In this paper,we study the Radon measure initial value problem for the nonisentropic improved Aw-Rascle-Zhang model.For arbitrary convex F(u)in this model we construct the Riemann solutions by elementary waves andδ-s...In this paper,we study the Radon measure initial value problem for the nonisentropic improved Aw-Rascle-Zhang model.For arbitrary convex F(u)in this model we construct the Riemann solutions by elementary waves andδ-shock waves using the method of generalized characteristic analysis.We obtain the solutions constructively for initial data containing the Dirac measure by taking the limit of the solutions for that with three piecewise constants.Moreover,we analyze different kinds of wave interactions,including the interactions of theδ-shock waves with elementary waves.展开更多
The compressible non-isentropic bipolar Navier-Stokes-Poisson (BNSP) sys- tem is investigated in R3 in the present paper, and the optimal time decay rates of global strong solution are shown. For initial data being ...The compressible non-isentropic bipolar Navier-Stokes-Poisson (BNSP) sys- tem is investigated in R3 in the present paper, and the optimal time decay rates of global strong solution are shown. For initial data being a perturbation of equilibrium state in Hl(R3) (R3) for 1 〉 4 and s E (0, 1], it is shown that the density and temperature for each charged particle (like electron or ion) decay at the same optimal rate (1 + t)-3/4, but the momentum for each particle decays at the optimal rate (1 + t)-1/4-3/2 which is slower than the rate (1 + t)-3/4-3/2 for the compressible Navier-Stokes (NS) equations [19] for same initial data. However, the total momentum tends to the constant state at the rate (1 +t)-3/4 as well, due to the interplay interaction of charge particles which counteracts the influence of electric field.展开更多
The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for...The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for some velocity fields and entropy functions that solve the conservation of mass and energy. Under different restriction to the strength of velocity field, we get the existence and multiplicity of the stationary solutions of Euler-Poisson system.展开更多
In this paper, we study the vanishing viscosity limit for non-isentropic gas dy- namics with interacting shocks. Given any entropy solution of non-isentropic gas dynamics which consists of two different families of sh...In this paper, we study the vanishing viscosity limit for non-isentropic gas dy- namics with interacting shocks. Given any entropy solution of non-isentropic gas dynamics which consists of two different families of shocks interacting at some positive time, we show that such solution is the vanishing viscosity limit of a family of smooth global solutions for a viscous system of conservation law. We remark that, after the interacting time, not only shocks but also contact discontinuity are generated.展开更多
The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this article is concerned with the nonlinear stability of gaseous stars in the non-isentropic cas...The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this article is concerned with the nonlinear stability of gaseous stars in the non-isentropic case, when 34 γ2, S(x,t) is a smooth bounded function. First, we verify that the steady states are minimizers of the energy via concentration-compactness method; then using the variational approach we obtain the stability results of the non-isentropic flow.展开更多
The incompressible limit of the non-isentropic magnetohydrodynamic equations with zero thermal coefficient, in a two dimensional bounded domain with the Dirichlet condi- tion for velocity and perfectly conducting boun...The incompressible limit of the non-isentropic magnetohydrodynamic equations with zero thermal coefficient, in a two dimensional bounded domain with the Dirichlet condi- tion for velocity and perfectly conducting boundary condition for magnetic field, is rigorously justified.展开更多
We consider a non-isentropic Euler-Poisson system with two small parameters arising in the modeling of unmagnetized plasmas and semiconductors.On the basis of the energy estimates and the compactness theorem,the unifo...We consider a non-isentropic Euler-Poisson system with two small parameters arising in the modeling of unmagnetized plasmas and semiconductors.On the basis of the energy estimates and the compactness theorem,the uniform global existence of the solutions and the combined quasi-neutral and zero-electron-mass limit of the system are proved when the initial data are close to the constant equilibrium state.In particular,the limit is rigorously justified as the two parameters tend to zero independently.展开更多
In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, w...In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n 〉 5. Our proof is based on a combination of the energy method and the contraction mapping theorem.展开更多
