An on-line prediction scheme combining the Karhunen-Love expansion and a recurrent neural network for a wall-cooled fixed-bed reactor is presented.Benzene oxidation in a pilotscale,single tube fixed-bed reactor is cho...An on-line prediction scheme combining the Karhunen-Love expansion and a recurrent neural network for a wall-cooled fixed-bed reactor is presented.Benzene oxidation in a pilotscale,single tube fixed-bed reactor is chosen as a working system and a pseudo-homogeneous twodimensional model is used to generate simulation data to investigate the prediction scheme presentedunder randomly changing operating conditions.The scheme consisting of the K-L expansion andneural network performs satisfactorily for on-line prediction of reaction yield and bed temperatures.展开更多
treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental ...treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady- state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m^3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m^3/(m^3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m^3·d), the COD removal efficiency decreased. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.展开更多
Water-using operations in the process industry have demands for water usually both on water quality and temperature, and the existing mathematical models of heat exchange networks cannot guarantee the energy performan...Water-using operations in the process industry have demands for water usually both on water quality and temperature, and the existing mathematical models of heat exchange networks cannot guarantee the energy performance of a water network optimal. In this paper, the effects of non-isothermal merging on energy performance of water allocation networks are analyzed, which include utility consumption, total heat exchange load, and number of heat exchange matches. Three principles are proposed to express the effects of non-isothermal merging on energy performance of water allocation networks. A rule of non-isothermal merging without increasing utility consumption is deduced. And an approach to improve energy performance of water allocation network is presented. A case study is given to demonstrate the method.展开更多
It is believed that whether the instantaneous objective function curves of plug-flow-reactor (PFR) and continuous-stirred-tank-reactor (CSTR) overlap or not, they have a consistent changing trend for complex reactions...It is believed that whether the instantaneous objective function curves of plug-flow-reactor (PFR) and continuous-stirred-tank-reactor (CSTR) overlap or not, they have a consistent changing trend for complex reactions (steady state, isothermal and constant volume). As a result of the relation of the objective functions (selectivity or yield) to the instantaneous objective functions (instantaneous selectivity or instantaneous reaction rate), the optimal reactor network configuration can be determined according to the changing trend of the instantaneous objective function curves. Further, a recent partition strategy for the reactor network synthesis based on the instantaneous objective function characteristic curves is proposed by extending the attainable region partition strategy from the concentration space to the instantaneous objective function-unreacted fraction of key reactant space. In this paper, the instantaneous objective function is closed to be the instantaneous selectivity and several samples are examined to illustrate the proposed method. The comparison with the previous work indicates it is a very convenient and practical systematic tool of the reactor network synthesis and seems also promising for overcoming the dimension limit of the attainable region partition strategy in the concentration space.展开更多
Objective During present investigation the data of a laboratory-scale anoxic sulfide oxidizing (ASO) reactor were used in a neural network system to predict its performance. Methods Five uncorrelated components of t...Objective During present investigation the data of a laboratory-scale anoxic sulfide oxidizing (ASO) reactor were used in a neural network system to predict its performance. Methods Five uncorrelated components of the influent wastewater were used as the artificial neural network model input to predict the output of the effluent using back-propagation and general regression algorithms. The best prediction performance is achieved when the data are preprocessed using principal components analysis (PCA) before they are fed to a back propagated neural network. Results Within the range of experimental conditions tested, it was concluded that the ANN model gave predictable results for nitrite removal from wastewater through ASO process. The model did not predict the formation of sulfate to an acceptable manner. Conclusion Apart from experimentation, ANN model can help to simulate the results of such experiments in finding the best optimal choice for ASO based denitrification. Together with wastewater collection and the use of improved treatment systems and new technologies, better control of wastewater treatment plant (WTP) can lead to more effective maneuvers by its operators and, as a consequence, better effluent quality.展开更多
