期刊文献+
共找到24,474篇文章
< 1 2 250 >
每页显示 20 50 100
Flow field, sedimentation, and erosion characteristics around folded linear HDPE sheet sand fence: Numerical simulation study 被引量:1
1
作者 ZHANG Kai ZHANG Hailong +4 位作者 TIAN Jianjin QU Jianjun ZHANG Xingxin WANG Zhenghui XIAO jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第1期113-130,共18页
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ... Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering. 展开更多
关键词 Folded linear HDPE sheet sand fence Numerical simulation flow field characteristics Protection benefits
下载PDF
Numerical simulation on the multiphase flow and reoxidation of the molten steel in a two-strand tundish during ladle change
2
作者 Jingcheng Wang Zhentong Liu +2 位作者 Wei Chen Hongliang Chen Lifeng Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1540-1553,共14页
A 3D mathematical model was proposed to investigate the molten steel–slag–air multiphase flow in a two-strand slab continuous casting(CC)tundish during ladle change.The study focused on the exposure of the molten st... A 3D mathematical model was proposed to investigate the molten steel–slag–air multiphase flow in a two-strand slab continuous casting(CC)tundish during ladle change.The study focused on the exposure of the molten steel and the subsequent reoxidation occurrence.The exposure of the molten steel was calculated using the coupled realizable k–εmodel and volume of fluid(VOF)model.The diffusion of dissolved oxygen was determined by solving the user-defined scalar(UDS)equation.Moreover,the user-defined function(UDF)was used to describe the source term in the UDS equation and determine the oxidation rate and oxidation position.The effect of the refilling speed on the molten steel exposure and dissolved oxygen content was also discussed.Increasing the refilling speed during ladle change reduced the refilling time and the exposure duration of the molten steel.However,the elevated refilling speed enlarged the slag eyes and increased the average dissolved oxygen content within the tundish,thereby exacerbating the reoxidation phenomenon.In addition,the time required for the molten steel with a high dissolved oxygen content to exit the tundish varied with the refilling speed.When the inlet speed was 3.0 m·s^(-1)during ladle change,the molten steel with a high dissolved oxygen content exited the outlet in a short period,reaching a maximum dissolved oxygen content of 0.000525wt%.Conversely,when the inlet speed was 1.8 m·s^(-1),the maximum dissolved oxygen content was 0.000382wt%.The refilling speed during the ladle change process must be appropriately decreased to minimize reoxidation effects and enhance the steel product quality. 展开更多
关键词 TUNDISH ladle change REOXIDATION multiphase flow numerical simulation
下载PDF
Coupled CFD-DEM Numerical Simulation of the Interaction of a Flow-Transported Rag with a Solid Cylinder
3
作者 Yun Ren Lianzheng Zhao +2 位作者 Xiaofan Mo Shuihua Zheng Youdong Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1593-1609,共17页
A coupled Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)approach is used to calculate the interaction of a flexible rag transported by a fluid current with a fixed solid cylinder.More specifically a hyb... A coupled Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)approach is used to calculate the interaction of a flexible rag transported by a fluid current with a fixed solid cylinder.More specifically a hybrid Eulerian-Lagrangian approach is used with the rag being modeled as a set of interconnected particles.The influence of various parameters is considered,namely the inlet velocity(1.5,2.0,and 2.5 m/s,respectively),the angle formed by the initially straight rag with the flow direction(45°,60°and 90°,respectively),and the inlet position(90,100,and 110 mm,respectively).The results show that the flow rate has a significant impact on the permeability of the rag.The higher the flow rate,the higher the permeability and the rag speed difference.The angle has a minor effect on rag permeability,with 45°being the most favorable angle for permeability.The inlet position has a small impact on rag permeability,while reducing the initial distance between the rag an the cylinder makes it easier for rags to pass through. 展开更多
