Surface modification by physical adsorption of a series of non-ionic surfactants including Tween 20, Tween 40, Tween 60, Tween 80 and Tween 85, was accomplished on polypropylene microporous hollow fiber and flat membr...Surface modification by physical adsorption of a series of non-ionic surfactants including Tween 20, Tween 40, Tween 60, Tween 80 and Tween 85, was accomplished on polypropylene microporous hollow fiber and flat membranes. The adsorption curve of the membrane surface was analyzed by weight measurements and the typical results showed a twoplatform character similarly. Differences in the degree and curve shape of adsorption resulting from such factors as concentration, temperature, as well as water cleaning time were observed for Tween 85 among other Tweens. Attenuated total reflection - Fourier transform infrared spectroscopy analysis and field emission scanning electron microscopy observation showed that the adsorption of Tween on polypropylene microporous membrane (PPMM) is effective and occurs mainly in the pores of PPMMs at low adsorption amount, and on the membrane surface also at high adsorption value.展开更多
A spectrophotometric approach for the detection of non-ionic surfactant (Triton X-100) has been proposed in this paper. This method does not involve extraction of the ion-associate with harmful solvents, but employs a...A spectrophotometric approach for the detection of non-ionic surfactant (Triton X-100) has been proposed in this paper. This method does not involve extraction of the ion-associate with harmful solvents, but employs adhesion of the ion-association of potassium/non-ionic surfactants complex and tetraphenylporphyrin tetrasulfonic acid obtained by vigorous shaking. The adhered ion-associate was dissolved with water and its absorbance was measured. The sensitivity for Triton X-100 was determined to be 0.146 (expressed as absorbance of 1 mg/L solution). The adhesion tendency of ion-associate was found to be dependent on the water contact angle, which in turn was influenced by a high adhesion of the ion-associate and by low blank values. In this respect, a tetrafluo-roethylene vessel was found to be the most suitable for the detection of non-ionic surfactants. This spectrophotometrical method is simply and rapidly performed by a procedure based on mechanical shaking and can be employed to detect non-ionic surfactants containing more than 7 polyethylene oxide units.展开更多
The ONP neutral deinking performances of fatty alcohol polyoxyethylene ether with different EO value were investigated in this paper. Meanwhile, the synergistic effects of different non-ionic surfactants, the co-opera...The ONP neutral deinking performances of fatty alcohol polyoxyethylene ether with different EO value were investigated in this paper. Meanwhile, the synergistic effects of different non-ionic surfactants, the co-operation of non-ionic surfactants with anionic surfactants,and the effects of different salts added into the above two systems on deinkability were also studied. The results showed the deinking performance of A7 was good. But the synergistic effect of A7 and A4 was better. In addition, the accession of salt W2 could improve the deinking efficiency, and the brightness of the deinked pulp was 1.0%ISO higher than that of A7 and A4.展开更多
While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application...While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.展开更多
Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition...Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition of demulsifiers for oil-water separation.This inevitably increases the exploitation cost and environmental pollution risk.Switchable surfactants have garnered much attention due to their dual capabilities of underground heavy oil emulsification and surface demulsification.This study focuses on the fundamental working principles and classification of novel switchable surfactants for oil displacement developed in recent years.It offers a comprehensive overview of the latest advances in the applications of switchable surfactants in the fields of enhanced oil recovery(EOR),oil sand washing,and oil-water separation.Furthermore,it highlights the existing challenges and future development directions of switchable surfactants for heavy oil recovery.展开更多
Thermoelectrics are a promising solution to the recovery of some of the 60%of the worldwide energy wasted as heat.However,their conversion efficiency is low and the best performing materials are brittle,toxic,and made...Thermoelectrics are a promising solution to the recovery of some of the 60%of the worldwide energy wasted as heat.However,their conversion efficiency is low and the best performing materials are brittle,toxic,and made of expensive ceramics.The challenge in developing better performing materials is in disrupting the electrical vs thermal conductivity correlation,to achieve low thermal conductivity simultaneously with a high electrical conductivity.Carbon nanotubes allow for the decoupling of the electronic density of states from the phonon density of states and this paper shows that flexible,thin films of double-walled carbon nanotube(DWCNT)can form effective n-and p-doped semiconductors that can achieve a combined Seebeck coefficient of 157.6µV K^(−1),the highest reported for a single DWCNT device to date.This is achieved through selected surfactant doping,whose role is correlated with the length of the hydrocarbon chain of the hydrophobic tail group of the surfactant’s molecules.CNTs functionalized with Triton X-405 show the highest output power consisting of a single junction of p-and n-type thermoelectric elements,reaching as high as 67 nW for a 45 K temperature gradient.Thus enabling flexible,cheaper,and more efficient thermoelectric generators through the use of functionalized CNTs.展开更多