Waste reduction is gaining importance as the preferred means of pollution prevention. Reactor network synthesis is one of the key parts of chemical process synthesis. In this study, a geometric approach to reactor net...Waste reduction is gaining importance as the preferred means of pollution prevention. Reactor network synthesis is one of the key parts of chemical process synthesis. In this study, a geometric approach to reactor network synthesis for waste reduction is presented. The bases of the approach are potential environment impact (PEI) rate-law expression, PEI balance and the instantaneous value of environmental indexes. The instantaneous value can be derived using the PEI balance, PEI rate-law expression and the environmental indexes. The optimal reactor networks with the minimum generation of potential environment impact are geometrically derived by comparing with areas of the corresponding regions. From the case study involving complex reactions, the approach does not involve solving the complicated mathematical problem and can avoid the dimension limitation in the attainable region approach.展开更多
On-the-fly Doppler broadening of cross sections is important in Monte Carlo simulations,particularly in Monte Carlo neutronics-thermal hydraulics coupling simulations.Methods such as Target Motion Sampling(TMS)and win...On-the-fly Doppler broadening of cross sections is important in Monte Carlo simulations,particularly in Monte Carlo neutronics-thermal hydraulics coupling simulations.Methods such as Target Motion Sampling(TMS)and windowed multipole as well as a method based on regression models have been developed to solve this problem.However,these methods have limitations such as the need for a cross section in an ACE format at a given temperature or a limited application energy range.In this study,a new on-the-fly Doppler broadening method based on a Back Propagation(BP)neural network,called hybrid windowed networks(HWN),is proposed to resolve the resonance energy range.In the HWN method,the resolved resonance energy range is divided into windows to guarantee an even distribution of resonance peaks.BP networks with specially designed structures and training parameters are trained to evaluate the cross section at a base temperature and the broadening coefficient.The HWN method is implemented in the Reactor Monte Carlo(RMC)code,and the microscopic cross sections and macroscopic results are compared.The results show that the HWN method can reduce the memory requirement for cross-sectional data by approximately 65%;moreover,it can generate keff,power distribution,and energy spectrum results with acceptable accuracy and a limited increase in the calculation time.The feasibility and effectiveness of the proposed HWN method are thus demonstrated.展开更多
Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are ea...Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are easy to solve using traditional numerical methods albeit still challenging using neural networks for a wide range of practical problems.We present two networks,namely the Generalized Inverse Power Method Neural Network(GIPMNN)and Physics-Constrained GIPMNN(PC-GIPIMNN)to solve K-eigenvalue problems in neutron diffusion theory.GIPMNN follows the main idea of the inverse power method and determines the lowest eigenvalue using an iterative method.The PC-GIPMNN additionally enforces conservative interface conditions for the neutron flux.Meanwhile,Deep Ritz Method(DRM)directly solves the smallest eigenvalue by minimizing the eigenvalue in Rayleigh quotient form.A comprehensive study was conducted using GIPMNN,PC-GIPMNN,and DRM to solve problems of complex spatial geometry with variant material domains from the fleld of nuclear reactor physics.The methods were compared with the standard flnite element method.The applicability and accuracy of the methods are reported and indicate that PC-GIPMNN outperforms GIPMNN and DRM.展开更多
The global fuel management problem in BWRs(Boiling Water Reactors) can be understood as a very complex optimization problem,where the variables represent design decisions and the quality assessment of each solution is...The global fuel management problem in BWRs(Boiling Water Reactors) can be understood as a very complex optimization problem,where the variables represent design decisions and the quality assessment of each solution is done through a complex and computational expensive simulation.This last aspect is the major impediment to perform an extensive exploration of the design space,mainly due to the time lost evaluating non promising solutions.In this work,we show how we can train a Multi-Layer Perceptron(MLP) to predict the reactor behavior for a given configuration.The trained MLP is able to evaluate the configurations immediately,thus allowing performing an exhaustive evaluation of the possible configurations derived from a stock of fuel lattices,fuel reload patterns and control rods patterns.For our particular problem,the number of configurations is approximately 7.7×10^(10);the evaluation with the core simulator would need above 200 years,while only 100hours were required with our approach to discern between bad and good configurations.The later were then evaluated by the simulator and we confirm the MLP usefulness.The good core configurations reached the energy requirements,satisfied the safety parameter constrains and they could reduce uranium enrichment costs.展开更多
A mathematical model is developed for an industrial acrylonitrile fluidized-bed reactor based on arti-ficial neural networks. A new algorithm, which combines the characteristics of both genetic algorithm (GA) andgener...A mathematical model is developed for an industrial acrylonitrile fluidized-bed reactor based on arti-ficial neural networks. A new algorithm, which combines the characteristics of both genetic algorithm (GA) andgeneralized delta-rule (GDR) is used to train artificial neural network (ANN) in order to avoid search terminatedat a local optimal solution. For searching the global optimum, a new algorithm called SM-GA, incorporating ad-vantages of both simplex method (SM)and GA, is proposed and applied to optimize the operating conditions of anacrylonitrile fluidized-bed reactor in industry.展开更多
