within the pancreatic head, mimicking a pancreatic malignancy. Multifocal involvement can also occur. In this paper we describe the features of AIP at ultrasonography, computed tomography, magnetic resonance and positron emission tomography/computed tomography imaging, focusing on diagnosis and differential diagnosis with pancreatic ductal adenocarcinoma. It is of utmost importance to make an early correct differential diagnosis between these two diseases in order to identify the optimal therapeutic strategy and to avoid unnecessary laparotomy or pancreatic resection in AIP patients. Non-invasive imaging plays also an important role in therapy monitoring, in follow-up and in early identification of disease recurrence.
基金Supported by Consiglio Nazionale delle Ricerche,Italy,No.CNR-DG.RSTL.035.007-035
文摘Medical imaging technologies are acquiring an increasing relevance to assist clinicians in diagnosis and to guide management and therapeutic treatment of patients, thanks to their non invasive and high resolution properties. Computed tomography, magnetic resonance imaging, and ultrasonography are the most used imaging modalities to provide detailed morphological reconstructions of tissues and organs. In addition, the use of contrast dyes or radionuclide-labeled tracers permits to get functional and quantitative information about tissue physiology and metabolism in normal and disease state. In recent years, the development of multimodal and hydrid imaging techniques is coming to be the new frontier of medical imaging for the possibility to overcome limitations of single modalities and to obtain physiological and pathophysiological measurements within an accurate anatomical framework. Moreover, the employment of molecular probes, such as ligands or antibodies, allows a selective in vivo targeting of biomolecules involved in specific cellular processes, so expanding the potentialities of imaging techniques for clinical and research applications. This review is aimed to give a survey of characteristics of main diagnostic non-invasive imaging techniques. Current clinical appliances and future perspectives of imaging in the diagnostic and prognostic assessment of diabetic complications affecting different organ systems will be particularly addressed.
文摘Introduction: The most commonly used predictor of aneurysm behavior in clinical decision-making is size. There are however small aneurysms that rupture and certain large aneurysms remain asymptomatic. There is growing evidence to suggest that other variables may provide better information on metabolic and physiological properties of aortic wall and therefore better predict aneurysm behavior. Methods: The literature was systematically reviewed from 1975-May 2011 to examine the evidence to support the use of non-invasive imaging modalities that might predict aneurysm behavior. Results: Ultrasound can be used to measure multiple dynamic aortic properties (i.e. distensibility and compliance) in addition to diameter. These parameters better predict aneurysm behavior. Computer tomography can utilize assessment of aortic calcification, presence of intra-luminal thrombus and distensibility. Finite element analysis model has been validated in-vivo to calculate peak wall stress, assess effects of intra-luminal thrombus and calcification. It however relies on assumptions related to aneurysm properties and therefore remains relatively inaccurate in the clinical setting. Small numbers of observational human studies have evaluated the role of 18F-FDG PET/CT in aneurysms. Larger studies are needed, as 18F-FDG uptake is patchy and heterogeneous even in small number of patients. It varies in the same patient with time, as aneurysms grow in intermittently. We discuss functional magnetic resonance imaging with novel tracers such as 99 mTc-annexin-V and nanoparticles. Conclusion: Multimodality imaging with complementary methods such as CT, functional MRI (fMRI), ultrasound and physiological measurements improve the definition of aneurysm pathobiology. Larger-scale clinical validation is beginning to promise a new paradigm in cardiovascular diagnostics.