This paper verifies the low Mach number limit of the non-isentropic compressible magnetohydrodynamic(MHD)equations with or without the magnetic diffusion in a three-dimensional bounded domain when the temperature vari...This paper verifies the low Mach number limit of the non-isentropic compressible magnetohydrodynamic(MHD)equations with or without the magnetic diffusion in a three-dimensional bounded domain when the temperature variation is large but finite.The uniform estimates of strong solutions are established in a short time interval independent of the Mach number,provided that the slip boundary condition for the velocity and the Neumann boundary condition for the temperature are imposed and the initial data is well-prepared.展开更多
The bipolar Navier-Stokes-Poisson system (BNSP) has been used to simulate the transport of charged particles (ions and electrons for instance) under the influence of electrostatic force governed by the self-consis...The bipolar Navier-Stokes-Poisson system (BNSP) has been used to simulate the transport of charged particles (ions and electrons for instance) under the influence of electrostatic force governed by the self-consistent Poisson equation. The optimal L^2 time convergence rate for the global classical solution is obtained for a small initial perturbation of the constant equilibrium state. It is shown that due to the electric field, the difference of the charge densities tend to the equilibrium states at the optimal rate (1 + t)^-3/4 in L^2-norm, while the individual momentum of the charged particles converges at the optimal rate (1 + t)^-1/4 which is slower than the rate (1 + t)^-3/4 for the compressible Navier-Stokes equations (NS). In addition, a new phenomenon on the charge transport is observed regarding the interplay between the two carriers that almost counteracts the influence of the electric field so that the total density and momentum of the two carriers converges at a faster rate (1 + t)^-3/4+ε for any small constant ε 〉 0. The above estimates reveal the essential difference between the unipolar and the bipolar Navier-Stokes-Poisson systems.展开更多
The isentropic bipolar compressible Navier-Stokes-Poisson (BNSP) system is investigated in R3 in the present paper. The optimal time decay rate of global strong solution is established. When the regular initial data...The isentropic bipolar compressible Navier-Stokes-Poisson (BNSP) system is investigated in R3 in the present paper. The optimal time decay rate of global strong solution is established. When the regular initial data belong to the Sobolev space H l(R3) ∩ B˙ s 1,1 (R3) with l ≥ 4 and s ∈ (0, 1], it is shown that the momenta of the charged particles decay at the optimal rate (1+t) 1 4 s 2 in L2 -norm, which is slower than the rate (1+t) 3 4 s 2 for the compressible Navier-Stokes (NS) equations [14]. In particular, a new phenomenon on the charge transport is observed. The time decay rate of total density and momentum was both (1 + t) 3 4 due to the cancellation effect from the interplay interaction of the charged particles.展开更多
In this article, we are concerned with the stability of stationary solution for outflow problem on the Navier-Stokes-Poisson system. We obtain the unique existence and the asymptotic stability of stationary solution. ...In this article, we are concerned with the stability of stationary solution for outflow problem on the Navier-Stokes-Poisson system. We obtain the unique existence and the asymptotic stability of stationary solution. Moreover, the convergence rate of solution towards stationary solution is obtained. Precisely, if an initial perturbation decays with the algebraic or the exponential rate in space, the solution converges to the corresponding stationary solution as time tends to infinity with the algebraic or the exponential rate in time. The proof is based on the weighted energy method by taking into account the effect of the self-consistent electric field on the viscous compressible fluid.展开更多
This is a survey paper on the study of compressible Navier-Stokes-Poisson equations. The emphasis is on the long time behavior of global solutions to multi-dimensional compressible Navier-Stokes-Poisson equations, and...This is a survey paper on the study of compressible Navier-Stokes-Poisson equations. The emphasis is on the long time behavior of global solutions to multi-dimensional compressible Navier-Stokes-Poisson equations, and the optimal decay rates for both unipolar and bipolar compressible Navier-Stokes-Poisson equations are discussed.展开更多
基金supported by the Natural Science Foundation of Zhejiang(LQ18A010004)Matematical Analysis,The First class courses in Zhejiang Province(210052)+1 种基金the Fundamental Research Funds for the Provincial Universities of Zhejiang(210039)supported by the National Natural Science Foundation of China(11771442)。
文摘In this paper,we study the Radon measure initial value problem for the nonisentropic improved Aw-Rascle-Zhang model.For arbitrary convex F(u)in this model we construct the Riemann solutions by elementary waves andδ-shock waves using the method of generalized characteristic analysis.We obtain the solutions constructively for initial data containing the Dirac measure by taking the limit of the solutions for that with three piecewise constants.Moreover,we analyze different kinds of wave interactions,including the interactions of theδ-shock waves with elementary waves.