Extraction behavior of chlorpromazine hydrochloride (CPZ) and procaine hydro- chloride (PCN) in the system described in the title was studied. Research shows that the extraction efficiency of CPZ can amount to 96% by...Extraction behavior of chlorpromazine hydrochloride (CPZ) and procaine hydro- chloride (PCN) in the system described in the title was studied. Research shows that the extraction efficiency of CPZ can amount to 96% by twice extraction, while that of PCN is 77%. This system produces the distribution coefficients (KD) of 12.3 and 2.6 respectively for CPZ and PCN. Extraction mechanism is deduced according to ultraviolet and molecular fluorescence spectra variation of the drugs in the system studied.展开更多
An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium brom...An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.展开更多
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant...Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.展开更多
Hydrophilic rare-earth up-conversion nanophosphors(UCNPs)with small sizes and a strong up-conversion luminescence have attracted much interest.Herein the simultaneous control of morphologies and the up-conversion lumi...Hydrophilic rare-earth up-conversion nanophosphors(UCNPs)with small sizes and a strong up-conversion luminescence have attracted much interest.Herein the simultaneous control of morphologies and the up-conversion luminescence intensities was reported for NaYF_(4)∶Yb/Er nanophosphors by a facile hydrothermal procedure with different surfactants.With the change of the surfactants from polyvinylpyrrolidone(PVP)to sodium citrate(CIT),edetate disodium(EDTA)or sodium dodecyl benzenesulfonate(SDBS),the morphology of NaYF_(4)∶Yb/Er nanophosphors transformed from nanoparticles with a diameter of about 70.0 nm to hexagonal nanoblocks with a thickness of about 125.0 nm and a length of about 240.0 nm,nanorods with a diameter of about 700.0 nm and a length of about 2.6μm,or nanowires with a diameter of 250.0 nm and a length of about 3.2μm.Simultaneously,their up-conversion luminescence intensity went down gradually under laser irradiation at a wavelength of 980 nm due to the increase of photobleaching.PVP-capped NaYF_(4)∶Yb/Er nanoparticles exhibited the smallest size and the strongest up-conversion luminescence intensity.Biological experiment results revealed that NaYF_(4)∶Yb/Er nanophosphors exhibited a high biocompatibility and could be used as biological labels with a perfect signal-to-noise ratio for cancer cell imaging.展开更多
A simple and rapid method for the determination of polyethylene oxide-type non-ionic surfactants is reported herein. This method is based on the adhesion of calcium/non-ionic surfactant complexes with tetra phenyl por...A simple and rapid method for the determination of polyethylene oxide-type non-ionic surfactants is reported herein. This method is based on the adhesion of calcium/non-ionic surfactant complexes with tetra phenyl porphine sulfonic acid (TPPS) to the wall of reaction vessel upon vigorous shaking. The ion-associate adhering to the inner wall of the vessel was dissolved with water after discarding the solution and spectrophotometrically assayed at 412 nm. From the standard curve for Triton X-100, the order of the sensitivity for different ions was as follows: Ca^2+〉 K^+〉 NH4^+〉 Ba^2+. The proposed method does not involve extraction of the ion-associated with harmful solvents and can be simply performed by combining a procedure based on hand shaking and the use of a spectrophotometer.展开更多
A core-shell composite consisting of ZSM-5 zeolite as the core and ordered mesoporous silica as the shell was prepared by a surfactant-controlled sol-gel process and using tetradecylamine(TDA) as the template and Tetr...A core-shell composite consisting of ZSM-5 zeolite as the core and ordered mesoporous silica as the shell was prepared by a surfactant-controlled sol-gel process and using tetradecylamine(TDA) as the template and Tetraethylorthosilicate(TEOS) as the silica precursor.The pores of the silica shell were found to be ordered and perpendicular to the crystal faces of the zeolite core.The thickness of the shell in the coreshell structured composite can be adjusted in the range of 20-90 nm,while the surface morphology and the pore size distribution were modified by changing the mass ratio of TEOS to zeolite.The composite molecular sieves have higher surface area for capturing molecules than ZSM-5,and with the increase of mesoporous shell layer,the ZSM-5@SiO_(2)-x composites show stronger adsorption capacity of butyraldehyde.However,when the shell thickness exceeds 90 nm,the adsorption capacity of butyraldehyde decreases instead.The composites have a huge potential for environmental applications.展开更多