关键词 RAG flow around cylinder flow characteristics numerical simulation
下载PDF
Numerical simulation of melt flow and temperature field during DC casting 2024 aluminium alloy under different casting conditions
4
作者 Jin-chuan Wang Yu-bo Zuo +3 位作者 Qing-feng Zhu Jing Li Rui Wang Xu-dong Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第4期387-396,共10页
Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during ... Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone. 展开更多
关键词 aluminium DC casting flow field temperature field numerical simulation
下载PDF
Numerical simulation of flow field deposition and erosion characteristics around bridge-road transition section
5
作者 ZHANG Kai WANG Zhenghui +3 位作者 WANG Tao TIAN Jianjin ZHANG Hailong LIU Yonghe 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1491-1508,共18页
Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flo... Wind-sand flow generates erosion and deposition around obstacles such as bridges and roadbeds, resulting in sand damage and endangering railway systems in sandy regions. Previous studies have mainly focused on the flow field around roadbeds, overlooking detailed examinations of sand particle erosion and deposition patterns near bridges and roadbeds. This study employs numerical simulations to analyze the influence of varying heights and wind speeds on sand deposition and erosion characteristics at different locations: the bridge-road transition section(side piers), middle piers, and roadbeds. The results show that the side piers, experience greater accumulation than the middle piers. Similarly, the leeward side of the roadbed witnesses more deposition compared to the windward side. Another finding reveals a reduced sand deposition length as the vertical profile, in alignment with the wind direction, moves further from the bridge abutments at the same clearance height. As wind speeds rise, there’s a decline in sand deposition and a marked increase in erosion around the side piers, middle piers and roadbeds. In conclusion, a bridge clearance that’s too low can cause intense sand damage near the side piers, while an extremely high roadbed may lead to extensive surface sand deposition. Hence, railway bridges in areas prone to sandy winds should strike a balance in clearance height. This research provides valuable guidelines for determining the most suitable bridge and roadbed heights in regions affected by wind and sand. 展开更多
关键词 SANDSTORM flow field Bridge-road transition section Sedimentation erosion Numerical simulation
下载PDF
Wind-sand flow simulation and radius optimization of highway embankment under different vertical curve radius
6
作者 LI Liangying LI Qi +2 位作者 WANG Xu XIN Guowei WANG Zhenqiang 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2533-2546,共14页
It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius fo... It is of great practical value to explore the correlation between the vertical curve radius of desert highway and the increase of sand accumulation in local lines,and to select the appropriate vertical curve radius for reducing the risk of sand accumulation.In this study,three-dimensional models of desert highway embankments with different vertical curve radii were constructed,and Fluent software was used to simulate the wind-sand flow field and sand accumulation distribution of vertical curve embankments.The results show that:(1)Along the direction of the road,the concave and the convex vertical curve embankments have the effect of collecting and diverging the wind-sand flow,respectively.When the radius of the concave vertical curve is 3000 m,5000 m,8000 m,10000 m and 20000 m,the wind velocity in the middle of the vertical curve is 31.76%,22.58%,10.78%,10.53%and 10.44%,higher than that at both ends.When the radius of the convex vertical curve is 6500 m,8000 m,10000 m,20000 m and 30000 m,the wind velocity at both ends of the vertical curve is 14.06%,9.99%,6.14%,3.22%and 2.41%,higher than that in the middle.The diversion effect also decreases with the increase of the radius.