A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is ...A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor.It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.展开更多
Artificial neural networks (ANNs) are applied successfully to analyze the critical heat flux (CHF) experimental data from some round tubes in this paper. A set of software adopting artificial neural network method for...Artificial neural networks (ANNs) are applied successfully to analyze the critical heat flux (CHF) experimental data from some round tubes in this paper. A set of software adopting artificial neural network method for predicting CHF in round tube and a set of CHF database are gotten. Comparing with common CHF correlations and CHF look-up table, ANN method has stronger ability of allow-wrong and nice robustness. The CHF predicting software adopting artificial neural network technology can improve the predicting accuracy in a wider parameter range,and is easier to update and to use. The artificial neural nefwork method used in this paper can be applied to some similar physical problems.展开更多
The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one opt...The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.展开更多
This article describes numerical simulation of gas pipeline network operation using high-accuracy computational fluid dynamics (CFD) simulators of the modes of gas mixture transmission through long, multi-line pipelin...This article describes numerical simulation of gas pipeline network operation using high-accuracy computational fluid dynamics (CFD) simulators of the modes of gas mixture transmission through long, multi-line pipeline systems (CFD-simulator). The approach used in CFD-simulators for modeling gas mixture transmission through long, branched, multi-section pipelines is based on tailoring the full system of fluid dynamics equations to conditions of unsteady, non-isothermal processes of the gas mixture flow. Identification, in a CFD-simulator, of safe parameters for gas transmission through compressor stations amounts to finding the interior points of admissible sets described by systems of nonlinear algebraic equalities and inequalities. Such systems of equalities and inequalities comprise a formal statement of technological, design, operational and other constraints to which operation of the network equipment is subject. To illustrate the practicability of the method of numerical simulation of a gas transmission network, we compare computation results and gas flow parameters measured on-site at the gas transmission enter-prise.展开更多
Aim To predict the indexes of quality of the thermal elastomer by polymerization process data. Methods Neural networks were used for learning the relationship between the product quality and the polymerization proce...Aim To predict the indexes of quality of the thermal elastomer by polymerization process data. Methods Neural networks were used for learning the relationship between the product quality and the polymerization process condition variables in an industrial scale batch polymerization reactor. Results The indexes of quality of the product were inferred with acceptable accuracy from easy to measure reaction process condition variables. Conclusion The method proposed in this paper provides on line soft sensors of the indexes of quality of the thermal elastomal.展开更多
The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To a...The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To achieve better prediction and control of effluent TN concentration,an efficient prediction model,based on controllable operation parameters,was constructed in a sequencing batch reactor process.Compared with previous models,this model has two main characteristics:①Superficial gas velocity and anoxic time are controllable operation parameters and are selected as the main input parameters instead of dissolved oxygen to improve the model controllability,and②the model prediction accuracy is improved on the basis of a feedforward neural network(FFNN)with algorithm optimization.The results demonstrated that the FFNN model was efficiently optimized by scaled conjugate gradient,and the performance was excellent compared with other models in terms of the correlation coefficient(R).The optimized FFNN model could provide an accurate prediction of effluent TN based on influent water parameters and key control parameters.This study revealed the possible application of the optimized FFNN model for the efficient removal of pollutants and lower energy consumption at most of the WWTPs.展开更多
Recent reactor antineutrino experiments have observed that the neutrino spectrum changes with the reactor core evolution and that the individual fissile isotope antineutrino spectra can be decomposed from the evolving...Recent reactor antineutrino experiments have observed that the neutrino spectrum changes with the reactor core evolution and that the individual fissile isotope antineutrino spectra can be decomposed from the evolving data,providing valuable information for the reactor model and data inconsistent problems.We propose a machine learning method by building a convolutional neural network based on a virtual experiment with a typical short-baseline reactor antineutrino experiment configuration:by utilizing the reactor evolution information,the major fissile isotope spectra are correctly extracted,and the uncertainties are evaluated using the Monte Carlo method.Validation tests show that the method is unbiased and introduces tiny extra uncertainties.展开更多
基金Supported by the National Natural Science Foundation of China(No.29676014)and others.