Piroctone olamine(OCT) was used as the main bacteriostatic component, the inhibition of OCT in different kinds and mass concentrations of surfactants were studied. Six surfactants commonly used in personal care produc...Piroctone olamine(OCT) was used as the main bacteriostatic component, the inhibition of OCT in different kinds and mass concentrations of surfactants were studied. Six surfactants commonly used in personal care products, i.e. sodium laureth sulfate(AES), cocamidopropyl betaine(CAB 35), sodium lauroyl sarcosinate(LS-30), sodium lauroyl glutamate(ULS-30S), alkyl glycoside(APG), cocamide methyl MEA(CMMEA),were used. The results showed that the bacteriostatic of OCT decreased with the increase of AES, which was suggested ≤ 5%. OCT has good bacteriostatic performance in the systems of amino acid surfactants and high dosage of amphoteric surfactants, 5% LS 30 and ≥ 10% CAB 35 was recommended. High dosage of nonionic surfactant could interfere the bacteriostatic performance of OCT, the recommended dosage was ≤ 2%.In addition, OCT has good bacteriostatic performance against Staphylococcus aureus, Escherichia coli and Candida albicans when pH was controlled less than 5.5.展开更多
In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly impro...In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly improved due to the catalytic effect of trimethyl-gallium (TMGa), but AlN crystal structure and composition are not affected. When the proportion of TMGa in gas phase was low, crystal quality of AlN can be improved and three-dimensional growth mode of AlN was enhanced with the increase of Ga source. When the proportion of TMGa in gas phase was high, two-dimensional growth mode of AlN was presented, with the increase of Ga source results in the deterioration of AlN crystal quality. Finally, employing a two-step growth approach, involving the initial growth of Ga-free AlN nucleation layer followed by Ga-assisted AlN growth, high quality of AlN film with flat surface was obtained and the full width at half maximum (FWHM) values of 415 nm AlN (002) and (102) planes were 465 and 597 arcsec.展开更多
Viscoelastic surfactants(VES)are often used as viscous diverters in acidizing stimulation to prolong the acid consumption time and maximize zonal coverage of the acid for improving well productivity.However,the ceilin...Viscoelastic surfactants(VES)are often used as viscous diverters in acidizing stimulation to prolong the acid consumption time and maximize zonal coverage of the acid for improving well productivity.However,the ceiling temperature of commercial VES cannot exceed 120℃in practical use because of the poor thermal stability and fragile molecular structure,hindering their implementation in hightemperature oil reservoirs,i.e.,≥150℃.Here we synthesized a novel C22-tailed diamine,N-erucaminopropyl-N,N-dimethylamine(EDPA),and examined comparatively its rheological behavior,assemblies morphology and molecular stability in 20 wt%HCl with a commercial VES,erucyl dimethyl amidopropyl betaine(EDAB).The feasibility of EDPA for acidizing stimulation was assessed by acid etching of carbonate rock with its HCl solution at 150℃.Rheological results showed that the 2.5 wt%EDPA—20 wt%HCl solution maintains stable viscosity of 90 m Pa s at 150℃for 60 min,while that of 2.0 wt%EDAB HCl solution is just 1 m Pa s under identical conditions.1H NMR spectra and cryo-TEM observations revealed that the chemical structure and self-assembled architectures of EDPA remained intact in such context,but the EDAB suffered from degradation due to the hydrolysis of the amide group,accounting for the poor heat-resistance and acid-tolerance.The reaction rate of 2.5 wt%EDPA HCl solution with carbonate rock was one order of magnitude lower than that of 20 wt%HCl solution at 150℃,underpinning the potential of EDPA to be used in the high-temperature reservoirs acidizing.This work improved the thermal tolerance of VES in highly concentrated HCl solution,paving a feasible way for the acidization of high-temperature reservoir environments(~150℃).展开更多
Adhesion of oil at rock surface plays an important role in the liberation of oil from micro-/nano-pores,especially for heavy oil that has extremely high viscosity.Although molecular dynamics simulation is widely used ...Adhesion of oil at rock surface plays an important role in the liberation of oil from micro-/nano-pores,especially for heavy oil that has extremely high viscosity.Although molecular dynamics simulation is widely used to study the interfacial interaction for some specific oil-water-rock systems,experimental measurements provide more realistic and reliable evidence.In this work,we propose a dynamic wettability characterization method to indirectly measure resistant forces at oil-surfactant-rock interfaces,including frictional force,wettability hysteresis force,and viscous force,which are parallel with the oil-solid interface.The adhesive force,which is normal to the oil-solid interface is calculated through measurement of work of adhesion.The results show that work of adhesion instead of contact angle can better describe the adhesion of oil at solid surface.The effect of surfactant concentration on work of adhesion is different for water-wet and oil-wet surfaces.Moreover,average viscous forces are calculated through force analysis on oil drops moving along solid surface in different surfactant environments.It is found that viscous force has a magnitude comparable to the frictional force during the movement,while the wettability hysteresis force is negligible.On the other hand,the adhesive force calculated from the work of adhesion is also comparable to the viscous force.Therefore,both the resistant forces parallel with and normal to the oil-solid interface should be minimized for the liberation of oil from rock surface.This work proposes a simple method to evaluate the wetting capability of different surfactants and measure the adhesive force between heavy oil and rock surfaces indirectly,which provides insight into the adhesion of heavy oil at rock surface and would be valuable for the development of surfactant-based oil recovery methods.展开更多
Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is t...Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is to evaluate the homogeneity of MPL with cracks quantitatively. This paper proposes the homogeneity index of a full-scale MPL with an area of 50 cm~2, which is yet to be reported in the literature to our knowledge. Besides, the effects of the carbon material and surfactant on the ink and resulting MPL structure have been studied. The ink with a high network development degree produces an MPL with low crack density, but the ink with high PDI produces an MPL with low crack homogeneity. The polarity of the surfactant and the non-polarity of polytetrafluoroethylene(PTFE) are not mutually soluble,resulting in the heterogeneous PTFE distribution. The findings of this study provide guidelines for MPL fabrication.展开更多
In March 2024,a large batch of people along the surfactant industrial chain attended the“2024 Chinese Surfactant Industrial Meeting”,also the 2024(The 2nd)Chinese International Surfactant Industrial Expo held betwee...In March 2024,a large batch of people along the surfactant industrial chain attended the“2024 Chinese Surfactant Industrial Meeting”,also the 2024(The 2nd)Chinese International Surfactant Industrial Expo held between March 25 and March 28,so as to explore new possibilities in the industry.This event was hosted by China Research Institute of Daily Chemical Industry and National Engineering Research Center for Surfactant(NERCS)and organized by Productivity Promotion Centre for the Surfactant and Detergent Industry and China Daily chemical Industry Information Center,with the special support by China Quality Mark Certification Group.展开更多
BACKGROUND Neonatal respiratory distress syndrome(NRDS)is one of the most common diseases in neonatal intensive care units,with an incidence rate of about 7%among infants.Additionally,it is a leading cause of neonatal...BACKGROUND Neonatal respiratory distress syndrome(NRDS)is one of the most common diseases in neonatal intensive care units,with an incidence rate of about 7%among infants.Additionally,it is a leading cause of neonatal death in hospitals in China.The main mechanism of the disease is hypoxemia and hypercapnia caused by lack of surfactant AIM To explore the effect of pulmonary surfactant(PS)combined with noninvasive positive pressure ventilation on keratin-14(KRT-14)and endothelin-1(ET-1)levels in peripheral blood and the effectiveness in treating NRDS.METHODS Altogether 137 neonates with respiratory distress syndrome treated in our hospital from April 2019 to July 2021 were included.Of these,64 control cases were treated with noninvasive positive pressure ventilation and 73 observation cases were treated with PS combined with noninvasive positive pressure ventilation.The expression of KRT-14 and ET-1 in the two groups was compared.The deaths,complications,and PaO_(2),PaCO_(2),and PaO_(2)/FiO_(2)blood gas indexes in the two groups were compared.Receiver operating characteristic curve(ROC)analysis was used to determine the diagnostic value of KRT-14 and ET-1 in the treatment of NRDS.RESULTS The observation group had a significantly higher effectiveness rate than the control group.There was no significant difference between the two groups in terms of neonatal mortality and adverse reactions,such as bronchial dysplasia,cyanosis,and shortness of breath.After treatment,the levels of PaO_(2)and PaO_(2)/FiO_(2)in both groups were significantly higher than before treatment,while the level of PaCO_(2)was significantly lower.After treatment,the observation group had significantly higher levels of PaO_(2)and PaO_(2)/FiO_(2)than the control group,while PaCO_(2)was notably lower in the observation group.After treatment,the KRT-14 and ET-1 levels in both groups were significantly decreased compared with the pre-treatment levels.The observation group had a reduction of KRT-14 and ET-1 levels than the control group.ROC curve analysis showed that the area under the curve(AUC)of KRT-14 was 0.791,and the AUC of ET-1 was 0.816.CONCLUSION Combining PS with noninvasive positive pressure ventilation significantly improved the effectiveness of NRDS therapy.KRT-14 and ET-1 levels may have potential as therapeutic and diagnostic indicators.展开更多
Two non-ionic hydro-fluorocarbon hybrid surfactants with and without hydroxyl groups were synthesized and compared.They exhibited good thermal stability and superior surface activity.It was observed that the hydroxyl ...Two non-ionic hydro-fluorocarbon hybrid surfactants with and without hydroxyl groups were synthesized and compared.They exhibited good thermal stability and superior surface activity.It was observed that the hydroxyl group had a profound effect on modifying the surface tension of their solutions and the morphology of the formed micelles.This effect may be attributed to the rearranging of the alkane group from above the air/aqueous surface to below it and the disrupting of the interfacial water structure induced by the hydroxyl groups.This work provides a strategy to weaken the immiscibility between hydrocarbon and fluorocarbon chains by modifying their orientational structure at the interface,thus it is helpful for the design of surfactants with varied interfacial properties.展开更多
基金This work was financially supported by the High-Tech Research and Development Program of China (No. 2002AA601230) the Science-Research Program of Jiaxing city, China (No. 2005AY3013).
