期刊文献+
共找到18,435篇文章
< 1 2 250 >
每页显示 20 50 100
Solution‑Processed Thin Film Transparent Photovoltaics:Present Challenges and Future Development
1
作者 Tianle Liu Munerah M.S.Almutairi +5 位作者 Jie Ma Aisling Stewart Zhaohui Xing Mengxia Liu Bo Hou Yuljae Cho 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期566-600,共35页
Electrical energy is essential for modern society to sustain economic growths.The soaring demand for the electrical energy,together with an awareness of the environmental impact of fossil fuels,has been driving a shif... Electrical energy is essential for modern society to sustain economic growths.The soaring demand for the electrical energy,together with an awareness of the environmental impact of fossil fuels,has been driving a shift towards the utilization of solar energy.However,traditional solar energy solutions often require extensive spaces for a panel installation,limiting their practicality in a dense urban environment.To overcome the spatial constraint,researchers have developed transparent photovoltaics(TPV),enabling windows and facades in vehicles and buildings to generate electric energy.Current TPV advancements are focused on improving both transparency and power output to rival commercially available silicon solar panels.In this review,we first briefly introduce wavelength-and non-wavelengthselective strategies to achieve transparency.Figures of merit and theoretical limits of TPVs are discussed to comprehensively understand the status of current TPV technology.Then we highlight recent progress in different types of TPVs,with a particular focus on solution-processed thin-film photovoltaics(PVs),including colloidal quantum dot PVs,metal halide perovskite PVs and organic PVs.The applications of TPVs are also reviewed,with emphasis on agrivoltaics,smart windows and facades.Finally,current challenges and future opportunities in TPV research are pointed out. 展开更多
关键词 Transparent semiconductors Solution-processable transparent solar cell Emerging solar cell materials Buildingintegrated photovoltaics
下载PDF
A Distributed Photovoltaics Ordering Grid-Connected Method for Analyzing Voltage Impact in Radial Distribution Networks
2
作者 Cuiping Li Kunqi Gao +4 位作者 Can Chen Junhui Li Xiaoxiao Wang Yinchi Shao Xingxu Zhu 《Energy Engineering》 EI 2024年第10期2937-2959,共23页
In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and ba... In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact. 展开更多
关键词 Radial distribution network distributed photovoltaics photovoltaics grid-connected order degree electrical distance photovoltaics action area
下载PDF
Progress of semitransparent emerging photovoltaics for building integrated applications
3
作者 Zhisheng Zhou Zhangyu Yuan +3 位作者 Zhipeng Yin Qifan Xue Ning Li Fei Huang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期992-1015,共24页
With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the pr... With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the practical application requirements of BIPVs,in addition to the evaluation indicator of power conversion efficiency(PCE),other key performance indicators such as heat-insulating ability,average visible light transmittance(AVT),color properties,and integrability are equally important.The traditional Si-based photovoltaic technology is typically limited by its opaque properties for application scenarios where transparency is required.The emerging PV technologies,such as organic and perovskite photovoltaics are promising candidates for BIPV applications,owing to their advantages such as high PCE,high AVT,and tunable properties.At present,the PCE of semitransparent perovskite solar cells(ST-PSCs)has attained 14%with AVT of 22–25%;for semitransparent organic solar cells(ST-OSCs),the PCE reached 13%with AVT of almost 40%.In this review article,we summarize recent advances in material selection,optical engineering,and device architecture design for high-performance semitransparent emerging PV devices,and discuss the application of optical modeling,as well as the challenges of commercializing these semitransparent solar cells for building-integrated applications. 展开更多
关键词 Building integrated photovoltaics Emerging photovoltaics Semitransparent solar cells Perovskite solar cells Organic solar cells
下载PDF
A New Dynamic and Vertical Photovoltaic Integrated Building Envelope for High-Rise Glaze-Facade Buildings
4
作者 Wuwei Zou Yan Wang +3 位作者 Enze Tian Jiaze Wei Jinqing Peng Jinhan Mo 《Engineering》 SCIE EI CAS CSCD 2024年第8期194-203,共10页
Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics.Inherent conflicts exist among architectural aesthetics,building energy consumption,... Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics.Inherent conflicts exist among architectural aesthetics,building energy consumption,and solar energy harvesting for glazed facades.In this study,we addressed these conflicts by introducing a new dynamic and vertical photovoltaic integrated building envelope(dvPVBE)that offers extraordinary flexibility with weather-responsive slat angles and blind positions,superior architectural aesthetics,and notable energy-saving potential.Three hierarchical control strategies were proposed for different scenarios of the dvPVBE:power generation priority(PGP),natural daylight priority(NDP),and energy-saving priority(ESP).Moreover,the PGP and ESP strategies were further analyzed in the simulation of a dvPVBE.An office room integrated with a dvPVBE was modeled using EnergyPlus.The influence of the dvPVBE in improving the building energy efficiency and corresponding optimal slat angles was investigated under the PGP and ESP control strategies.The results indicate that the application of dvPVBEs in Beijing can provide up to 131%of the annual energy demand of office rooms and significantly increase the annual net energy output by at least 226%compared with static photovoltaic(PV)blinds.The concept of this novel dvPVBE offers a viable approach by which the thermal load,daylight penetration,and energy generation can be effectively regulated. 展开更多
关键词 Weather-responsive facades Building energy efficiency Dynamic photovoltaic integrated building envelopes(PVBEs) Building-integrated photovoltaics(BIPVs)
下载PDF
Flexibility potential of Cs_(2)BX_(6)(B=Hf,Sn,Pt,Zr,Ti;X=I,Br,Cl)with application in photovoltaic devices and radiation detectors
5
作者 Songya Wang Changcheng Chen +11 位作者 Shaohang Shi Ziyi Zhang Yan Cai Shuli Gao Wen Chen Shuangna Guo Elyas Abduryim Chao Dong Xiaoning Guan Ying Liu Gang Liu Pengfei Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期271-287,I0006,共18页
As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and... As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility. 展开更多
关键词 Double perovskite Mechanical properties Flexible photovoltaic Radiation detectors
下载PDF
Recent advances in two-dimensional photovoltaic devices
6
作者 Haoyun Wang Xingyu Song +6 位作者 Zexin Li Dongyan Li Xiang Xu Yunxin Chen Pengbin Liu Xing Zhou Tianyou Zhai 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期26-40,共15页
Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific powe... Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices. 展开更多
关键词 two-dimensional materials photovoltaic devices PHOTODETECTORS solar cells HETEROSTRUCTURES
下载PDF
Enhancing photovoltaic power prediction using a CNN-LSTM-attention hybrid model with Bayesian hyperparameter optimization
7
作者 Ning Zhou Bowen Shang +2 位作者 Mingming Xu Lei Peng Yafei Zhang 《Global Energy Interconnection》 EI CSCD 2024年第5期667-681,共15页
Improving the accuracy of solar power forecasting is crucial to ensure grid stability,optimize solar power plant operations,and enhance grid dispatch efficiency.Although hybrid neural network models can effectively ad... Improving the accuracy of solar power forecasting is crucial to ensure grid stability,optimize solar power plant operations,and enhance grid dispatch efficiency.Although hybrid neural network models can effectively address the complexities of environmental data and power prediction uncertainties,challenges such as labor-intensive parameter adjustments and complex optimization processes persist.Thus,this study proposed a novel approach for solar power prediction using a hybrid model(CNN-LSTM-attention)that combines a convolutional neural network(CNN),long short-term memory(LSTM),and attention mechanisms.The model incorporates Bayesian optimization to refine the parameters and enhance the prediction accuracy.To prepare high-quality training data,the solar power data were first preprocessed,including feature selection,data cleaning,imputation,and smoothing.The processed data were then used to train a hybrid model based on the CNN-LSTM-attention architecture,followed by hyperparameter optimization employing Bayesian methods.The experimental results indicated that within acceptable model training times,the CNN-LSTM-attention model outperformed the LSTM,GRU,CNN-LSTM,CNN-LSTM with autoencoders,and parallel CNN-LSTM attention models.Furthermore,following Bayesian optimization,the optimized model demonstrated significantly reduced prediction errors during periods of data volatility compared to the original model,as evidenced by MRE evaluations.This highlights the clear advantage of the optimized model in forecasting fluctuating data. 展开更多