(2)The conductivity of the concave and convex vertical curve embankments with different radii is greater than 1,which is the sediment transport roadbed.The conductivity increases with the increase of radius and gradually tends to be stable.When the radius of the concave and convex vertical curves reaches 8000 m and 20000 m respectively,the phenomenon of sand accumulation is no longer serious.Under the same radius condition,the concave vertical curve embankment is more prone to sand accumulation than the convex one.(3)Considering the strength of the collection and diversion of the vertical curve embankment with different radii,and the sand accumulation of the vertical curve embankment in the desert section of Wuma Expressway,the radius of the concave vertical curve is not less than 8000 m,and the radius of the convex vertical curve is not less than 20000 m,which can effectively reduce the sand accumulation of the vertical curve embankment.In the desert highway area,the research results of this paper can provide reference for the design of vertical curve to ensure the safe operation of desert highway. 展开更多
关键词 Highway engineering Vertical curve Numerical simulation Embankment wind-sand flow Radius optimization
下载PDF
Simulation of gas-solid flow characteristics of the circulating fluidized bed boiler under pure-oxygen combustion conditions
7
作者 Kaixuan Gao Xiwei Ke +5 位作者 Bingjun Du Zhenchuan Wang Yan Jin Zhong Huang Yanhong Li Xuemin Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期9-19,共11页
Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the convention... Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler. 展开更多
关键词 Circulating fluidized bed Pure-oxygen combustion Gas-solid flow characteristics simulation CO_(2)capture
下载PDF
Integrated numerical simulation of hydraulic fracturing and production in shale gas well considering gas-water two-phase flow
8
作者 TANG Huiying LUO Shangui +4 位作者 LIANG Haipeng ZENG Bo ZHANG Liehui ZHAO Yulong SONG Yi 《Petroleum Exploration and Development》 SCIE 2024年第3期684-696,共13页
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale... Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model. 展开更多
关键词 shale gas well hydraulic fracturing fracture propagation gas-water two-phase flow fracturing-production integrated numerical simulation
下载PDF
Numerical Simulations of the Flow Field around a Cylindrical Lightning Rod
9
作者 Wei Guo Yanliang Liu +3 位作者 Xuqiang Wang Jiazheng Meng Mengqin Hu Bo He 《Structural Durability & Health Monitoring》 EI 2024年第1期19-35,共17页
As an important lightning protection device in substations,lightning rods are susceptible to vibration and potential structural damage under wind loads.In order to understand their vibration mechanism,it is necessary ... As an important lightning protection device in substations,lightning rods are susceptible to vibration and potential structural damage under wind loads.In order to understand their vibration mechanism,it is necessary to conduct flow analysis.In this study,numerical simulations of the flow field around a 330 kV cylindrical lightning rod with different diameters were performed using the SST k-ωmodel.The flow patterns in different segments of the lightning rod at the same reference wind speed(wind speed at a height of 10 m)and the flow patterns in the same segment at different reference wind speeds were investigated.The variations of lift coefficient,drag coefficient,and vorticity distribution were obtained.The results showed that vortex shedding phenomena occurred in all segments of the lightning rod,and the strength of vortex shedding increased with decreasing diameter.The vorticity magnitude and the root mean square magnitudes of the lift coefficient and drag coefficient also increased accordingly.The time history curves of the lift coefficient and drag coefficient on the surface of the lightning rod exhibited sinusoidal patterns with a single dominant frequency.For the same segment,as the wind speed increased in a certain range,the root mean square values of the lift coefficient and drag coefficient decreased,while their dominant frequencies increased.Moreover,there was a proportional relationship between the dominant frequencies of the lift coefficient and drag coefficient.The findings of this study can provide valuable insights for the refined design of lightning rods with similar structures. 展开更多