文摘Surface modification by physical adsorption of a series of non-ionic surfactants including Tween 20, Tween 40, Tween 60, Tween 80 and Tween 85, was accomplished on polypropylene microporous hollow fiber and flat membranes. The adsorption curve of the membrane surface was analyzed by weight measurements and the typical results showed a twoplatform character similarly. Differences in the degree and curve shape of adsorption resulting from such factors as concentration, temperature, as well as water cleaning time were observed for Tween 85 among other Tweens. Attenuated total reflection - Fourier transform infrared spectroscopy analysis and field emission scanning electron microscopy observation showed that the adsorption of Tween on polypropylene microporous membrane (PPMM) is effective and occurs mainly in the pores of PPMMs at low adsorption amount, and on the membrane surface also at high adsorption value.
文摘A spectrophotometric approach for the detection of non-ionic surfactant (Triton X-100) has been proposed in this paper. This method does not involve extraction of the ion-associate with harmful solvents, but employs adhesion of the ion-association of potassium/non-ionic surfactants complex and tetraphenylporphyrin tetrasulfonic acid obtained by vigorous shaking. The adhered ion-associate was dissolved with water and its absorbance was measured. The sensitivity for Triton X-100 was determined to be 0.146 (expressed as absorbance of 1 mg/L solution). The adhesion tendency of ion-associate was found to be dependent on the water contact angle, which in turn was influenced by a high adhesion of the ion-associate and by low blank values. In this respect, a tetrafluo-roethylene vessel was found to be the most suitable for the detection of non-ionic surfactants. This spectrophotometrical method is simply and rapidly performed by a procedure based on mechanical shaking and can be employed to detect non-ionic surfactants containing more than 7 polyethylene oxide units.
文摘The ONP neutral deinking performances of fatty alcohol polyoxyethylene ether with different EO value were investigated in this paper. Meanwhile, the synergistic effects of different non-ionic surfactants, the co-operation of non-ionic surfactants with anionic surfactants,and the effects of different salts added into the above two systems on deinkability were also studied. The results showed the deinking performance of A7 was good. But the synergistic effect of A7 and A4 was better. In addition, the accession of salt W2 could improve the deinking efficiency, and the brightness of the deinked pulp was 1.0%ISO higher than that of A7 and A4.
基金supported by the National Key Research and Development Program of China (No.2017YFC0804700)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (No.KFJJ23-23M)。
文摘While newer,more efficient Lithium-ion batteries(LIBs)and extinguishing agents have been developed to reduce the occurrence of thermal runaway accidents,there is still a scarcity of research focused on the application of surfactants in different LIBs extinguishing agents,particularly in terms of patented technologies.The aim of this review paper is to provide an overview of the technological progress of LIBs and LIBs extinguishing agents in terms of patents in Korea,Japan,Europe,the United States,China,etc.The initial part of this review paper is sort out LIBs technology development in different regions.In addition,to compare LIBs extinguishing agent progress and challenges of liquid,solid,combination of multiple,and microencapsulated.The subsequent section of this review focuses on an in-depth analysis dedicated to the efficiency and challenges faced by the surfactants corresponding design principles of LIBs extinguishing agents,such as nonionic and anionic surfactants.A total of 451,760 LIBs-related patent and 20 LIBs-fire-extinguishing agent-related patent were included in the analyses.The extinguishing effect,cooling performance,and anti-recombustion on different agents have been highlighted.After a comprehensive comparison of these agents,this review suggests that temperature-sensitive hydrogel extinguishing agent is ideal for the effective control of LIBs fire.The progress and challenges of surfactants have been extensively examined,focusing on key factors such as surface activity,thermal stability,foaming properties,environmental friendliness,and electrical conductivity.Moreover,it is crucial to emphasize that the selection of a suitable surfactant must align with the extinguishing strategy of the extinguishing agent for optimal firefighting effectiveness.
基金supported by a key project of the National Natural Science Foundation of China(No 21938003)the Postdoctoral Foundation of the PetroChina Dagang Oilfield Company(No.2023BO59).
文摘Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition of demulsifiers for oil-water separation.This inevitably increases the exploitation cost and environmental pollution risk.Switchable surfactants have garnered much attention due to their dual capabilities of underground heavy oil emulsification and surface demulsification.This study focuses on the fundamental working principles and classification of novel switchable surfactants for oil displacement developed in recent years.It offers a comprehensive overview of the latest advances in the applications of switchable surfactants in the fields of enhanced oil recovery(EOR),oil sand washing,and oil-water separation.Furthermore,it highlights the existing challenges and future development directions of switchable surfactants for heavy oil recovery.
