This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data i...This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.展开更多
We investigate the global existence and asymptotic behavior of classical solutions for the 3D compressible non-isentropic damped Euler equations on a periodic domain. The global existence and uniqueness of classical s...We investigate the global existence and asymptotic behavior of classical solutions for the 3D compressible non-isentropic damped Euler equations on a periodic domain. The global existence and uniqueness of classical solutions are obtained when the initial data is near an equilibrium. Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.展开更多
This paper is a continue work of [4, 5]. In the previous two papers, we studied the Cauchy problem of the multi-dimensional compressible Euler equations with time-depending damping term --u/(1+t)λpu, where λ≥ 0 ...This paper is a continue work of [4, 5]. In the previous two papers, we studied the Cauchy problem of the multi-dimensional compressible Euler equations with time-depending damping term --u/(1+t)λpu, where λ≥ 0 and μ 〉 0 are constants. We have showed that, for all λ ≥ 0 andμ 〉 0 the smooth solution to the Cauchy problem exists globally or blows up in finite time. In the present paper, instead of the Cauchy problem we consider the initial- boundary value problem in the half space R+^d with space dimension d = 2, 3. With the help of the special structure of the equations and the fluid vorticity, we overcome the difficulty arisen from the boundary effect. We prove that there exists a global smooth solution for 0 ≤λ 〈 1 when the initial data is close to its equilibrium state. In addition, exponential decay of the fluid vorticity will also be established.展开更多
We consider the Cauchy problem of Euler equations with damping. Based on the Green function and energy estimates of solutions, we improve the pointwise estimates and obtainL 1 estimate of solutions.
In this paper,we are concerned with the asymptotic behavior of L^(∞) weak-entropy solutions to the compressible Euler equations with a vacuum and time-dependent damping-m/(1+t)^(λ).As λ∈(0,l/7],we prove tht the L^...In this paper,we are concerned with the asymptotic behavior of L^(∞) weak-entropy solutions to the compressible Euler equations with a vacuum and time-dependent damping-m/(1+t)^(λ).As λ∈(0,l/7],we prove tht the L^(∞) weak-entropy solution converges to the nonlinear diffusion wave of the generalized porous media equation(GPME)in L^(2)(R).As λ∈(1/7,1),we prove that the L^(∞) weak-entropy solution converges to an expansion around the nonlinear diffusion wave in L^(2)(R),which is the best asymptotic profile.The proof is based on intensive entropy analysis and an energy method.展开更多
In this article,by the mean-integral of the conserved quantity,we prove that the one-dimensional non-isentropic gas dynamic equations in an ideal gas state do not possess a bounded invariant region.Moreover,we obtain ...In this article,by the mean-integral of the conserved quantity,we prove that the one-dimensional non-isentropic gas dynamic equations in an ideal gas state do not possess a bounded invariant region.Moreover,we obtain a necessary condition on the state equations for the existence of an invariant region for a non-isentropic process.Finally,we provide a mat hematical example showing that with a special state equation,a bounded invariant region for the non-isentropic process may exist.展开更多
The authors investigate the global existence and asymptotic behavior of classical solutions to the 3D non-isentropic compressible Euler equations with damping on a bounded domain with slip boundary condition. The glob...The authors investigate the global existence and asymptotic behavior of classical solutions to the 3D non-isentropic compressible Euler equations with damping on a bounded domain with slip boundary condition. The global existence and uniqueness of classical solutions are obtained when the initial data are near an equilibrium. Furthermore,the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.展开更多
The regular solutions of the isentropic Euler equations with degenerate linear damping for a perfect gas are studied in this paper. And a critical degenerate linear damping coefficient is found, such that if the degen...The regular solutions of the isentropic Euler equations with degenerate linear damping for a perfect gas are studied in this paper. And a critical degenerate linear damping coefficient is found, such that if the degenerate linear damping coefficient is larger than it and the gas lies in a compact domain initially, then the regular solution will blow up in finite time; if the degenerate linear damping coefficient is less than it, then under some hvpotheses on the initial data. the regular solution exists globally.展开更多
In recent years more attention has been paid to the mathematical model for aflying ve-hicle which can be considered as an Euler--Bernoulli beam equation with damping. Its character is that the boundary conditions sati...In recent years more attention has been paid to the mathematical model for aflying ve-hicle which can be considered as an Euler--Bernoulli beam equation with damping. Its character is that the boundary conditions satisfied by the elastic and damping operators are non-local and coupling to each other. It is a difficult problem how to study the mathematicalproperties of this system. This paper provides an approach to study this problem, unifies andcovers all of the previous work. The results obtained are very convenient for applications tothe initial boundary-value problems of linear hyperbolic equations with variable coefficientsand damping.展开更多