关键词 Lightning rod flow around circular tubes numerical simulation vortex shedding phenomenon
下载PDF
基于SolidWorks Flow Simulation的PCB测试设备机柜散热仿真分析
10
作者 张世光 赵文燕 邹振霖 《机电工程技术》 2024年第5期54-57,共4页
为了解决PCB测试设备在机柜中温度过高导致被测产品损坏的问题。根据实际应用场景,设计出一款具有散热高效、结构紧凑、制作成本低的PCB测试设备机柜。结合PCB检测设备整体结构对其所在的机柜进行结构设计和散热仿真分析。主要以4台PCB... 为了解决PCB测试设备在机柜中温度过高导致被测产品损坏的问题。根据实际应用场景,设计出一款具有散热高效、结构紧凑、制作成本低的PCB测试设备机柜。结合PCB检测设备整体结构对其所在的机柜进行结构设计和散热仿真分析。主要以4台PCB测试设备满载运行在机柜中散热情况为研究对象。根据实际结构,使用SolidWorks对机柜和测试设备简化仿真模型进行建模,将简化模型导入到SolidWorks Flow Simulation中对机柜进行散热仿真分析。通过分析计算得出散热的分布情况和测试设备关键地方的温升数值,判断机柜散热结构的散热情况是否与预期结果一致。试验结果表明:常温下,在机柜中4台PCB测试设备满载测试时检测区域最高温度达到28℃左右,能够可持续运行状态并保持稳定工作。通过试验验证,机柜的散热实际温度与其散热仿真结果相符,证实了该机柜散热结构设计的合理性以及正确性,并且确定机柜散热结构设计方案。 展开更多
关键词 PCB测试设备 机柜 散热仿真分析 SolidWorks flow simulation
下载PDF
Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method
11
作者 Xin Liu Kai Yan +3 位作者 Bo Fang Xiaoyu Sun Daqiang Feng Li Yin 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1539-1552,共14页
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp... In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production. 展开更多
关键词 Weighted least squares method meshless method numerical simulation of low permeability tight reservoirs oil-water two-phase flow fracture half-length
下载PDF
Analysis of debris flow control effect and hazard assessment in Xinqiao Gully,Wenchuan M_(s)8.0 earthquake area based on numerical simulation
12
作者 Chang Yang Yong-bo Tie +3 位作者 Xian-zheng Zhang Yan-feng Zhang Zhi-jie Ning Zong-liang Li 《China Geology》 CAS CSCD 2024年第2期248-263,共16页
Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff... Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events. 展开更多
关键词 Landslide Debris flow Hazard assessment Numerical simulation OpenLISEM Prevention and control project Wenchuan M_(s)8.0 earthquake Xinqiao Gully Sichuan province Geological hazards survey engineering
下载PDF
Numerical Simulation of Dam-Break Flows Using Radial Basis Functions: Application to Urban Flood Inundation
13
作者 Abdoulhafar Halassi Bacar Said Charriffaini Rawhoudine 《American Journal of Computational Mathematics》 2024年第3期318-332,共15页
Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes... Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes. This paper presents an alternative approach using Radial Basis Functions to simulate dam-break flows and their impact on urban flood inundation. The proposed method adapts a new strategy based on Particle Swarm Optimization for variable shape parameter selection on meshfree formulation to enhance the numerical stability and convergence of the simulation. The method’s accuracy and efficiency are demonstrated through numerical experiments, including well-known partial and circular dam-break problems and an idealized city with a single building, highlighting its potential as a valuable tool for urban flood risk management. 展开更多
关键词 Dam-Break flows Numerical simulation Shallow Water Equations Radial Basis Functions Urban Flood Inundation
下载PDF
基于Flow-Simulation的气液分离器设计仿真分析研究
14
作者 司志鹏 郭海良 +2 位作者 张馨怿 伊明欣 张林 《山东化工》 CAS 2024年第9期240-243,共4页
为解决燃气发电机组瓦斯气源含水量高的问题,对燃气发电机组气液分离器进行了设计与仿真分析。首先根据功能要求进行气液分离器设计参数计算,用Solidworks三维建模,然后利用Flow-Simulation进行CFD流体动力学仿真,得到气液分离器内的压... 为解决燃气发电机组瓦斯气源含水量高的问题,对燃气发电机组气液分离器进行了设计与仿真分析。首先根据功能要求进行气液分离器设计参数计算,用Solidworks三维建模,然后利用Flow-Simulation进行CFD流体动力学仿真,得到气液分离器内的压力云图、速度云图和运动轨迹图;从压力云图中看出压力损失为784 Pa,能够满足压力损失≤1 kPa的要求。后经现场试验气液分离器分离效率达到93.6%,有效地提高了燃气发电机组的发电效率。该款设计优化后的旋风式气液分离器能够满足设计使用要求。 展开更多
关键词 气液分离器 flow-simulation 流体动力学仿真 分离效率
下载PDF
Numerical Simulation of the Non-isothermal Viscoelastic Flow Past a Confined Cylinder 被引量:1
15
作者 阮春蕾 欧阳洁 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第2期177-184,共8页
A collocated finite volume method on unstructured meshes is introduced to simulate the viscoelastic flow of the polymer melt with viscous dissipation past a confined cylinder.The constitutive equation for the simulati... A collocated finite volume method on unstructured meshes is introduced to simulate the viscoelastic flow of the polymer melt with viscous dissipation past a confined cylinder.The constitutive equation for the simulations is non-isothermal FENE-P model,which is derived from the molecular theories.The temperature effect on the macroscopic fields(e.g.,velocity,stress) and microscopic fields(e.g.,molecular orientation,deformation,stretch) is investigated by comparison of isothermal and non-isothermal situations.This investigation indicates that temperature rise caused by viscous dissipation should not be neglected since it has significant effect on the macroscopic and microscopic properties of the polymer melt. 展开更多