文摘Thermoelectrics are a promising solution to the recovery of some of the 60%of the worldwide energy wasted as heat.However,their conversion efficiency is low and the best performing materials are brittle,toxic,and made of expensive ceramics.The challenge in developing better performing materials is in disrupting the electrical vs thermal conductivity correlation,to achieve low thermal conductivity simultaneously with a high electrical conductivity.Carbon nanotubes allow for the decoupling of the electronic density of states from the phonon density of states and this paper shows that flexible,thin films of double-walled carbon nanotube(DWCNT)can form effective n-and p-doped semiconductors that can achieve a combined Seebeck coefficient of 157.6µV K^(−1),the highest reported for a single DWCNT device to date.This is achieved through selected surfactant doping,whose role is correlated with the length of the hydrocarbon chain of the hydrophobic tail group of the surfactant’s molecules.CNTs functionalized with Triton X-405 show the highest output power consisting of a single junction of p-and n-type thermoelectric elements,reaching as high as 67 nW for a 45 K temperature gradient.Thus enabling flexible,cheaper,and more efficient thermoelectric generators through the use of functionalized CNTs.
文摘Extraction behavior of chlorpromazine hydrochloride (CPZ) and procaine hydro- chloride (PCN) in the system described in the title was studied. Research shows that the extraction efficiency of CPZ can amount to 96% by twice extraction, while that of PCN is 77%. This system produces the distribution coefficients (KD) of 12.3 and 2.6 respectively for CPZ and PCN. Extraction mechanism is deduced according to ultraviolet and molecular fluorescence spectra variation of the drugs in the system studied.
基金financial support from Singapore Ministry of Education under its AcRF Tier 2 Grant No MOE-T2EP10123-0001Singapore National Research Foundation Investigatorship under Grant No NRF-NRFI08-2022-0009Academic Excellence Foundation of BUAA for PhD Students(applicant:Hongfei Xu).
文摘An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.
基金financially supported by National Natural Science Foundation of China(No.22302229)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(No.2018000020124G163)。
文摘Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.
基金Shanghai Academic Research Leader,China(No.20XD1420200)Shanghai Shuguang Program,China(No.18SG29)。
文摘Hydrophilic rare-earth up-conversion nanophosphors(UCNPs)with small sizes and a strong up-conversion luminescence have attracted much interest.Herein the simultaneous control of morphologies and the up-conversion luminescence intensities was reported for NaYF_(4)∶Yb/Er nanophosphors by a facile hydrothermal procedure with different surfactants.With the change of the surfactants from polyvinylpyrrolidone(PVP)to sodium citrate(CIT),edetate disodium(EDTA)or sodium dodecyl benzenesulfonate(SDBS),the morphology of NaYF_(4)∶Yb/Er nanophosphors transformed from nanoparticles with a diameter of about 70.0 nm to hexagonal nanoblocks with a thickness of about 125.0 nm and a length of about 240.0 nm,nanorods with a diameter of about 700.0 nm and a length of about 2.6μm,or nanowires with a diameter of 250.0 nm and a length of about 3.2μm.Simultaneously,their up-conversion luminescence intensity went down gradually under laser irradiation at a wavelength of 980 nm due to the increase of photobleaching.PVP-capped NaYF_(4)∶Yb/Er nanoparticles exhibited the smallest size and the strongest up-conversion luminescence intensity.Biological experiment results revealed that NaYF_(4)∶Yb/Er nanophosphors exhibited a high biocompatibility and could be used as biological labels with a perfect signal-to-noise ratio for cancer cell imaging.
文摘A simple and rapid method for the determination of polyethylene oxide-type non-ionic surfactants is reported herein. This method is based on the adhesion of calcium/non-ionic surfactant complexes with tetra phenyl porphine sulfonic acid (TPPS) to the wall of reaction vessel upon vigorous shaking. The ion-associate adhering to the inner wall of the vessel was dissolved with water after discarding the solution and spectrophotometrically assayed at 412 nm. From the standard curve for Triton X-100, the order of the sensitivity for different ions was as follows: Ca^2+〉 K^+〉 NH4^+〉 Ba^2+. The proposed method does not involve extraction of the ion-associated with harmful solvents and can be simply performed by combining a procedure based on hand shaking and the use of a spectrophotometer.
文摘A core-shell composite consisting of ZSM-5 zeolite as the core and ordered mesoporous silica as the shell was prepared by a surfactant-controlled sol-gel process and using tetradecylamine(TDA) as the template and Tetraethylorthosilicate(TEOS) as the silica precursor.The pores of the silica shell were found to be ordered and perpendicular to the crystal faces of the zeolite core.The thickness of the shell in the coreshell structured composite can be adjusted in the range of 20-90 nm,while the surface morphology and the pore size distribution were modified by changing the mass ratio of TEOS to zeolite.The composite molecular sieves have higher surface area for capturing molecules than ZSM-5,and with the increase of mesoporous shell layer,the ZSM-5@SiO_(2)-x composites show stronger adsorption capacity of butyraldehyde.However,when the shell thickness exceeds 90 nm,the adsorption capacity of butyraldehyde decreases instead.The composites have a huge potential for environmental applications.
