In order to explore the safe operation of UAVs in non-segregated airspace,a collision risk model for cylindrical UAVs based on conflict areas was constructed and the risk of conflict between manned and unmanned aerial...In order to explore the safe operation of UAVs in non-segregated airspace,a collision risk model for cylindrical UAVs based on conflict areas was constructed and the risk of conflict between manned and unmanned aerial vehicles was researched.According to the results of risk analysis,a strategy for solving the conflict of aircraft is proposed,and the risk assessment experiment of unmanned aerial vehicle(UAV)in non-isolated airspace conflict is carried out.The results show that under the experimental conditions,large unmanned aerial vehicles equipped with ADS-B,TCAS and other airborne sensing systems will indeed interfere with other aircraft in airspace when they enter non-isolated airspace.Especially when the number of aircraft in airspace is large,the automatic avoidance system of UAV will increase the avoidance time and trigger the safety alarm,but the safety level is still acceptable.This indicates that it is relatively safe for UAVs to enter non-isolated airspace under limited conditions.The results can be used as a reference for the safe operation of unmanned aerial vehicle(UAV)in non-isolated airspace.展开更多
The work illustrates the impossibility of decreasing entropy in a strictly random thermodynamic process in a non-isolated system using the example of heating a planet by solar radiation flux without and taking into ac...The work illustrates the impossibility of decreasing entropy in a strictly random thermodynamic process in a non-isolated system using the example of heating a planet by solar radiation flux without and taking into account its rotation around its own axis. That is, the second law of thermodynamics formulated for isolated systems continues to govern such systems. We have shown that in order to achieve a stationary state at lower values of temperature and entropy far from thermodynamic equilibrium at a maximum of temperature and entropy, it is necessary to have regular factors of nonrandom nature, one of which in this example is the rotation of the planet around its own axis. This means that the reason for the appearance of ordered structured objects in non-isolated thermodynamic systems is not the random process itself, but the action of dynamic control mechanisms, such as periodic external influences, nonlinear elements with positive feedback, catalysts for chemical reactions, etc. We present the plots with dependences of temperature and entropy versus time in non-isolated systems with purely random processes and in the presence of a control factor of non-random nature-rotation.展开更多
In this paper, a criterion on the C^0-sufficiency for a function germ with non-isolated singularity is obtained analogously to that of Kuiper-Kuo for the case of isolated singularities. Moreover, the Kuiper Kuo condit...In this paper, a criterion on the C^0-sufficiency for a function germ with non-isolated singularity is obtained analogously to that of Kuiper-Kuo for the case of isolated singularities. Moreover, the Kuiper Kuo condition and the Thom condition for an analytic function germ with non-isolated singularity are proved to be equivalent.展开更多
Non-isolated DC/DC converter based on modular multilevel converter(MMC)technology is expected to play an important role in future DC transmission grids.This paper presents a phasor analytical model for this new family...Non-isolated DC/DC converter based on modular multilevel converter(MMC)technology is expected to play an important role in future DC transmission grids.This paper presents a phasor analytical model for this new family of converters which is suitable for a range of studies like DC grid power flow or DC/DC parametric design.The 30th-order phasor model is derived in 3 coordinate frames:zero sequence(DC),fundamental frequency(dq),and double frequency(d2q2).The second-harmonic current suppression control is included as an option.Additionally,an estimation of the required control signals is presented,and a closed-loop model is developed which facilitates direct calculation of all variables and fast parametric studies.The accuracy of the proposed models is verified against a detailed PSCAD model for a wide range of parameters.The studies illustrate the importance of the second-harmonic components on the model accuracy.Finally,the impact of the converter parameters on the performance is studied,and a basic eigenvalue stability analysis is given.展开更多
基金The authors would like to thank National Nature Science Foundation of China under Grant(71701202)The special funding project of Civil Aviation University of China for the basic scientific research services of the Central University(3122013Z006).
文摘In order to explore the safe operation of UAVs in non-segregated airspace,a collision risk model for cylindrical UAVs based on conflict areas was constructed and the risk of conflict between manned and unmanned aerial vehicles was researched.According to the results of risk analysis,a strategy for solving the conflict of aircraft is proposed,and the risk assessment experiment of unmanned aerial vehicle(UAV)in non-isolated airspace conflict is carried out.The results show that under the experimental conditions,large unmanned aerial vehicles equipped with ADS-B,TCAS and other airborne sensing systems will indeed interfere with other aircraft in airspace when they enter non-isolated airspace.Especially when the number of aircraft in airspace is large,the automatic avoidance system of UAV will increase the avoidance time and trigger the safety alarm,but the safety level is still acceptable.This indicates that it is relatively safe for UAVs to enter non-isolated airspace under limited conditions.The results can be used as a reference for the safe operation of unmanned aerial vehicle(UAV)in non-isolated airspace.
文摘The work illustrates the impossibility of decreasing entropy in a strictly random thermodynamic process in a non-isolated system using the example of heating a planet by solar radiation flux without and taking into account its rotation around its own axis. That is, the second law of thermodynamics formulated for isolated systems continues to govern such systems. We have shown that in order to achieve a stationary state at lower values of temperature and entropy far from thermodynamic equilibrium at a maximum of temperature and entropy, it is necessary to have regular factors of nonrandom nature, one of which in this example is the rotation of the planet around its own axis. This means that the reason for the appearance of ordered structured objects in non-isolated thermodynamic systems is not the random process itself, but the action of dynamic control mechanisms, such as periodic external influences, nonlinear elements with positive feedback, catalysts for chemical reactions, etc. We present the plots with dependences of temperature and entropy versus time in non-isolated systems with purely random processes and in the presence of a control factor of non-random nature-rotation.
文摘In this paper, a criterion on the C^0-sufficiency for a function germ with non-isolated singularity is obtained analogously to that of Kuiper-Kuo for the case of isolated singularities. Moreover, the Kuiper Kuo condition and the Thom condition for an analytic function germ with non-isolated singularity are proved to be equivalent.
文摘Non-isolated DC/DC converter based on modular multilevel converter(MMC)technology is expected to play an important role in future DC transmission grids.This paper presents a phasor analytical model for this new family of converters which is suitable for a range of studies like DC grid power flow or DC/DC parametric design.The 30th-order phasor model is derived in 3 coordinate frames:zero sequence(DC),fundamental frequency(dq),and double frequency(d2q2).The second-harmonic current suppression control is included as an option.Additionally,an estimation of the required control signals is presented,and a closed-loop model is developed which facilitates direct calculation of all variables and fast parametric studies.The accuracy of the proposed models is verified against a detailed PSCAD model for a wide range of parameters.The studies illustrate the importance of the second-harmonic components on the model accuracy.Finally,the impact of the converter parameters on the performance is studied,and a basic eigenvalue stability analysis is given.