The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.I...The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.In this paper,we introduce a Lie group that the Heisenberg group can be imbedded into and call it generalized complex Heisenberg.We investigate quaternionic analysis on the generalized complex Heisenberg.We also give the Penrose integral formula for k-CF functions and construct the tangential k-Cauchy-Fueter complex.展开更多
In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Be...In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Besov spaces with more general assumptions on coefficients for both homogeneous equations and non-homogeneous equations. This study of regularity estimates expands the Calderón-Zygmund theory in the Heisenberg group.展开更多
Let L = -△Hn + V be a SchrSdinger operator on Heisenberg group Hn, where AHn is the sublaplacian and the nonnegative potential V belongs to the reverse HSlder class BQ/2 where Q is the homogeneous dimension of Hn. L...Let L = -△Hn + V be a SchrSdinger operator on Heisenberg group Hn, where AHn is the sublaplacian and the nonnegative potential V belongs to the reverse HSlder class BQ/2 where Q is the homogeneous dimension of Hn. Let T1 = (--△Hn +V)-1V, T2 = (-△Hn +V)-1/2V1/2, and T3 = (--AHn +V)-I/2△Hn, then we verify that [b, Ti], i = 1, 2, 3 are bounded on some LP(Hn), where b ∈ BMO(Hn). Note that the kernel of Ti, i = 1, 2, 3 has no smoothness.展开更多
Let ∠= -△Hn+ V be the Schrdinger operator on the Heisenberg groups Hn,where V is a nonnegative function satisfying the reverse Hlder inequality. In this article, the author obtains the BMO_∠ and BLO_∠ estimates o...Let ∠= -△Hn+ V be the Schrdinger operator on the Heisenberg groups Hn,where V is a nonnegative function satisfying the reverse Hlder inequality. In this article, the author obtains the BMO_∠ and BLO_∠ estimates of the fractional integrals associated to ∠.展开更多
Recently, many new features of Sobolev spaces W k,p ?RN ? were studied in [4-6, 32]. This paper is devoted to giving a brief review of some known characterizations of Sobolev spaces in Euclidean spaces and describin...Recently, many new features of Sobolev spaces W k,p ?RN ? were studied in [4-6, 32]. This paper is devoted to giving a brief review of some known characterizations of Sobolev spaces in Euclidean spaces and describing our recent study of new characterizations of Sobolev spaces on both Heisenberg groups and Euclidean spaces obtained in [12] and [13] and outlining their proofs. Our results extend those characterizations of first order Sobolev spaces in [32] to the Heisenberg group setting. Moreover, our theorems also provide diff erent characterizations for the second order Sobolev spaces in Euclidean spaces from those in [4, 5].展开更多
In this article, the properties of multiresolution analysis and self-similar tilings on the Heisenberg group are studied. Moreover, we establish a theory to construct an orthonormal Haar wavelet base in L^2(H^d) by ...In this article, the properties of multiresolution analysis and self-similar tilings on the Heisenberg group are studied. Moreover, we establish a theory to construct an orthonormal Haar wavelet base in L^2(H^d) by using self-similar tilings for the acceptable dilations on the Heisenberg group.展开更多
In this article,the authors estimate some functions by using the explicit expression of the heat kernels for the Cayley Heisenberg groups,and then prove the uniform boundedness of the Riesz transforms on these nilpote...In this article,the authors estimate some functions by using the explicit expression of the heat kernels for the Cayley Heisenberg groups,and then prove the uniform boundedness of the Riesz transforms on these nilpotent Lie groups.展开更多
The authors obtain an explicit expression of the heat kernel for the Cayley Heisenberg group of order n by using the stochastic integral method of Gaveau. Apart from the standard Heisenberg group and the quaternionic ...The authors obtain an explicit expression of the heat kernel for the Cayley Heisenberg group of order n by using the stochastic integral method of Gaveau. Apart from the standard Heisenberg group and the quaternionic Heisenberg group, this is the only nilpotent Lie group on which an explicit formula for the heat kernel has been obtained.展开更多