文摘Piroctone olamine(OCT) was used as the main bacteriostatic component, the inhibition of OCT in different kinds and mass concentrations of surfactants were studied. Six surfactants commonly used in personal care products, i.e. sodium laureth sulfate(AES), cocamidopropyl betaine(CAB 35), sodium lauroyl sarcosinate(LS-30), sodium lauroyl glutamate(ULS-30S), alkyl glycoside(APG), cocamide methyl MEA(CMMEA),were used. The results showed that the bacteriostatic of OCT decreased with the increase of AES, which was suggested ≤ 5%. OCT has good bacteriostatic performance in the systems of amino acid surfactants and high dosage of amphoteric surfactants, 5% LS 30 and ≥ 10% CAB 35 was recommended. High dosage of nonionic surfactant could interfere the bacteriostatic performance of OCT, the recommended dosage was ≤ 2%.In addition, OCT has good bacteriostatic performance against Staphylococcus aureus, Escherichia coli and Candida albicans when pH was controlled less than 5.5.
基金supported by the Key Research and Development Program of Jilin Provincial Department of Science and Technology (No. 20210201031GX)Innovation capacity building project of Jilin Province (No. 2023C031-2)The Key Research and Development Program of Jiangsu Province (No. BE2022057-1)。
文摘In this work, AlN films were grown using gallium (Ga) as surfactant on 4° off-axis 4H-SiC substrates via microwave plasma chemical vapor deposition (MPCVD). We have found that AlN growth rate can be greatly improved due to the catalytic effect of trimethyl-gallium (TMGa), but AlN crystal structure and composition are not affected. When the proportion of TMGa in gas phase was low, crystal quality of AlN can be improved and three-dimensional growth mode of AlN was enhanced with the increase of Ga source. When the proportion of TMGa in gas phase was high, two-dimensional growth mode of AlN was presented, with the increase of Ga source results in the deterioration of AlN crystal quality. Finally, employing a two-step growth approach, involving the initial growth of Ga-free AlN nucleation layer followed by Ga-assisted AlN growth, high quality of AlN film with flat surface was obtained and the full width at half maximum (FWHM) values of 415 nm AlN (002) and (102) planes were 465 and 597 arcsec.
基金the financial support from the National Natural Science Foundation of China(Nos:21773161,22172108)。
文摘Viscoelastic surfactants(VES)are often used as viscous diverters in acidizing stimulation to prolong the acid consumption time and maximize zonal coverage of the acid for improving well productivity.However,the ceiling temperature of commercial VES cannot exceed 120℃in practical use because of the poor thermal stability and fragile molecular structure,hindering their implementation in hightemperature oil reservoirs,i.e.,≥150℃.Here we synthesized a novel C22-tailed diamine,N-erucaminopropyl-N,N-dimethylamine(EDPA),and examined comparatively its rheological behavior,assemblies morphology and molecular stability in 20 wt%HCl with a commercial VES,erucyl dimethyl amidopropyl betaine(EDAB).The feasibility of EDPA for acidizing stimulation was assessed by acid etching of carbonate rock with its HCl solution at 150℃.Rheological results showed that the 2.5 wt%EDPA—20 wt%HCl solution maintains stable viscosity of 90 m Pa s at 150℃for 60 min,while that of 2.0 wt%EDAB HCl solution is just 1 m Pa s under identical conditions.1H NMR spectra and cryo-TEM observations revealed that the chemical structure and self-assembled architectures of EDPA remained intact in such context,but the EDAB suffered from degradation due to the hydrolysis of the amide group,accounting for the poor heat-resistance and acid-tolerance.The reaction rate of 2.5 wt%EDPA HCl solution with carbonate rock was one order of magnitude lower than that of 20 wt%HCl solution at 150℃,underpinning the potential of EDPA to be used in the high-temperature reservoirs acidizing.This work improved the thermal tolerance of VES in highly concentrated HCl solution,paving a feasible way for the acidization of high-temperature reservoir environments(~150℃).
基金funded by the National Key R&D Program of China(No.2018YFA0702400).
文摘Adhesion of oil at rock surface plays an important role in the liberation of oil from micro-/nano-pores,especially for heavy oil that has extremely high viscosity.Although molecular dynamics simulation is widely used to study the interfacial interaction for some specific oil-water-rock systems,experimental measurements provide more realistic and reliable evidence.In this work,we propose a dynamic wettability characterization method to indirectly measure resistant forces at oil-surfactant-rock interfaces,including frictional force,wettability hysteresis force,and viscous force,which are parallel with the oil-solid interface.The adhesive force,which is normal to the oil-solid interface is calculated through measurement of work of adhesion.The results show that work of adhesion instead of contact angle can better describe the adhesion of oil at solid surface.The effect of surfactant concentration on work of adhesion is different for water-wet and oil-wet surfaces.Moreover,average viscous forces are calculated through force analysis on oil drops moving along solid surface in different surfactant environments.It is found that viscous force has a magnitude comparable to the frictional force during the movement,while the wettability hysteresis force is negligible.On the other hand,the adhesive force calculated from the work of adhesion is also comparable to the viscous force.Therefore,both the resistant forces parallel with and normal to the oil-solid interface should be minimized for the liberation of oil from rock surface.This work proposes a simple method to evaluate the wetting capability of different surfactants and measure the adhesive force between heavy oil and rock surfaces indirectly,which provides insight into the adhesion of heavy oil at rock surface and would be valuable for the development of surfactant-based oil recovery methods.