关键词 photovoltaic power prediction CNN-LSTM-Attention Bayesian optimization
下载PDF
Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control
8
作者 Ximin Cao Xinglong Chen +2 位作者 He Huang Yanchi Zhang Qifan Huang 《Energy Engineering》 EI 2024年第4期1067-1089,共23页
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ... Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance. 展开更多
关键词 Load optimization model predictive control multi-time scale optimal scheduling photovoltaic consumption photovoltaic energy storage building
下载PDF
Systematic Review on Ground-Based Cloud Tracking Methods for Photovoltaics Nowcasting
9
作者 Juliana Marian Arrais Allan Cerentini +3 位作者 Bruno Juncklaus Martins Thiago Zimmermann Loureiro Chaves Sylvio Luiz Mantelli Neto Aldo von Wangenheim 《American Journal of Climate Change》 2024年第3期452-476,共25页
Renewable energies are highly dependent on local weather conditions, with photovoltaic energy being particularly affected by intermittent clouds. Anticipating the impact of cloud shadows on power plants is crucial, as... Renewable energies are highly dependent on local weather conditions, with photovoltaic energy being particularly affected by intermittent clouds. Anticipating the impact of cloud shadows on power plants is crucial, as clouds can cause partial shading, excessive irradiation, and operational issues. This study focuses on analyzing cloud tracking methods for short-term forecasts, aiming to mitigate such impacts. We conducted a systematic literature review, highlighting the most significant articles on cloud tracking from ground-based observations. We explore both traditional image processing techniques and advances in deep learning models. Additionally, we discuss current challenges and future research directions in this rapidly evolving field, aiming to provide a comprehensive overview of the state of the art and identify opportunities for significant advancements in the next generation of cloud tracking systems based on computer vision and deep learning. 展开更多
关键词 NOWCASTING photovoltaic Image Processing
下载PDF
Influence of inflow conditions on the hydrodynamic characteristics of floating photovoltaic membrane structures
10
作者 Zhang Puyang Zhang Linyang +2 位作者 Xiong Lichao Le Conghuan Ding Hongyan 《Journal of Southeast University(English Edition)》 EI CAS 2024年第4期363-371,共9页
The floating photovoltaic membrane prototype developed by Ocean Sun was selected as a reference object,and a 1∶40 scale laboratory model was designed and produced to further explore the impact of inflow conditions on... The floating photovoltaic membrane prototype developed by Ocean Sun was selected as a reference object,and a 1∶40 scale laboratory model was designed and produced to further explore the impact of inflow conditions on the hydrodynamic properties of the membrane structure.By conducting free attenuation tests,results showed that the inflow has only a slight effect on the natural frequencies of the heave,pitch,and surge of the membrane structure.This finding shows that the dynamic properties of the membrane structure remain essentially stable under different inflow conditions.The results of further regular and irregular wave hydrodynamic experiments show that,compared with the control group,the response of the membrane structure under inflow conditions in terms of heave,pitch,surge,and heave acceleration motions is relatively gentle,whereas the response of the membrane structure to the mooring force is strong.Especially when the waves are irregular,the inflow conditions have a more significant impact on the membrane structure,which may lead to more complex response changes in the structure.Therefore,in the actual engineering design process,the impact of inflow conditions on the behavior of the membrane structure must be fully considered,and appropriate engineering measures must be taken to ensure the safety and stability of the structure. 展开更多
关键词 floating photovoltaic MEMBRANE hydrodynamic characteristic INFLOW
下载PDF
Enhancement of vertical phase separation in sequentially deposited organic photovoltaics through the independent processing of additives
11
作者 Damin Lee Changwoo Park +6 位作者 Gayoung Ham Young Yong Kim Sung-Nam Kwon Junyeong Lee Sungjin Jo Seok-In Na Hyojung Cha 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期768-777,共10页
Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at th... Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology. 展开更多
关键词 Sequential deposition Vertical phase separation Charge dynamics Organic photovoltaics Nonfullerene acceptors