We discuss the fundamental solution for m-th powers of the sub-Laplacian on the Heisenberg group. We use the representation theory of the Heisenberg group to analyze the associated m-th powers of the sub-Laplacian and...We discuss the fundamental solution for m-th powers of the sub-Laplacian on the Heisenberg group. We use the representation theory of the Heisenberg group to analyze the associated m-th powers of the sub-Laplacian and to construct its fundamental solution. Besides, the series representation of the fundamental solution for square of the sub-Laplacian on the Heisenberg group is given and we also get the closed form of the fundamental solution for square of the sub-Laplacian on the Heisenberg group with dimension n = 2, 3, 4.展开更多
In this paper, the properties of the maps for the Heisenberg group targets are studied. For u e∈W1,α(Ω, Hm), some Poincare type inequalities are proved. For the energy minimizers, the ∈-regularity theorems and the...In this paper, the properties of the maps for the Heisenberg group targets are studied. For u e∈W1,α(Ω, Hm), some Poincare type inequalities are proved. For the energy minimizers, the ∈-regularity theorems and the singularity theorems are obtained.展开更多
The purpose of this paper is to prove existence of minimisers of the functional where Ω is an open set of the Heisenberg group Hn, K runs over all closed sets of Hn, u varies in C_H^1(Ω\ K), α,β> 0,q≥1, g ∈ ...The purpose of this paper is to prove existence of minimisers of the functional where Ω is an open set of the Heisenberg group Hn, K runs over all closed sets of Hn, u varies in C_H^1(Ω\ K), α,β> 0,q≥1, g ∈ Lq(Ω) ∩ L∞(Ω) and f : R2n→R is a convex function satisfying some structure conditions (H1)(H2)(H3) (see below).展开更多
Motivated by the idea of M. Ledoux who brings out the connection between Sobolev embeddings and heat kernel bounds, we prove an analogous result for Kohn’s sub-Laplacian on the Heisenberg type groups. The main result...Motivated by the idea of M. Ledoux who brings out the connection between Sobolev embeddings and heat kernel bounds, we prove an analogous result for Kohn’s sub-Laplacian on the Heisenberg type groups. The main result includes features of an inequality of either Sobolev or Galiardo-Nirenberg type.展开更多
As we know,thus far,there has appeared no definition of bilinear spectral multipliers on Heisenberg groups.In this article,we present one reasonable definition of bilinear spectral multipliers on Heisenberg groups and...As we know,thus far,there has appeared no definition of bilinear spectral multipliers on Heisenberg groups.In this article,we present one reasonable definition of bilinear spectral multipliers on Heisenberg groups and investigate its boundedness.We find some restrained conditions to separately ensure its boundedness from C0(H^(n))×L^(2)(H^(n))to L^(2)(H^(n)),from L2(H^(n))×C0(H^(n))to L^(2)(H^(n)),and from L^(p)×L^(q) to L^(r) with 2<p,q<∞,2≤r≤∞.展开更多
We prove some Trudinger-type inequalities and Brezis-Gallouet-Wainger inequality on the Heisenberg group, extending to this context the Euclidean results by T. Ozawa.
We prove that the restriction operator for the sublaplacian on the quaternion Heisenberg group is bounded from L^p to L^p' if 1 ≤ p ≤4/3. This is different from the Heisenberg group, on which the restriction operat...We prove that the restriction operator for the sublaplacian on the quaternion Heisenberg group is bounded from L^p to L^p' if 1 ≤ p ≤4/3. This is different from the Heisenberg group, on which the restriction operator is not bounded from Lp to Lp' unless p = 1.展开更多
This paper deals with the problem of the type triangle open_H f+ f^p =O inquaternionic Heisenberg group, where triangle open_H is the quaternionic Heisenberg Laplacian. Itis proved that, under suitable conditions on p...This paper deals with the problem of the type triangle open_H f+ f^p =O inquaternionic Heisenberg group, where triangle open_H is the quaternionic Heisenberg Laplacian. Itis proved that, under suitable conditions on p and /, the only solution of triangle open_H f+ f^p=O.展开更多
This article deals with the global existence and nonexistence of solutions to the degenerate heat inequalities with singular potential on the Heisenberg group. To prove the existence results, the authors adjust the me...This article deals with the global existence and nonexistence of solutions to the degenerate heat inequalities with singular potential on the Heisenberg group. To prove the existence results, the authors adjust the method of supersolutions to their setting. The nonexistence results are obtained by means of the test function method.展开更多
In this paper,some existence results for the fourth order nonlinear subelliptic equations on the Heisenberg group are given by means of variational methods.