关键词 non-isothermal FENE-P model unstructured meshes finite volume method cylinder flow
下载PDF
Phase field simulation for non-isothermal solidification of multicomponent alloys coupled with thermodynamics database 被引量:3
16
作者 章书周 张瑞杰 +2 位作者 曲选辉 方伟 刘明治 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2361-2367,共7页
In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusio... In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusion mobility database, which can accurately predict the phase equilibrium, solute diffusion coefficients, specific heat capacity and latent heat release in the whole system. The results show that these parameters are not constants and their values depend on local concentration and temperature. Quantitative simulation of solidification in multicomponent alloys is almost impossible without such parameters available. In this model, the interfacial region is assumed to be a mixture of solid and liquid with the same chemical potentials, but with different composition. The anti-trapping current is also considered in the model. And this model was successfully applied to industrial A1-Cu-Mg alloy for the free equiaxed dendrite solidification process. 展开更多
关键词 PHASE-FIELD multicomponent alloys COUPLING THERMODYNAMICS non-isothermal solidification simulation
下载PDF
Simulation of Non-Isothermal Turbulent Flows Through Circular Rings of Steel
17
作者 Abid.A.Memon M.Asif Memon +2 位作者 Kaleemullah Bhatti Kamsing Nonlaopon Ilyas Khan 《Computers, Materials & Continua》 SCIE EI 2022年第3期4341-4355,共15页
This article is intended to examine the fluid flow patterns and heat transfer in a rectangular channel embedded with three semi-circular cylinders comprised of steel at the boundaries.Such an organization is used to g... This article is intended to examine the fluid flow patterns and heat transfer in a rectangular channel embedded with three semi-circular cylinders comprised of steel at the boundaries.Such an organization is used to generate the heat exchangers with tube and shell because of the production of more turbulence due to zigzag path which is in favor of rapid heat transformation.Because of little maintenance,the heat exchanger of such type is extensively used.Here,we generate simulation of flow and heat transfer using nonisothermal flow interface in the Comsol multiphysics 5.4 which executes the Reynolds averaged Navier stokes equation(RANS)model of the turbulent flow together with heat equation.Simulation is tested with Prandtl number(Pr=0.7)with inlet velocity magnitude in the range from 1 to 2 m/sec which generates the Reynolds number in the range of 2.2×10^(5) to 4.4×10^(5) with turbulence kinetic energy and the dissipation rate in ranges(3.75×10^(−3) to 1.5×10^(−2))and(3.73×10^(−3)−3×10^(−2))respectively.Two correlations available in the literature are used in order to check validity.The results are displayed through streamlines,surface plots,contour plots,isothermal lines,and graphs.It is concluded that by retaining such an arrangement a quick distribution of the temperature over the domain can be seen and also the velocity magnitude is increasing from 333.15%to a maximum of 514%.The temperature at the middle shows the consistency in value but declines immediately at the end.This process becomes faster with the decrease in inlet velocity magnitude. 展开更多
关键词 Incompressible turbulent flow heat transfer non-isothermal finite element method energy equation
下载PDF
Investigation of gravity influence on EOR and CO_(2) geological storage based on pore-scale simulation
18
作者 Yong-Mao Hao Gui-Cheng Wu +6 位作者 Zong-Fa Li Zhong-Hui Wu Yong-Quan Sun Ran Liu Xing-Xing Li Bo-Xin Pang Nan Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期987-1001,共15页