下载PDF
Polymer Fiber Rigid Network with High Glass Transition Temperature Reinforces Stability of Organic Photovoltaics
12
作者 Qiao Zhou Cenqi Yan +18 位作者 Hongxiang Li Zhendong Zhu Yujie Gao Jie Xiong Hua Tang Can Zhu Hailin Yu Sandra P.Gonzalez Lopez Jiayu Wang Meng Qin Jianshu Li Longbo Luo Xiangyang Liu Jiaqiang Qin Shirong Lu Lei Meng Frédéric Laquai Yongfang Li Pei Cheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期56-69,共14页
Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on ta... Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology,however,exhibiting limited applicability.Therefore,it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor–acceptor compatibilizers,or by introducing another third component.Herein,a unique approach is presented,based on constructing a polymer fiber rigid network with a high glass transition temperature(T_(g))to impede the movement of acceptor and donor molecules,to immobilize the active layer morphology,and thereby to improve thermal stability.A high-T_(g) one-dimensional aramid nanofiber(ANF)is utilized for network construction.Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart.The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart,thereby leaving fundamental processes such as charge separation,transport,and collection,determining the device efficiency,largely unaltered.This strategy is also successfully applied to other photovoltaic systems.The strategy of incorporating a polymer fiber rigid network with high T_(g) offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality. 展开更多
关键词 Inverted organic photovoltaics Thermal stability Aramid nanofibers Morphology control Charge carrier dynamics
下载PDF
Model simulation of thermal environment and energy effects of rooftop distributed photovoltaics
13
作者 Hai Zhou Weidong Chen +1 位作者 Siyu Hu Fan Yang 《Global Energy Interconnection》 EI CSCD 2024年第6期723-732,共10页
Rooftop distributed photovoltaic(DPV)systems show promise for alleviating the energy crisis resulting from summer urban cooling demands and mitigating secondary hazards associated with urban heat islands.In this study... Rooftop distributed photovoltaic(DPV)systems show promise for alleviating the energy crisis resulting from summer urban cooling demands and mitigating secondary hazards associated with urban heat islands.In this study,a parametric scheme for rooftop DPVs was incorporated into the Weather,Research and Forecasting model.The period from August 12–16,2022,during a heatwave in Jiangsu Province,China,was selected as the weather background to simulate the impact of rooftop DPVs with varying power generation efficiencies on urban thermal environments and energy supply.The results indicate that(1)rooftop DPVs reduce urban air temperatures at 2 m by weakening the solar radiation reaching the surface.As solar panel efficiency improves,the cooling effects become more significant,particularly at night.Day and night air temperatures at 2 m can decrease by approximately 0.1°C–0.4°C and 0.2°C–0.7°C,respectively;(2)Installing rooftop DPVs can lower boundary layer temperatures,with pronounced cooling effects during the day(up to 0.7°C at 08:00)and night(up to 0.6°C at 20:00);(3)If all buildings are equipped with rooftop DPVs,the electricity generated could meet Jiangsu Province’s total electricity demand during heatwaves.With 30%generation efficiency and rooftop DPVs installed at 40%of buildings,the electricity produced can meet the entire electricity demand. 展开更多
关键词 Rooftop distributed photovoltaic systems Heat wave Numerical simulation Energy budget
下载PDF
High Efficiency Formamidinium-Cesium Perovskite-Based Radio-Photovoltaic Cells
14
作者 Runlong Gao Rui Chen +10 位作者 Pengying Wan Xiao Ouyang Qiantao Lei Qi Deng Xinyu Guan Guangda Niu Jiang Tang Wei Chen Zonghao Liu Xiaoping Ouyang Linyue Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期160-167,共8页
Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.... Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells. 展开更多
关键词 formamidinium-cesium perovskite PHOSPHOR photovoltaic converter power conversion efficiency radio-photovoltaic cell
下载PDF
IoT-based green-smart photovoltaic system under extreme climatic conditions for sustainable energy development
15
作者 Yufei Wang Jia-Wei Zhang +7 位作者 Kaiji Qiang Runze Han Xing Zhou Chen Song Bin Zhang Chatchai Putson Fouad Belhora Hajjaji Abdelowahed 《Global Energy Interconnection》 EI CSCD 2024年第6期836-856,共21页