Let G be a Heisenberg group over local field K. In the paper we give some local maximal functions which define the Hardy spaces h(P)(G) equivalently, obtain the atomic decomposition of local Hardy spaces. We also give...Let G be a Heisenberg group over local field K. In the paper we give some local maximal functions which define the Hardy spaces h(P)(G) equivalently, obtain the atomic decomposition of local Hardy spaces. We also give some bounded convolution operators h(P)(G), from which we can characterize h(P)(G) by sqare functions.展开更多
基金Supported by National Nature Science Foundation in China(12101564,11971425,11801508)Nature Science Foundation of Zhejiang province(LY22A010013)Domestic Visiting Scholar Teacher Professional Development Project(FX2021042)。
文摘The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.In this paper,we introduce a Lie group that the Heisenberg group can be imbedded into and call it generalized complex Heisenberg.We investigate quaternionic analysis on the generalized complex Heisenberg.We also give the Penrose integral formula for k-CF functions and construct the tangential k-Cauchy-Fueter complex.
文摘In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Besov spaces with more general assumptions on coefficients for both homogeneous equations and non-homogeneous equations. This study of regularity estimates expands the Calderón-Zygmund theory in the Heisenberg group.
基金supported by NSFC 11171203, S2011040004131STU Scientific Research Foundation for Talents TNF 10026+1 种基金supported by NSFC No.10990012,10926179RFDP of China No.200800010009
文摘Let L = -△Hn + V be a SchrSdinger operator on Heisenberg group Hn, where AHn is the sublaplacian and the nonnegative potential V belongs to the reverse HSlder class BQ/2 where Q is the homogeneous dimension of Hn. Let T1 = (--△Hn +V)-1V, T2 = (-△Hn +V)-1/2V1/2, and T3 = (--AHn +V)-I/2△Hn, then we verify that [b, Ti], i = 1, 2, 3 are bounded on some LP(Hn), where b ∈ BMO(Hn). Note that the kernel of Ti, i = 1, 2, 3 has no smoothness.
文摘Let ∠= -△Hn+ V be the Schrdinger operator on the Heisenberg groups Hn,where V is a nonnegative function satisfying the reverse Hlder inequality. In this article, the author obtains the BMO_∠ and BLO_∠ estimates of the fractional integrals associated to ∠.
文摘Recently, many new features of Sobolev spaces W k,p ?RN ? were studied in [4-6, 32]. This paper is devoted to giving a brief review of some known characterizations of Sobolev spaces in Euclidean spaces and describing our recent study of new characterizations of Sobolev spaces on both Heisenberg groups and Euclidean spaces obtained in [12] and [13] and outlining their proofs. Our results extend those characterizations of first order Sobolev spaces in [32] to the Heisenberg group setting. Moreover, our theorems also provide diff erent characterizations for the second order Sobolev spaces in Euclidean spaces from those in [4, 5].
基金Sponsored by the NSFC (10871003, 10701008, 10726064)the Specialized Research Fund for the Doctoral Program of Higher Education of China (2007001040)
文摘In this article, the properties of multiresolution analysis and self-similar tilings on the Heisenberg group are studied. Moreover, we establish a theory to construct an orthonormal Haar wavelet base in L^2(H^d) by using self-similar tilings for the acceptable dilations on the Heisenberg group.
基金the National Nature Science Foundation of China(10261002)
文摘In this article,the authors estimate some functions by using the explicit expression of the heat kernels for the Cayley Heisenberg groups,and then prove the uniform boundedness of the Riesz transforms on these nilpotent Lie groups.
文摘The authors obtain an explicit expression of the heat kernel for the Cayley Heisenberg group of order n by using the stochastic integral method of Gaveau. Apart from the standard Heisenberg group and the quaternionic Heisenberg group, this is the only nilpotent Lie group on which an explicit formula for the heat kernel has been obtained.