基金supported by the NSFC (10871134)supported by the NSFC (10871134,10910401059)+1 种基金the funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR201006107)supported by the General Research Fund of Hong Kong,City Univ.103108
文摘The compressible non-isentropic bipolar Navier-Stokes-Poisson (BNSP) sys- tem is investigated in R3 in the present paper, and the optimal time decay rates of global strong solution are shown. For initial data being a perturbation of equilibrium state in Hl(R3) (R3) for 1 〉 4 and s E (0, 1], it is shown that the density and temperature for each charged particle (like electron or ion) decay at the same optimal rate (1 + t)-3/4, but the momentum for each particle decays at the optimal rate (1 + t)-1/4-3/2 which is slower than the rate (1 + t)-3/4-3/2 for the compressible Navier-Stokes (NS) equations [19] for same initial data. However, the total momentum tends to the constant state at the rate (1 +t)-3/4 as well, due to the interplay interaction of charge particles which counteracts the influence of electric field.
基金supported by NSFC (10631030, 11071094)the fund of CCNU for Ph.D students (2009021)
文摘The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for some velocity fields and entropy functions that solve the conservation of mass and energy. Under different restriction to the strength of velocity field, we get the existence and multiplicity of the stationary solutions of Euler-Poisson system.
基金Xiaoding Shi was supported by National Natural Sciences Foundation of China(11471321)Yan Yong was supported by National Natural Sciences Foundation of China(11201301)
文摘In this paper, we study the vanishing viscosity limit for non-isentropic gas dy- namics with interacting shocks. Given any entropy solution of non-isentropic gas dynamics which consists of two different families of shocks interacting at some positive time, we show that such solution is the vanishing viscosity limit of a family of smooth global solutions for a viscous system of conservation law. We remark that, after the interacting time, not only shocks but also contact discontinuity are generated.
基金supported by NSFC (10631030)the fund of CCNU for Ph.D Students (2009021)
文摘The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this article is concerned with the nonlinear stability of gaseous stars in the non-isentropic case, when 34 γ2, S(x,t) is a smooth bounded function. First, we verify that the steady states are minimizers of the energy via concentration-compactness method; then using the variational approach we obtain the stability results of the non-isentropic flow.
基金supported by NSFC(11371042)China 973 program(2011 CB808002)+2 种基金BSFC(1132006)CIT&TCD(20130312)the fund of the Beijing Education Committee(KZ 201210005005)
文摘The incompressible limit of the non-isentropic magnetohydrodynamic equations with zero thermal coefficient, in a two dimensional bounded domain with the Dirichlet condi- tion for velocity and perfectly conducting boundary condition for magnetic field, is rigorously justified.
基金partially supported by the ISFNSFC joint research program(11761141008)NSFC(12071044 and 12131007)the NSF of Jiangsu Province(BK20191296)。
文摘We consider a non-isentropic Euler-Poisson system with two small parameters arising in the modeling of unmagnetized plasmas and semiconductors.On the basis of the energy estimates and the compactness theorem,the uniform global existence of the solutions and the combined quasi-neutral and zero-electron-mass limit of the system are proved when the initial data are close to the constant equilibrium state.In particular,the limit is rigorously justified as the two parameters tend to zero independently.
基金Supported by National Natural Science Foundation of China(11271305)
文摘In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n 〉 5. Our proof is based on a combination of the energy method and the contraction mapping theorem.