基金Supported by the National Natural Science Foundation of China,No.81670513and Young Scientists Fund of the National Natural Science Foundation of China,No.81900511。
文摘BACKGROUND Non-invasive methods to diagnose non-alcoholic steatohepatitis(NASH),an inflammatory subtype of non-alcoholic fatty liver disease(NAFLD),are currently unavailable.AIM To develop an integrin αvβ3-targeted molecular imaging modality to differentiate NASH.METHODS Integrinαvβ3 expression was assessed in Human LO2 hepatocytes Scultured with palmitic and oleic acids(FFA).Hepatic integrinαvβ3 expression was analyzed in rabbits fed a high-fat diet(HFD)and in rats fed a high-fat,high-carbohydrate diet(HFCD).After synthesis,cyclic arginine-glycine-aspartic acid peptide(cRGD)was labeled with gadolinium(Gd)and used as a contrast agent in magnetic resonance imaging(MRI)performed on mice fed with HFCD.RESULTS Integrin αvβ3 was markedly expressed on FFA-cultured hepatocytes,unlike the control hepatocytes.Hepatic integrin αvβ3 expression significantly increased in both HFD-fed rabbits and HFCD-fed rats as simple fatty liver(FL)progressed to steatohepatitis.The distribution of integrinαvβ3 in the liver of NASH cases largely overlapped with albumin-positive staining areas.In comparison to mice with simple FL,the relative liver MRI-T1 signal value at 60 minutes post-injection of Gd-labeled cRGD was significantly increased in mice with steatohepatitis(P<0.05),showing a positive correlation with the NAFLD activity score(r=0.945;P<0.01).Hepatic integrin αvβ3 expression was significantly upregulated during NASH development,with hepatocytes being the primary cells expressing integrin αvβ3.CONCLUSION After using Gd-labeled cRGD as a tracer,NASH was successfully distinguished by visualizing hepatic integrin αvβ3 expression with MRI.
文摘The limited amount of data in the healthcare domain and the necessity of training samples for increased performance of deep learning models is a recurrent challenge,especially in medical imaging.Newborn Solutions aims to enhance its non-invasive white blood cell counting device,Neosonics,by creating synthetic in vitro ultrasound images to facilitate a more efficient image generation process.This study addresses the data scarcity issue by designing and evaluating a continuous scalar conditional Generative Adversarial Network(GAN)to augment in vitro peritoneal dialysis ultrasound images,increasing both the volume and variability of training samples.The developed GAN architecture incorporates novel design features:varying kernel sizes in the generator’s transposed convolutional layers and a latent intermediate space,projecting noise and condition values for enhanced image resolution and specificity.The experimental results show that the GAN successfully generated diverse images of high visual quality,closely resembling real ultrasound samples.While visual results were promising,the use of GAN-based data augmentation did not consistently improve the performance of an image regressor in distinguishing features specific to varied white blood cell concentrations.Ultimately,while this continuous scalar conditional GAN model made strides in generating realistic images,further work is needed to achieve consistent gains in regression tasks,aiming for robust model generalization.
文摘BACKGROUND Despite the developments in the field of kidney transplantation,the already existing diagnostic techniques for patient monitoring are considered insufficient.Protein biomarkers that can be derived from modern approaches of proteomic analysis of liquid biopsies(serum,urine)represent a promising innovation in the monitoring of kidney transplant recipients.AIM To investigate the diagnostic utility of protein biomarkers derived from proteomics approaches in renal allograft assessment.METHODS A systematic review was conducted in accordance with PRISMA guidelines,based on research results from the PubMed and Scopus databases.The primary focus was on evaluating the role of biomarkers in the non-invasive diagnosis of transplant-related com-plications.Eligibility criteria included protein biomarkers and urine and blood samples,while exclusion criteria were language other than English and the use of low resolution and sensitivity methods.The selected research articles,were categorized based on the biological sample,condition and methodology and the significantly and reproducibly differentiated proteins were manually selected and extracted.Functional and network analysis of the selected proteins was performed.RESULTS In 17 included studies,58 proteins were studied,with the cytokine CXCL10 being the most investigated.Biological pathways related to immune response and fibrosis have shown to be enriched.Applications of biomarkers for the assessment of renal damage as well as the prediction of short-term and long-term function of the graft were reported.Overall,all studies have shown satisfactory diagnostic accuracy of proteins alone or in combination with conventional methods,as far as renal graft assessment is concerned.CONCLUSION Our review suggests that protein biomarkers,evaluated in specific biological fluids,can make a significant contribution to the timely,valid and non-invasive assessment of kidney graft.