文摘An on-line prediction scheme combining the Karhunen-Love expansion and a recurrent neural network for a wall-cooled fixed-bed reactor is presented.Benzene oxidation in a pilotscale,single tube fixed-bed reactor is chosen as a working system and a pseudo-homogeneous twodimensional model is used to generate simulation data to investigate the prediction scheme presentedunder randomly changing operating conditions.The scheme consisting of the K-L expansion andneural network performs satisfactorily for on-line prediction of reaction yield and bed temperatures.
文摘treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady- state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m^3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m^3/(m^3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m^3·d), the COD removal efficiency decreased. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.
基金Supported by the National Natural Science Foundation of China (20436040).
文摘Water-using operations in the process industry have demands for water usually both on water quality and temperature, and the existing mathematical models of heat exchange networks cannot guarantee the energy performance of a water network optimal. In this paper, the effects of non-isothermal merging on energy performance of water allocation networks are analyzed, which include utility consumption, total heat exchange load, and number of heat exchange matches. Three principles are proposed to express the effects of non-isothermal merging on energy performance of water allocation networks. A rule of non-isothermal merging without increasing utility consumption is deduced. And an approach to improve energy performance of water allocation network is presented. A case study is given to demonstrate the method.
基金Supported by the National Natural Science Foundation of China (No. 29776028, No. 29836140).
文摘It is believed that whether the instantaneous objective function curves of plug-flow-reactor (PFR) and continuous-stirred-tank-reactor (CSTR) overlap or not, they have a consistent changing trend for complex reactions (steady state, isothermal and constant volume). As a result of the relation of the objective functions (selectivity or yield) to the instantaneous objective functions (instantaneous selectivity or instantaneous reaction rate), the optimal reactor network configuration can be determined according to the changing trend of the instantaneous objective function curves. Further, a recent partition strategy for the reactor network synthesis based on the instantaneous objective function characteristic curves is proposed by extending the attainable region partition strategy from the concentration space to the instantaneous objective function-unreacted fraction of key reactant space. In this paper, the instantaneous objective function is closed to be the instantaneous selectivity and several samples are examined to illustrate the proposed method. The comparison with the previous work indicates it is a very convenient and practical systematic tool of the reactor network synthesis and seems also promising for overcoming the dimension limit of the attainable region partition strategy in the concentration space.
文摘Objective During present investigation the data of a laboratory-scale anoxic sulfide oxidizing (ASO) reactor were used in a neural network system to predict its performance. Methods Five uncorrelated components of the influent wastewater were used as the artificial neural network model input to predict the output of the effluent using back-propagation and general regression algorithms. The best prediction performance is achieved when the data are preprocessed using principal components analysis (PCA) before they are fed to a back propagated neural network. Results Within the range of experimental conditions tested, it was concluded that the ANN model gave predictable results for nitrite removal from wastewater through ASO process. The model did not predict the formation of sulfate to an acceptable manner. Conclusion Apart from experimentation, ANN model can help to simulate the results of such experiments in finding the best optimal choice for ASO based denitrification. Together with wastewater collection and the use of improved treatment systems and new technologies, better control of wastewater treatment plant (WTP) can lead to more effective maneuvers by its operators and, as a consequence, better effluent quality.
基金the Support Program for the Young Backbones of the College Teachers in Henan Province (No.[2005]461)the Key Technologies R &D Program of Henan Province (No.072102360052)
文摘Waste reduction is gaining importance as the preferred means of pollution prevention. Reactor network synthesis is one of the key parts of chemical process synthesis. In this study, a geometric approach to reactor network synthesis for waste reduction is presented. The bases of the approach are potential environment impact (PEI) rate-law expression, PEI balance and the instantaneous value of environmental indexes. The instantaneous value can be derived using the PEI balance, PEI rate-law expression and the environmental indexes. The optimal reactor networks with the minimum generation of potential environment impact are geometrically derived by comparing with areas of the corresponding regions. From the case study involving complex reactions, the approach does not involve solving the complicated mathematical problem and can avoid the dimension limitation in the attainable region approach.