To realize carbon neutrality,there is an urgent need to develop sustainable,green energy systems(especially solar energy systems)owing to the environmental friendliness of solar energy,given the substantial greenhouse... To realize carbon neutrality,there is an urgent need to develop sustainable,green energy systems(especially solar energy systems)owing to the environmental friendliness of solar energy,given the substantial greenhouse gas emissions from fossil fuel-based power sources.When it comes to the evolution of intelligent green energy systems,Internet of Things(IoT)-based green-smart photovoltaic(PV)systems have been brought into the spotlight owing to their cutting-edge sensing and data-processing technologies.This review is focused on three critical segments of IoT-based green-smart PV systems.First,the climatic parameters and sensing technologies for IoT-based PV systems under extreme weather conditions are presented.Second,the methods for processing data from smart sensors are discussed,in order to realize health monitoring of PV systems under extreme environmental conditions.Third,the smart materials applied to sensors and the insulation materials used in PV backsheets are susceptible to aging,and these materials and their aging phenomena are highlighted in this review.This review also offers new perspectives for optimizing the current international standards for green energy systems using big data from IoT-based smart sensors. 展开更多
关键词 photovoltaic systems Extreme climatic conditions Data processing Condition monitoring Smart materials
下载PDF
Forestvoltaics,Floatovoltaics and Building Applied Photovoltaics(BAPV)Potential for a University Campus
16
作者 Rittick Maity Muhammad Khairul Imran bin Ahmad Shuhaimi +1 位作者 Kumarasamy Sudhakar Amir Abdul Razak 《Energy Engineering》 EI 2024年第9期2331-2361,共31页
The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs ... The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs of slowing down,with solar photovoltaic(PV)panels being the primary technology for converting sunlight into electricity.Advancements are continuously being made to ensure cost-effectiveness,high-performing cells,extended lifespans,and minimal maintenance requirements.This study focuses on identifying suitable locations for implementing solar PVsystems at theUniversityMalaysia PahangAl SultanAbdullah(UMPSA),Pekan campus including buildings,water bodies,and forest areas.A combined technical and economic analysis is conducted using Helioscope for simulations and the Photovoltaic Geographic Information System(PVGIS)for economic considerations.Helioscope simulation examine case studies for PV installations in forested areas,lakes,and buildings.This approach provides comprehensive estimations of solar photovoltaic potential,annual cost savings,electricity costs,and greenhouse gas emission reductions.Based on land coverage percentages,Floatovoltaics have a large solar PV capacity of 32.3 Megawatts(MW);forest-based photovoltaics(Forestvoltaics)achieve maximum yearly savings of RM 37,268,550;and Building Applied Photovoltaics(BAPV)have the lowest CO2 emissions and net carbon dioxide reduction compared to other plant sizes.It also clarifies the purpose of using both software tools to achieve a comprehensive understanding of both technical and economic aspects. 展开更多
关键词 Helioscope solar photovoltaic PV GIS performance land coverage ECONOMICS
下载PDF
Short-Term Prediction of Photovoltaic Power Based on DBSCAN-SVM Data Cleaning and PSO-LSTM Model
17
作者 Yujin Liu Zhenkai Zhang +3 位作者 Li Ma Yan Jia Weihua Yin Zhifeng Liu 《Energy Engineering》 EI 2024年第10期3019-3035,共17页
Accurate short-termphotovoltaic(PV)power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans.In order to improve the accuracy ... Accurate short-termphotovoltaic(PV)power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans.In order to improve the accuracy of PV power prediction further,this paper proposes a data cleaning method combining density clustering and support vector machine.It constructs a short-termPVpower predictionmodel based on particle swarmoptimization(PSO)optimized Long Short-Term Memory(LSTM)network.Firstly,the input features are determined using Pearson’s correlation coefficient.The feature information is clustered using density-based spatial clustering of applications withnoise(DBSCAN),and then,the data in each cluster is cleanedusing support vectormachines(SVM).Secondly,the PSO is used to optimize the hyperparameters of the LSTM network to obtain the optimal network structure.Finally,different power prediction models are established,and the PV power generation prediction results are obtained.The results show that the data methods used are effective and that the PSO-LSTM power prediction model based on DBSCAN-SVM data cleaning outperforms existing typical methods,especially under non-sunny days,and that the model effectively improves the accuracy of short-term PV power prediction. 展开更多