基金supported by National Natural Science Foundation of China(Grant Nos.11971477,12131007 and 11761141008)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.18XNLG30)。
文摘This paper verifies the low Mach number limit of the non-isentropic compressible magnetohydrodynamic(MHD)equations with or without the magnetic diffusion in a three-dimensional bounded domain when the temperature variation is large but finite.The uniform estimates of strong solutions are established in a short time interval independent of the Mach number,provided that the slip boundary condition for the velocity and the Neumann boundary condition for the temperature are imposed and the initial data is well-prepared.
基金The research of the first author was partially supported by the NNSFC No.10871134the NCET support of the Ministry of Education of China+4 种基金the Huo Ying Dong Fund No.111033the Chuang Xin Ren Cai Project of Beijing Municipal Commission of Education #PHR201006107the Instituteof Mathematics and Interdisciplinary Science at CNUThe research of the second author was supported by the General Research Fund of Hong Kong (CityU 103109)the National Natural Science Foundation of China,10871082
文摘The bipolar Navier-Stokes-Poisson system (BNSP) has been used to simulate the transport of charged particles (ions and electrons for instance) under the influence of electrostatic force governed by the self-consistent Poisson equation. The optimal L^2 time convergence rate for the global classical solution is obtained for a small initial perturbation of the constant equilibrium state. It is shown that due to the electric field, the difference of the charge densities tend to the equilibrium states at the optimal rate (1 + t)^-3/4 in L^2-norm, while the individual momentum of the charged particles converges at the optimal rate (1 + t)^-1/4 which is slower than the rate (1 + t)^-3/4 for the compressible Navier-Stokes equations (NS). In addition, a new phenomenon on the charge transport is observed regarding the interplay between the two carriers that almost counteracts the influence of the electric field so that the total density and momentum of the two carriers converges at a faster rate (1 + t)^-3/4+ε for any small constant ε 〉 0. The above estimates reveal the essential difference between the unipolar and the bipolar Navier-Stokes-Poisson systems.
基金supported by NSFC (10872004)National Basic Research Program of China (2010CB731500)the China Ministry of Education (200800010013)
文摘The isentropic bipolar compressible Navier-Stokes-Poisson (BNSP) system is investigated in R3 in the present paper. The optimal time decay rate of global strong solution is established. When the regular initial data belong to the Sobolev space H l(R3) ∩ B˙ s 1,1 (R3) with l ≥ 4 and s ∈ (0, 1], it is shown that the momenta of the charged particles decay at the optimal rate (1+t) 1 4 s 2 in L2 -norm, which is slower than the rate (1+t) 3 4 s 2 for the compressible Navier-Stokes (NS) equations [14]. In particular, a new phenomenon on the charge transport is observed. The time decay rate of total density and momentum was both (1 + t) 3 4 due to the cancellation effect from the interplay interaction of the charged particles.
基金supported by the National Natural Science Foundation of China(11331005,11471134)the Program for Changjiang Scholars and Innovative Research Team in University(IRT13066)the Scientific Research Funds of Huaqiao University(15BS201,15BS309)
文摘In this article, we are concerned with the stability of stationary solution for outflow problem on the Navier-Stokes-Poisson system. We obtain the unique existence and the asymptotic stability of stationary solution. Moreover, the convergence rate of solution towards stationary solution is obtained. Precisely, if an initial perturbation decays with the algebraic or the exponential rate in space, the solution converges to the corresponding stationary solution as time tends to infinity with the algebraic or the exponential rate in time. The proof is based on the weighted energy method by taking into account the effect of the self-consistent electric field on the viscous compressible fluid.
基金supported by the NSFC (10871134),supported by the NSFC (10871134, 10771008)the NCET support of the Ministry of Education of China+1 种基金the Huo Ying Dong Fund (111033)the funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR201006107)
文摘This is a survey paper on the study of compressible Navier-Stokes-Poisson equations. The emphasis is on the long time behavior of global solutions to multi-dimensional compressible Navier-Stokes-Poisson equations, and the optimal decay rates for both unipolar and bipolar compressible Navier-Stokes-Poisson equations are discussed.