文摘Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to make the diagnosis and manage psychiatric disorders remains a distant goal.There have been several studies that examine brain imaging in psychiatric disorders,but more work is needed to elucidate the complexities of the human brain.In this editorial,we examine two articles by Xu et al and Stoyanov et al,that show developments in the direction of using neuroimaging to examine the brains of people with schizo-phrenia and depression.Xu et al used magnetic resonance imaging to examine the brain structure of patients with schizophrenia,in addition to examining neurotransmitter levels as biomarkers.Stoyanov et al used functional magnetic resonance imaging to look at modulation of different neural circuits by diagnostic-specific scales in patients with schizophrenia and depression.These two studies provide crucial evidence in advancing our understanding of the brain in prevalent psychiatric disorders.
文摘BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.
文摘BACKGROUND Focal nodular hyperplasia(FNH)-like lesions are hyperplastic formations in patients with micronodular cirrhosis and a history of alcohol abuse.Although pathologically similar to hepatocellular carcinoma(HCC)lesions,they are benign.As such,it is important to develop methods to distinguish between FNH-like lesions and HCC.AIM To evaluate diagnostically differential radiological findings between FNH-like lesions and HCC.METHODS We studied pathologically confirmed FNH-like lesions in 13 patients with alco-holic cirrhosis[10 men and 3 women;mean age:54.5±12.5(33-72)years]who were negative for hepatitis-B surface antigen and hepatitis-C virus antibody and underwent dynamic computed tomography(CT)and magnetic resonance imaging(MRI),including superparamagnetic iron oxide(SPIO)and/or gadoxetic acid-enhanced MRI.Seven patients also underwent angiography-assisted CT.RESULTS The evaluated lesion features included arterial enhancement pattern,washout appearance(low density compared with that of surrounding liver parenchyma),signal intensity on T1-weighted image(T1WI)and T2-weighted image(T2WI),central scar presence,chemical shift on in-and out-of-phase images,and uptake pattern on gadoxetic acid-enhanced MRI hepatobiliary phase and SPIO-enhanced MRI.Eleven patients had multiple small lesions(<1.5 cm).Radiological features of FNH-like lesions included hypervascularity despite small lesions,lack of“corona-like”enhancement in the late phase on CT during hepatic angiography(CTHA),high-intensity on T1WI,slightly high-or iso-intensity on T2WI,no signal decrease in out-of-phase images,and complete SPIO uptake or incomplete/partial uptake of gadoxetic acid.Pathologically,similar to HCC,FNH-like lesions showed many unpaired arteries and sinusoidal capillarization.CONCLUSION Overall,the present study showed that FNH-like lesions have unique radiological findings useful for differential diagnosis.Specifically,SPIO-and/or gadoxetic acid-enhanced MRI and CTHA features might facilitate differential diagnosis of FNH-like lesions and HCC.
文摘BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study aims to investigate the application value of a combined machine learning(ML)based model based on the multiparameter magnetic resonance imaging for prediction of rectal metachronous liver metastasis(MLM).AIM To investigate the efficacy of radiomics based on multiparametric magnetic resonance imaging images of preoperative first diagnosed rectal cancer in predicting MLM from rectal cancer.METHODS We retrospectively analyzed 301 patients with rectal cancer confirmed by surgical pathology at Jingzhou Central Hospital from January 2017 to December 2023.All participants were randomly assigned to the training or validation queue in a 7:3 ratio.We first apply generalized linear regression model(GLRM)and random forest model(RFM)algorithm to construct an MLM prediction model in the training queue,and evaluate the discriminative power of the MLM prediction model using area under curve(AUC)and decision curve analysis(DCA).Then,the robustness and generalizability of the MLM prediction model were evaluated based on the internal validation set between the validation queue groups.RESULTS Among the 301 patients included in the study,16.28%were ultimately diagnosed with MLM through pathological examination.Multivariate analysis showed that carcinoembryonic antigen,and magnetic resonance imaging radiomics were independent predictors of MLM.Then,the GLRM prediction model was developed with a comprehensive nomogram to achieve satisfactory differentiation.The prediction performance of GLRM in the training and validation queue was 0.765[95%confidence interval(CI):0.710-0.820]and 0.767(95%CI:0.712-0.822),respectively.Compared with GLRM,RFM achieved superior performance with AUC of 0.919(95%CI:0.868-0.970)and 0.901(95%CI:0.850-0.952)in the training and validation queue,respectively.The DCA indicated that the predictive ability and net profit of clinical RFM were improved.CONCLUSION By combining multiparameter magnetic resonance imaging with the effectiveness and robustness of ML-based predictive models,the proposed clinical RFM can serve as an insight tool for preoperative assessment of MLM risk stratification and provide important information for individual diagnosis and treatment of rectal cancer patients.