基金supported by China National Postdoctoral Program for Innovative Talents (BX20230121)China Postdoctoral Science Foundation (2023M741163)Shanghai Super Postdoctoral Incentive Program (2023741)。
文摘Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is to evaluate the homogeneity of MPL with cracks quantitatively. This paper proposes the homogeneity index of a full-scale MPL with an area of 50 cm~2, which is yet to be reported in the literature to our knowledge. Besides, the effects of the carbon material and surfactant on the ink and resulting MPL structure have been studied. The ink with a high network development degree produces an MPL with low crack density, but the ink with high PDI produces an MPL with low crack homogeneity. The polarity of the surfactant and the non-polarity of polytetrafluoroethylene(PTFE) are not mutually soluble,resulting in the heterogeneous PTFE distribution. The findings of this study provide guidelines for MPL fabrication.
文摘In March 2024,a large batch of people along the surfactant industrial chain attended the“2024 Chinese Surfactant Industrial Meeting”,also the 2024(The 2nd)Chinese International Surfactant Industrial Expo held between March 25 and March 28,so as to explore new possibilities in the industry.This event was hosted by China Research Institute of Daily Chemical Industry and National Engineering Research Center for Surfactant(NERCS)and organized by Productivity Promotion Centre for the Surfactant and Detergent Industry and China Daily chemical Industry Information Center,with the special support by China Quality Mark Certification Group.
文摘BACKGROUND Neonatal respiratory distress syndrome(NRDS)is one of the most common diseases in neonatal intensive care units,with an incidence rate of about 7%among infants.Additionally,it is a leading cause of neonatal death in hospitals in China.The main mechanism of the disease is hypoxemia and hypercapnia caused by lack of surfactant AIM To explore the effect of pulmonary surfactant(PS)combined with noninvasive positive pressure ventilation on keratin-14(KRT-14)and endothelin-1(ET-1)levels in peripheral blood and the effectiveness in treating NRDS.METHODS Altogether 137 neonates with respiratory distress syndrome treated in our hospital from April 2019 to July 2021 were included.Of these,64 control cases were treated with noninvasive positive pressure ventilation and 73 observation cases were treated with PS combined with noninvasive positive pressure ventilation.The expression of KRT-14 and ET-1 in the two groups was compared.The deaths,complications,and PaO_(2),PaCO_(2),and PaO_(2)/FiO_(2)blood gas indexes in the two groups were compared.Receiver operating characteristic curve(ROC)analysis was used to determine the diagnostic value of KRT-14 and ET-1 in the treatment of NRDS.RESULTS The observation group had a significantly higher effectiveness rate than the control group.There was no significant difference between the two groups in terms of neonatal mortality and adverse reactions,such as bronchial dysplasia,cyanosis,and shortness of breath.After treatment,the levels of PaO_(2)and PaO_(2)/FiO_(2)in both groups were significantly higher than before treatment,while the level of PaCO_(2)was significantly lower.After treatment,the observation group had significantly higher levels of PaO_(2)and PaO_(2)/FiO_(2)than the control group,while PaCO_(2)was notably lower in the observation group.After treatment,the KRT-14 and ET-1 levels in both groups were significantly decreased compared with the pre-treatment levels.The observation group had a reduction of KRT-14 and ET-1 levels than the control group.ROC curve analysis showed that the area under the curve(AUC)of KRT-14 was 0.791,and the AUC of ET-1 was 0.816.CONCLUSION Combining PS with noninvasive positive pressure ventilation significantly improved the effectiveness of NRDS therapy.KRT-14 and ET-1 levels may have potential as therapeutic and diagnostic indicators.
基金supported by the National Natural Science Foundation of China(No.21673285 and No.21973022)the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515012117)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme 2019(No.GDUPS2019)。
文摘Two non-ionic hydro-fluorocarbon hybrid surfactants with and without hydroxyl groups were synthesized and compared.They exhibited good thermal stability and superior surface activity.It was observed that the hydroxyl group had a profound effect on modifying the surface tension of their solutions and the morphology of the formed micelles.This effect may be attributed to the rearranging of the alkane group from above the air/aqueous surface to below it and the disrupting of the interfacial water structure induced by the hydroxyl groups.This work provides a strategy to weaken the immiscibility between hydrocarbon and fluorocarbon chains by modifying their orientational structure at the interface,thus it is helpful for the design of surfactants with varied interfacial properties.