基金Supported by Doctor Special Foundation of Jiangsu Second Normal University(JSNU2015BZ07)
文摘We discuss the fundamental solution for m-th powers of the sub-Laplacian on the Heisenberg group. We use the representation theory of the Heisenberg group to analyze the associated m-th powers of the sub-Laplacian and to construct its fundamental solution. Besides, the series representation of the fundamental solution for square of the sub-Laplacian on the Heisenberg group is given and we also get the closed form of the fundamental solution for square of the sub-Laplacian on the Heisenberg group with dimension n = 2, 3, 4.
基金National Natural Science Foundation of China (19771048)
文摘In this paper, the properties of the maps for the Heisenberg group targets are studied. For u e∈W1,α(Ω, Hm), some Poincare type inequalities are proved. For the energy minimizers, the ∈-regularity theorems and the singularity theorems are obtained.
基金This work is supported by NNSF(10471063), Hunan NSF(03JJY4002) & Hunan Education Administration Item(03A011)
文摘The purpose of this paper is to prove existence of minimisers of the functional where Ω is an open set of the Heisenberg group Hn, K runs over all closed sets of Hn, u varies in C_H^1(Ω\ K), α,β> 0,q≥1, g ∈ Lq(Ω) ∩ L∞(Ω) and f : R2n→R is a convex function satisfying some structure conditions (H1)(H2)(H3) (see below).
基金supported by National Science Foundation of China (10771175)
文摘Motivated by the idea of M. Ledoux who brings out the connection between Sobolev embeddings and heat kernel bounds, we prove an analogous result for Kohn’s sub-Laplacian on the Heisenberg type groups. The main result includes features of an inequality of either Sobolev or Galiardo-Nirenberg type.
基金Supported by National Natural Science Foundation of China(11471040 and 11761131002)。
文摘As we know,thus far,there has appeared no definition of bilinear spectral multipliers on Heisenberg groups.In this article,we present one reasonable definition of bilinear spectral multipliers on Heisenberg groups and investigate its boundedness.We find some restrained conditions to separately ensure its boundedness from C0(H^(n))×L^(2)(H^(n))to L^(2)(H^(n)),from L2(H^(n))×C0(H^(n))to L^(2)(H^(n)),and from L^(p)×L^(q) to L^(r) with 2<p,q<∞,2≤r≤∞.
基金supported by the Fundamental Research Funds for the Central Universities (1082001)National Science Foundation of China (11101096)
文摘We prove some Trudinger-type inequalities and Brezis-Gallouet-Wainger inequality on the Heisenberg group, extending to this context the Euclidean results by T. Ozawa.
基金Supported by National Natural Science Foundation of China (10871003, 10990012)the Specialized Research Fund for the Doctoral Program of Higher Education of China (2007001040)
文摘We prove that the restriction operator for the sublaplacian on the quaternion Heisenberg group is bounded from L^p to L^p' if 1 ≤ p ≤4/3. This is different from the Heisenberg group, on which the restriction operator is not bounded from Lp to Lp' unless p = 1.
文摘This paper deals with the problem of the type triangle open_H f+ f^p =O inquaternionic Heisenberg group, where triangle open_H is the quaternionic Heisenberg Laplacian. Itis proved that, under suitable conditions on p and /, the only solution of triangle open_H f+ f^p=O.
基金supported by National Natural Science Foundation of China(10371099)Natural Science Basic Research Plan in Shaanxi Province of China (2006A09)
文摘This article deals with the global existence and nonexistence of solutions to the degenerate heat inequalities with singular potential on the Heisenberg group. To prove the existence results, the authors adjust the method of supersolutions to their setting. The nonexistence results are obtained by means of the test function method.
文摘In this paper,some existence results for the fourth order nonlinear subelliptic equations on the Heisenberg group are given by means of variational methods.
文摘Let G be a Heisenberg group over local field K. In the paper we give some local maximal functions which define the Hardy spaces h(P)(G) equivalently, obtain the atomic decomposition of local Hardy spaces. We also give some bounded convolution operators h(P)(G), from which we can characterize h(P)(G) by sqare functions.