Gravity assistance is a critical factor influencing CO_(2)-Oil mixing and miscible flow during EOR and CO_(2)geological storage.Based on the Navier-Stokes equation,component mass conservation equation,and fluid proper... Gravity assistance is a critical factor influencing CO_(2)-Oil mixing and miscible flow during EOR and CO_(2)geological storage.Based on the Navier-Stokes equation,component mass conservation equation,and fluid property-composition relationship,a mathematical model for pore-scale CO_(2) injection in oilsaturated porous media was developed in this study.The model can reflect the effects of gravity assistance,component diffusion,fluid density variation,and velocity change on EOR and CO_(2) storage.For nonhomogeneous porous media,the gravity influence and large density difference help to minimize the velocity difference between the main flow path and the surrounding area,thus improving the oil recovery and CO_(2) storage.Large CO_(2) injection angles and oil-CO_(2) density differences can increase the oil recovery by 22.6% and 4.2%,respectively,and increase CO_(2) storage by 37.9% and 4.7%,respectively.Component diffusion facilitates the transportation of the oil components from the low-velocity region to the main flow path,thereby reducing the oil/CO_(2) concentration difference within the porous media.Component diffusion can increase oil recovery and CO_(2) storage by 5.7% and 6.9%,respectively.In addition,combined with the component diffusion,a low CO_(2) injection rate creates a more uniform spatial distribution of the oil/CO_(2) component,resulting in increases of 9.5% oil recovery and 15.7% CO_(2) storage,respectively.This study provides theoretical support for improving the geological CO_(2) storage and EOR processes. 展开更多
关键词 GRAVITY flow simulation CO_(2)-oil mixing Enhanced oil recovery(EOR) Geological storage
下载PDF
Parallelization strategies for resolved simulations of fluid-structure-particle interactions
19
作者 Jianhua QIN Fei LIAO +1 位作者 Guodan DONG Xiaolei YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期857-872,共16页
Fluid-structure-particle interactions in three spatial dimensions happen in many environmental and engineering flows.This paper presents the parallel algorithms for the hybrid diffuse and sharp interface immersed boun... Fluid-structure-particle interactions in three spatial dimensions happen in many environmental and engineering flows.This paper presents the parallel algorithms for the hybrid diffuse and sharp interface immersed boundary(IB)method developed in our previous work.For the moving structure modeled using the sharp interface IB method,a recursive box method is developed for efficiently classifying the background grid nodes.For the particles modeled using the diffuse interface IB method,a‘master-slave’approach is adopted.For the particle-particle interaction(PPI)and particle-structure interaction(PSI),a fast algorithm for classifying the active and inactive Lagrangian points,which discretize the particle surface,is developed for the‘dry’contact approach.The results show that the proposed recursive box method can reduce the classifying time from 52seconds to 0.3 seconds.Acceptable parallel efficiency is obtained for cases with different particle concentrations.Furthermore,the lubrication model is utilized when a particle approaches a wall,enabling an accurate simulation of the rebounding phenomena in the benchmark particle-wall collision problem.At last,the capability of the proposed computational framework is demonstrated by simulating particle-laden turbulent channel flows with rough walls. 展开更多
关键词 particle-resolved direct numerical simulation particle-laden flow complex geometry resolved fluid-structure-particle interaction(RFSPI) immersed boundary(IB)method
下载PDF
基于SolidWorks Flow Simulation的矿用烟雾传感器气室结构流体仿真分析 被引量:2
20
作者 孙瑞彩 龙秉政 《煤矿机械》 2023年第10期92-94,共3页
针对矿用烟雾传感器气室结构容易进水且烟雾进出困难、影响烟雾传感元件响应时间的问题,为改善烟雾传感器气室结构对探测元件的影响并提高其防水性能,通过SolidWorks Flow Simulation对3种不同夹角投影的开孔气室结构进行流体仿真分析,... 针对矿用烟雾传感器气室结构容易进水且烟雾进出困难、影响烟雾传感元件响应时间的问题,为改善烟雾传感器气室结构对探测元件的影响并提高其防水性能,通过SolidWorks Flow Simulation对3种不同夹角投影的开孔气室结构进行流体仿真分析,研究了不同夹角开孔影响的气流、水流分布特征及变化规律。结果表明:气室结构设计为60°夹角投影的开孔防水、进烟雾程度对传感元件的影响最小,能极大地提高烟雾传感元件的检测灵敏性。 展开更多
关键词 SolidWorks flow simulation 矿用烟雾传感器 开孔角度 气室防护
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部