This paper is concerned with the asymptotic behavior of the solution to the Euler equations with time-depending damping on quadrant(x,t)∈R^+×R^+,with the null-Dirichlet boundary condition or the null-Neumann bou...This paper is concerned with the asymptotic behavior of the solution to the Euler equations with time-depending damping on quadrant(x,t)∈R^+×R^+,with the null-Dirichlet boundary condition or the null-Neumann boundary condition on u. We show that the corresponding initial-boundary value problem admits a unique global smooth solution which tends timeasymptotically to the nonlinear diffusion wave. Compared with the previous work about Euler equations with constant coefficient damping, studied by Nishihara and Yang(1999), and Jiang and Zhu(2009, Discrete Contin Dyn Syst), we obtain a general result when the initial perturbation belongs to the same space. In addition,our main novelty lies in the fact that the cut-off points of the convergence rates are different from our previous result about the Cauchy problem. Our proof is based on the classical energy method and the analyses of the nonlinear diffusion wave.展开更多
In this paper, we derive the global existence of smooth solutions of the 3D incompressible Euler equations with damping for a class of large initial data, whose Sobolev norms H8 can be arbitrarily large for any s ≥0...In this paper, we derive the global existence of smooth solutions of the 3D incompressible Euler equations with damping for a class of large initial data, whose Sobolev norms H8 can be arbitrarily large for any s ≥0. The approach is through studying the quantity representing the difference between the vortieity and velocity. And also, we construct a family of large solutions for MHD equations with damping.展开更多
In this paper,the analytical blowup solutions of the N-dimensional radial symmetric compressible Euler equations are constructed.Some previous results of the blowup solutions for the compressible Euler equations with ...In this paper,the analytical blowup solutions of the N-dimensional radial symmetric compressible Euler equations are constructed.Some previous results of the blowup solutions for the compressible Euler equations with constant damping are generalized to the time-depending damping case.The generalization is untrivial because that the damp coefficient is a nonlinear function of time t.展开更多
In this paper,the transient Navier-Stokes equations with damping are considered.Firstly,the semi-discrete scheme is discussed and optimal error estimates are derived.Secondly,a linearized backward Euler scheme is prop...In this paper,the transient Navier-Stokes equations with damping are considered.Firstly,the semi-discrete scheme is discussed and optimal error estimates are derived.Secondly,a linearized backward Euler scheme is proposed.By the error split technique,the Stokes operator and the H^(-1)-norm estimate,unconditional optimal error estimates for the velocity in the norms L^(∞)(L^(2)) and L^(∞)(H^(1)),and the pressure in the norm L^(∞)(L^(2))are deduced.Finally,two numerical examples are provided to confirm the theoretical analysis.展开更多
文摘This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.
基金supported by the National Natural Science Foundation of China(11301172,11226170)China Postdoctoral Science Foundation funded project(2012M511640)Hunan Provincial Natural Science Foundation of China(13JJ4095)
文摘We investigate the global existence and asymptotic behavior of classical solutions for the 3D compressible non-isentropic damped Euler equations on a periodic domain. The global existence and uniqueness of classical solutions are obtained when the initial data is near an equilibrium. Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.
文摘This paper is a continue work of [4, 5]. In the previous two papers, we studied the Cauchy problem of the multi-dimensional compressible Euler equations with time-depending damping term --u/(1+t)λpu, where λ≥ 0 and μ 〉 0 are constants. We have showed that, for all λ ≥ 0 andμ 〉 0 the smooth solution to the Cauchy problem exists globally or blows up in finite time. In the present paper, instead of the Cauchy problem we consider the initial- boundary value problem in the half space R+^d with space dimension d = 2, 3. With the help of the special structure of the equations and the fluid vorticity, we overcome the difficulty arisen from the boundary effect. We prove that there exists a global smooth solution for 0 ≤λ 〈 1 when the initial data is close to its equilibrium state. In addition, exponential decay of the fluid vorticity will also be established.
基金the National Natural Science Foundation of China(1013105)
文摘We consider the Cauchy problem of Euler equations with damping. Based on the Green function and energy estimates of solutions, we improve the pointwise estimates and obtainL 1 estimate of solutions.
基金S.Geng's research was supported in part by the National Natural Science Foundation of China(12071397)Excellent Youth Project of Hunan Education Department(21B0165)+1 种基金F.Huang's research was supported in part by the National Key R&D Program of China 2021YFA1000800the National Natural Science Foundation of China(12288201).
文摘In this paper,we are concerned with the asymptotic behavior of L^(∞) weak-entropy solutions to the compressible Euler equations with a vacuum and time-dependent damping-m/(1+t)^(λ).As λ∈(0,l/7],we prove tht the L^(∞) weak-entropy solution converges to the nonlinear diffusion wave of the generalized porous media equation(GPME)in L^(2)(R).As λ∈(1/7,1),we prove that the L^(∞) weak-entropy solution converges to an expansion around the nonlinear diffusion wave in L^(2)(R),which is the best asymptotic profile.The proof is based on intensive entropy analysis and an energy method.