基金supported by the Science Challenge Project(No.TZ2018001)the National Natural Science Foundation of China(Nos.11775126,11545013,11775127)+1 种基金Young Elite Scientists Sponsorship Program by CAST(No.2016QNRC001)Tsinghua University Initiative Scientific Research Program。
文摘On-the-fly Doppler broadening of cross sections is important in Monte Carlo simulations,particularly in Monte Carlo neutronics-thermal hydraulics coupling simulations.Methods such as Target Motion Sampling(TMS)and windowed multipole as well as a method based on regression models have been developed to solve this problem.However,these methods have limitations such as the need for a cross section in an ACE format at a given temperature or a limited application energy range.In this study,a new on-the-fly Doppler broadening method based on a Back Propagation(BP)neural network,called hybrid windowed networks(HWN),is proposed to resolve the resonance energy range.In the HWN method,the resolved resonance energy range is divided into windows to guarantee an even distribution of resonance peaks.BP networks with specially designed structures and training parameters are trained to evaluate the cross section at a base temperature and the broadening coefficient.The HWN method is implemented in the Reactor Monte Carlo(RMC)code,and the microscopic cross sections and macroscopic results are compared.The results show that the HWN method can reduce the memory requirement for cross-sectional data by approximately 65%;moreover,it can generate keff,power distribution,and energy spectrum results with acceptable accuracy and a limited increase in the calculation time.The feasibility and effectiveness of the proposed HWN method are thus demonstrated.
基金partially supported by the National Natural Science Foundation of China(No.11971020)Natural Science Foundation of Shanghai(No.23ZR1429300)Innovation Funds of CNNC(Lingchuang Fund)。
文摘Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are easy to solve using traditional numerical methods albeit still challenging using neural networks for a wide range of practical problems.We present two networks,namely the Generalized Inverse Power Method Neural Network(GIPMNN)and Physics-Constrained GIPMNN(PC-GIPIMNN)to solve K-eigenvalue problems in neutron diffusion theory.GIPMNN follows the main idea of the inverse power method and determines the lowest eigenvalue using an iterative method.The PC-GIPMNN additionally enforces conservative interface conditions for the neutron flux.Meanwhile,Deep Ritz Method(DRM)directly solves the smallest eigenvalue by minimizing the eigenvalue in Rayleigh quotient form.A comprehensive study was conducted using GIPMNN,PC-GIPMNN,and DRM to solve problems of complex spatial geometry with variant material domains from the fleld of nuclear reactor physics.The methods were compared with the standard flnite element method.The applicability and accuracy of the methods are reported and indicate that PC-GIPMNN outperforms GIPMNN and DRM.
基金Supported in part by Campus CEI-BioTic GENIL,from University of Granadasupport from Projects TIN2011-27696C02-01 from the Spanish Ministry of Economy and Competitiveness and P11-TIC-8001 from Andalusian Government+2 种基金the Departamento de Gestion de Combustible of the Comision Federal de Electricidad of Mexicothe support given by CONACyT from Mexico,through the research project CB-2011-01-168722the ININ through the research project CA-215
文摘The global fuel management problem in BWRs(Boiling Water Reactors) can be understood as a very complex optimization problem,where the variables represent design decisions and the quality assessment of each solution is done through a complex and computational expensive simulation.This last aspect is the major impediment to perform an extensive exploration of the design space,mainly due to the time lost evaluating non promising solutions.In this work,we show how we can train a Multi-Layer Perceptron(MLP) to predict the reactor behavior for a given configuration.The trained MLP is able to evaluate the configurations immediately,thus allowing performing an exhaustive evaluation of the possible configurations derived from a stock of fuel lattices,fuel reload patterns and control rods patterns.For our particular problem,the number of configurations is approximately 7.7×10^(10);the evaluation with the core simulator would need above 200 years,while only 100hours were required with our approach to discern between bad and good configurations.The later were then evaluated by the simulator and we confirm the MLP usefulness.The good core configurations reached the energy requirements,satisfied the safety parameter constrains and they could reduce uranium enrichment costs.