关键词 photovoltaic power prediction LSTM network DBSCAN-SVM PSO deep learning
下载PDF
Semitransparent organic photovoltaics enabled by transparent p-type inorganic semiconductor and near-infrared acceptor
18
作者 Xue Yan Jiayu Wang +17 位作者 Wei He Top Archie Dela Peña Can Zhu Hailin Yu Yingyue Hu Cenqi Yan Shengqiang Ren Xingyu Chen Zhe Wang Jiaying Wu Mingjie Li Jianlong Xia Lei Meng Shirong Lu Dewei Zhao Mikhail Artemyev Yongfang Li Pei Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期351-358,共8页
Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with hi... Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with high charge carrier mobility usually have planar and conjugated structures,thereby showing strong absorption in visible region.In this work,a new concept of incorporating transparent inorganic semiconductors is proposed for high-performance STOPVs.Copper(I)thiocyanate(CuSCN)is a visible-transparent inorganic semiconductor with an ionization potential of 5.45 eV and high hole mobility.The transparency of CuSCN benefits high average visible transmittance(AVT)of STOPVs.The energy levels of CuSCN as donor match those of near-infrared small molecule acceptor BTP-eC9,and the formed heterojunction exhibits an ability of exciton dissociation.High mobility of CuSCN contributes to a more favorable charge transport channel and suppresses charge recombination.The control STOPVs based on PM6/BTP-eC9 exhibit an AVT of 19.0%with a power conversion efficiency(PCE)of 12.7%.Partial replacement of PM6 with CuSCN leads to a 63%increase in transmittance,resulting in a higher AVT of 30.9%and a comparable PCE of 10.8%. 展开更多
关键词 Copper(I)thiocyanate Inorganic semiconductor SEMITRANSPARENT Organic photovoltaics Charge dissociation
下载PDF
Adaptive Predefined-Time Backstepping Control for Grid Connected Photovoltaic Inverter
19
作者 Jiarui Zhang Dan Liu +4 位作者 Kan Cao Ping Xiong Xiaotong Ji Yanze Xu Yunfei Mu 《Energy Engineering》 EI 2024年第8期2065-2083,共19页
The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backsteppin... The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backstepping technology and dynamic surface control is formulated for the inverter in the grid-connected photovoltaic.The time-varying tuning functions are introduced into state-tracking errors to realize the predefined-time control effect.To address the“computational explosion problem”in the design process of backstepping control,dynamic surface control is adopted to avoid the analytical calculations of virtual control.The disturbances of the PV system are estimated and compensated by adaptive laws.The control parameters are chosen and the global stability of the closed-loop is ensured by Lyapunov conditions.Simulation results confirm the effectiveness of the proposed controller and ensure the predefined time control in the photovoltaic inverter. 展开更多
关键词 photovoltaic inverter system backstepping technology predefined-time control adaptive control
下载PDF
Electro-Optical Model of Soiling Effects on Photovoltaic Panels and Performance Implications
20
作者 A.Asbayou G.P.Smestad +4 位作者 I.Ismail A.Soussi A.Elfanaoui L.Bouhouch A.Ihlal 《Energy Engineering》 EI 2024年第2期243-258,共16页
In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as ... In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as it increases the reflection of light by particles.This phenomenon,commonly known as the“soiling effect”,presents a significant challenge to PV systems on a global scale.Two basic models of the equivalent circuits of a solar cell can be found,namely the single-diode model and the two-diode models.The limitation of efficiency data in manufacturers’datasheets has encouraged us to develop an equivalent electrical model that is efficient under dust conditions,integrated with optical transmittance considerations to investigate the soiling effect.The proposed approach is based on the use of experimental current-voltage(I-V)characteristics with simulated data using MATLAB/Simulink.Our research outcomes underscores the feasibility of accurately quantifying the reduction in energy production resulting from soiling by assessing the optical transmittance of accumulated dust on the surface of PV glass. 展开更多
关键词 photovoltaics solar energy optical transmittance SOILING DUST PV performance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部