基金supported by a grant from the Health Research New Zealand(HRC)22/559(to AJG and LB)。
文摘Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.
基金Supported by Natural Science Foundation of Shanghai,No.17ZR1431400National Key R and D Program of China,No.2017YFA0103902.
文摘Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD.
基金Supported by American Diabetes AssociationAmerican Heart Association+3 种基金NIH NIEHSNIH NIANIH NINDSand NIH ARRA.
文摘Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.
基金supported by the Research Project of the Shanghai Health Commission,No.2020YJZX0111(to CZ)the National Natural Science Foundation of China,Nos.82021002(to CZ),82272039(to CZ),82171252(to FL)+1 种基金a grant from the National Health Commission of People’s Republic of China(PRC),No.Pro20211231084249000238(to JW)Medical Innovation Research Project of Shanghai Science and Technology Commission,No.21Y11903300(to JG).
文摘Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
文摘Colorectal cancer is one of the few malignant tumors in which synchronous or metachronous liver metastases [colorectal liver metastases(CRLMs)] may be treated with surgery. It has been demonstrated that resection of CRLMs improves the long-term prognosis. On the other hand, patients with un-resectable CRLMs may benefit from chemotherapy alone or in addition to liverdirected therapies. The choice of the most appropriate therapeutic management of CRLMs depends mostly on the diagnostic imaging. Nowadays, multiple non-invasive imaging modalities are available and those have a pivotal role in the workup of patients with CRLMs. Although extensive research has been performed with regards to the diagnostic performance of ultrasonography, computed tomography, positron emission tomography and magnetic resonance for the detection of CRLMs, the optimal imaging strategies for staging and follow up are still to be established. This largely due to the progressive technological and pharmacological advances which are constantly improving the accuracy of each imaging modality. This review describes the non-invasive imaging approaches of CRLMs reporting the technical features, the clinical indications, the advantages and the potential limitations of each modality, as well as including some information on the development of new imaging modalities, the role of new contrast media and the feasibility of using parametric image analysis as diagnostic marker of presence of CRLMs.
基金the National Key Research and Development Program of China(2017YFC1309100,2017YFA0205200,and 2020YFA0211100)National Natural Science Foundation of China(81671753,91959124,21804104,32071406,51922077,and 51872205)+6 种基金China Postdoctoral Science Foundation(2019M650259)the Youth Innovation Team of Shaanxi UniversitiesNatural Science Foundation of Shaanxi Province of China(2020PT-020)the Fundamental Research Funds for the Central Universities(JB211202,and JC2112)the Open Project Program of the State Key Laboratory of Cancer Biology(Fourth Military Medical University)(CBSKL2019ZDKF06)the Foundation of National Facility for Translational Medicine(Shanghai)(TMSK2020-012)Young Talents Program,and Shanghai Municipal Commission of Health and Family Planning Foundation(2017YQ050)。
文摘Dysregulated energy metabolism has recently been recognized as an emerging hallmark of cancer.Tumor cells,which are characterized by abnormal glycolysis,exhibit a lower extracellular pH(6.5–7.0)than nor-mal tissues(7.2–7.4),providing a promising target for tumor-specific imaging and therapy.However,most pH-sensitive materials are unable to distinguish such a subtle pH difference owing to their wide and continuous pH-responsive range.In this study,we developed an efficient strategy for the fabrication of a tumor metabolic acidity-activatable calcium phosphate(CaP)fluorescent probe(termed MACaP9).Unlike traditional CaP-based biomedical nanomaterials,which only work within more acidic organelles,such as endosomes and lysosomes(pH 4.0–6.0),MACaP9 could not only specifically respond to the tumor extra-cellular pH but also rapidly convert pH variations into a distinct fluorescence signal to visually dis-tinguish tumor from normal tissues.The superior sensitivity and specificity of MACaP9 enabled high-contrast visualization of a broad range of tumors,as well as small tumor lesions.