基金supported by the Natural Science Foundation of Zhejiang(LQ18A010004)the second author was supported by the Fundamental Research Funds for the Central Universities(WUT:2020IB011).
文摘In this article,by the mean-integral of the conserved quantity,we prove that the one-dimensional non-isentropic gas dynamic equations in an ideal gas state do not possess a bounded invariant region.Moreover,we obtain a necessary condition on the state equations for the existence of an invariant region for a non-isentropic process.Finally,we provide a mat hematical example showing that with a special state equation,a bounded invariant region for the non-isentropic process may exist.
基金supported by the National Natural Science Foundation of China(Nos.11301172,11226170,11571280)the Scientific Research Fund of Hunan Provincial Education Department(No.14B077)
文摘The authors investigate the global existence and asymptotic behavior of classical solutions to the 3D non-isentropic compressible Euler equations with damping on a bounded domain with slip boundary condition. The global existence and uniqueness of classical solutions are obtained when the initial data are near an equilibrium. Furthermore,the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.
基金Project supported by the National Natural Science Foundation of China (No,10131050)the Science and Technology Committee Foundation of Shanghai (No.03JC14013).
文摘The regular solutions of the isentropic Euler equations with degenerate linear damping for a perfect gas are studied in this paper. And a critical degenerate linear damping coefficient is found, such that if the degenerate linear damping coefficient is larger than it and the gas lies in a compact domain initially, then the regular solution will blow up in finite time; if the degenerate linear damping coefficient is less than it, then under some hvpotheses on the initial data. the regular solution exists globally.
基金Project supported by the National Natural Science Foundation of China.
文摘In recent years more attention has been paid to the mathematical model for aflying ve-hicle which can be considered as an Euler--Bernoulli beam equation with damping. Its character is that the boundary conditions satisfied by the elastic and damping operators are non-local and coupling to each other. It is a difficult problem how to study the mathematicalproperties of this system. This paper provides an approach to study this problem, unifies andcovers all of the previous work. The results obtained are very convenient for applications tothe initial boundary-value problems of linear hyperbolic equations with variable coefficientsand damping.
基金supported by National Natural Science Foundation of China (Grant Nos. 11331005,11771150,11601164 and 11601165)
文摘This paper is concerned with the asymptotic behavior of the solution to the Euler equations with time-depending damping on quadrant(x,t)∈R^+×R^+,with the null-Dirichlet boundary condition or the null-Neumann boundary condition on u. We show that the corresponding initial-boundary value problem admits a unique global smooth solution which tends timeasymptotically to the nonlinear diffusion wave. Compared with the previous work about Euler equations with constant coefficient damping, studied by Nishihara and Yang(1999), and Jiang and Zhu(2009, Discrete Contin Dyn Syst), we obtain a general result when the initial perturbation belongs to the same space. In addition,our main novelty lies in the fact that the cut-off points of the convergence rates are different from our previous result about the Cauchy problem. Our proof is based on the classical energy method and the analyses of the nonlinear diffusion wave.
基金Supported by Key Laboratory of Mathematics for Nonlinear Sciences(Fudan University)Ministry of Education of China,P.R.China,Shanghai Key Laboratory for Contemporary Applied Mathematics+2 种基金School of Mathematical Sciences,Fudan University,P.R.China,NSFC(Grant No.11421061)973 Program(Grant No.2013CB834100)111 project
文摘In this paper, we derive the global existence of smooth solutions of the 3D incompressible Euler equations with damping for a class of large initial data, whose Sobolev norms H8 can be arbitrarily large for any s ≥0. The approach is through studying the quantity representing the difference between the vortieity and velocity. And also, we construct a family of large solutions for MHD equations with damping.
基金supported by the Project of Youth Backbone Teachers of Colleges and Universities in Henan Province(2019GGJS176)the Vital Science Research Foundation of Henan Province Education Department(22A110024)。
文摘In this paper,the analytical blowup solutions of the N-dimensional radial symmetric compressible Euler equations are constructed.Some previous results of the blowup solutions for the compressible Euler equations with constant damping are generalized to the time-depending damping case.The generalization is untrivial because that the damp coefficient is a nonlinear function of time t.
基金supported by Fundamental Research Funds for the Henan Provincial Colleges and Universities(No.20A110002).
文摘In this paper,the transient Navier-Stokes equations with damping are considered.Firstly,the semi-discrete scheme is discussed and optimal error estimates are derived.Secondly,a linearized backward Euler scheme is proposed.By the error split technique,the Stokes operator and the H^(-1)-norm estimate,unconditional optimal error estimates for the velocity in the norms L^(∞)(L^(2)) and L^(∞)(H^(1)),and the pressure in the norm L^(∞)(L^(2))are deduced.Finally,two numerical examples are provided to confirm the theoretical analysis.