文摘A mathematical model is developed for an industrial acrylonitrile fluidized-bed reactor based on arti-ficial neural networks. A new algorithm, which combines the characteristics of both genetic algorithm (GA) andgeneralized delta-rule (GDR) is used to train artificial neural network (ANN) in order to avoid search terminatedat a local optimal solution. For searching the global optimum, a new algorithm called SM-GA, incorporating ad-vantages of both simplex method (SM)and GA, is proposed and applied to optimize the operating conditions of anacrylonitrile fluidized-bed reactor in industry.
文摘A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor.It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.
文摘Artificial neural networks (ANNs) are applied successfully to analyze the critical heat flux (CHF) experimental data from some round tubes in this paper. A set of software adopting artificial neural network method for predicting CHF in round tube and a set of CHF database are gotten. Comparing with common CHF correlations and CHF look-up table, ANN method has stronger ability of allow-wrong and nice robustness. The CHF predicting software adopting artificial neural network technology can improve the predicting accuracy in a wider parameter range,and is easier to update and to use. The artificial neural nefwork method used in this paper can be applied to some similar physical problems.
基金Supported by the Deutsche Forschungsgemeinschaft (DFG No. RO294/9).
文摘The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.
文摘This article describes numerical simulation of gas pipeline network operation using high-accuracy computational fluid dynamics (CFD) simulators of the modes of gas mixture transmission through long, multi-line pipeline systems (CFD-simulator). The approach used in CFD-simulators for modeling gas mixture transmission through long, branched, multi-section pipelines is based on tailoring the full system of fluid dynamics equations to conditions of unsteady, non-isothermal processes of the gas mixture flow. Identification, in a CFD-simulator, of safe parameters for gas transmission through compressor stations amounts to finding the interior points of admissible sets described by systems of nonlinear algebraic equalities and inequalities. Such systems of equalities and inequalities comprise a formal statement of technological, design, operational and other constraints to which operation of the network equipment is subject. To illustrate the practicability of the method of numerical simulation of a gas transmission network, we compare computation results and gas flow parameters measured on-site at the gas transmission enter-prise.
文摘Aim To predict the indexes of quality of the thermal elastomer by polymerization process data. Methods Neural networks were used for learning the relationship between the product quality and the polymerization process condition variables in an industrial scale batch polymerization reactor. Results The indexes of quality of the product were inferred with acceptable accuracy from easy to measure reaction process condition variables. Conclusion The method proposed in this paper provides on line soft sensors of the indexes of quality of the thermal elastomal.
基金This work was funded by the Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07201003)the National Natural Science Foundation of China(51961125101)the Science and Technology Project of Zhejiang Province(2018C03003).
文摘The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To achieve better prediction and control of effluent TN concentration,an efficient prediction model,based on controllable operation parameters,was constructed in a sequencing batch reactor process.Compared with previous models,this model has two main characteristics:①Superficial gas velocity and anoxic time are controllable operation parameters and are selected as the main input parameters instead of dissolved oxygen to improve the model controllability,and②the model prediction accuracy is improved on the basis of a feedforward neural network(FFNN)with algorithm optimization.The results demonstrated that the FFNN model was efficiently optimized by scaled conjugate gradient,and the performance was excellent compared with other models in terms of the correlation coefficient(R).The optimized FFNN model could provide an accurate prediction of effluent TN based on influent water parameters and key control parameters.This study revealed the possible application of the optimized FFNN model for the efficient removal of pollutants and lower energy consumption at most of the WWTPs.
基金supported by the National Natural Science Foundation of China (Nos.11675273 and 12075087)the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA10011102)。
文摘Recent reactor antineutrino experiments have observed that the neutrino spectrum changes with the reactor core evolution and that the individual fissile isotope antineutrino spectra can be decomposed from the evolving data,providing valuable information for the reactor model and data inconsistent problems.We propose a machine learning method by building a convolutional neural network based on a virtual experiment with a typical short-baseline reactor antineutrino experiment configuration:by utilizing the reactor evolution information,the major fissile isotope spectra are correctly extracted,and the uncertainties are evaluated using the Monte Carlo method.Validation tests show that the method is unbiased and introduces tiny extra uncertainties.