文摘AIM:To evaluate a high-resolution functional imaging device that yields quantitative data regarding macular blood flow and capillary network features in eyes with diabetic retinopathy(DR).METHODS:Prospective,cross-sectional comparative case-series in which blood flow velocities(BFVs)and noninvasive capillary perfusion maps(nCPMs)in macular vessels were measured in patients with DR and in healthy controls using the Retinal Functional Imager(RFI)device.RESULTS:A total of 27 eyes of 21 subjects were studied[9 eyes nonproliferative diabetic retinopathy(NPDR),9 eyes proliferative diabetic retinopathy(PDR)and 9 controls].All diabetic patients were type 2.All patients with NPDR and 5 eyes with PDR also had diabetic macular edema(DME).The NPDR group included eyes with severe(n=3)and moderate NPDR(n=6),and were symptomatic.A significant decrease in venular BFVs was observed in the macular region of PDR eyes when compared to controls(2.61±0.6 mm/s and 2.92±0.72 mm/s in PDR and controls,respectively,P=0.019)as well as PDR eyes with DME compared to NPDR eyes(2.36±0.51 mm/s and 2.94±1.09 mm/s in PDR with DME and NPDR,respectively,P=0.01).CONCLUSION:The RFI,a non-invasive imaging tool,provides high-resolution functional imaging of the retinal microvasculature and quantitative measurement of BFVs in visually impaired DR patients.The isolated diminish venular BFVs in PDR eyes compared to healthy eyes and PDR eyes with DME in comparison to NPDR eyes may indicate the possibility of more retinal vein compromise than suspected in advanced DR.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12027808,11874217,11834008,81900875,and 81770973)Natural Science Foundation of Jiangsu Province,China(Grant No.BK 20181077)。
文摘Photoacoustic imaging is a potential candidate for in vivo brain imaging,whereas,its imaging performance could be degraded by inhomogeneous multi-layered media,consisted of scalp and skull.In this work,we propose a low-artifact photoacoustic microscopy(LAPAM)scheme,which combines conventional acoustic-resolution photoacoustic microscopy with scanning acoustic microscopy to suppress the reflection artifacts induced by multi-layers.Based on similar propagation characteristics of photoacoustic signals and ultrasonic echoes,the ultrasonic echoes can be employed as the filters to suppress the reflection artifacts to obtain low-artifact photoacoustic images.Phantom experiment is used to validate the effectiveness of this method.Furthermore,LAPAM is applied for in-vivo imaging mouse brain without removing the scalp and the skull.Experimental results show that the proposed method successfully achieves the low-artifact brain image,which demonstrates the practical applicability of LAPAM.This work might improve the photoacoustic imaging quality in many biomedical applications which involve tissues with complex acoustic properties,such as brain imaging through scalp and skull.
文摘In the world,nonalcoholic fatty liver disease(NAFLD)accounts for majority of diffuse hepatic diseases.Notably,substantial liver fat accumulation can trigger and accelerate hepatic fibrosis,thus contributing to disease progression.Moreover,the presence of NAFLD not only puts adverse influences for liver but is also associated with an increased risk of type 2 diabetes and cardiovascular diseases.Therefore,early detection and quantified measurement of hepatic fat content are of great importance.Liver biopsy is currently the most accurate method for the evaluation of hepatic steatosis.However,liver biopsy has several limitations,namely,its invasiveness,sampling error,high cost and moderate intraobserver and interobserver reproducibility.Recently,various quantitative imaging techniques have been developed for the diagnosis and quantified measurement of hepatic fat content,including ultrasound-or magnetic resonancebased methods.These quantitative imaging techniques can provide objective continuous metrics associated with liver fat content and be recorded for comparison when patients receive check-ups to evaluate changes in liver fat content,which is useful for longitudinal follow-up.In this review,we introduce several imaging techniques and describe their diagnostic performance for the diagnosis and quantified measurement of hepatic fat content.