In this paper, responses of germination physiology of pigeon pea (Cajanus cajan) seeds to drought stress in karst water environment and non-karst (allogenic) water environment were studied to explore the adaptabil...In this paper, responses of germination physiology of pigeon pea (Cajanus cajan) seeds to drought stress in karst water environment and non-karst (allogenic) water environment were studied to explore the adaptability of pigeon pea to karst environment. The results showed that: (i) Under drought stress of 20% PEG- 6000, the germination rate, vigor index, germination index and biomass of pigeon pea seeds on day 7 cultivated with karst water were all greater than that of the allogenic water treatment group, while the seed germination stress index was significantly smaller than that of the allogenic water treatment group, suggesting that karst water environment was more favorable to pigeon pea seed germination. (ii) Without drought stress, the malondialdehyde (MDA) and superoxide dismutase (SOD) activities of pigeon pea seeds cultivated with karst water were all smaller than that of the allogenic water group. However, under drought stress, the SOD activity was significantly higher than that of allogenic water group, suggesting pigeon pea SOD in karst water was able to more rapidly respond to external drought stress, and increase its own activity to reduce the damage to the plants. And (iii) with and without drought stress, the soluble protein level of the karst water group was higher than that of the allogenic water group, while the free amino acid level was lower than that of the allogenic water group. This difference was more significant with the presence of drought stress, suggesting that the karst water environment was more favorable to the accumulation of soluble proteins and thus produced larger biomass. Hence, pigeon pea is a tree species that is adapted to high-calcium, alkaline environments in karst areas, and is of great significance for the revegetation and rocky desertification control in mountainous karst areas.展开更多
2004年2月、9月、12月和2005年3月,利用澳大利亚产的微侵蚀计(M EM,M icroe-rosion m eter)对湖南郴州礼家洞观测点非岩溶流水中的碳酸盐岩(包括石灰岩和白云岩)试块进行了侵蚀速率的精确测定,共取得数据1550个。用SPSS应用软件对数据...2004年2月、9月、12月和2005年3月,利用澳大利亚产的微侵蚀计(M EM,M icroe-rosion m eter)对湖南郴州礼家洞观测点非岩溶流水中的碳酸盐岩(包括石灰岩和白云岩)试块进行了侵蚀速率的精确测定,共取得数据1550个。用SPSS应用软件对数据进行了处理,发现礼家洞非岩溶流水中的碳酸盐岩的侵蚀速率异常的高,最大的达到了13.6mm/a。在每次测量碳酸盐岩侵蚀速率的同时,使用德国WTW公司生产的MultilineP3多参数自动记录仪,对每个碳酸盐岩试块放置点的水温、pH值、电导率进行了现场监测,并取回水样分析了其中的主要阴阳离子浓度。通过对这些水化学资料的分析,发现礼家洞非岩溶流水的侵蚀能力很强,表现在水的CO2分压很高(可达到12882Pa),而方解石和白云石的饱和指数很低(分别达到-4.78和-10.35)。对比发现,非岩溶流水中碳酸盐岩的侵蚀速率与其方解石和白云石的饱和指数呈负相关关系,即水中方解石和白云石的饱和指数愈低,碳酸盐岩的侵蚀速率就愈高。此外,观察发现,碳酸盐岩试块本身的结构特别是本试验中白云岩的粗晶结构对其侵蚀速率有巨大的影响,反映了机械侵蚀(流水的物理搬运)对侵蚀速率的贡献(可达90%以上),这与传统的将碳酸盐岩试片放入土壤中测得的主要是化学溶蚀速率不同。展开更多
基金National Natural Science Foundation of China(41302289)the Natural Science Foundation of Guangxi(2014GXNSFBA118225)+1 种基金the Project of the China Geological Survey(12120113005300)the Ministry of Land and Resource(201211086-05)
文摘In this paper, responses of germination physiology of pigeon pea (Cajanus cajan) seeds to drought stress in karst water environment and non-karst (allogenic) water environment were studied to explore the adaptability of pigeon pea to karst environment. The results showed that: (i) Under drought stress of 20% PEG- 6000, the germination rate, vigor index, germination index and biomass of pigeon pea seeds on day 7 cultivated with karst water were all greater than that of the allogenic water treatment group, while the seed germination stress index was significantly smaller than that of the allogenic water treatment group, suggesting that karst water environment was more favorable to pigeon pea seed germination. (ii) Without drought stress, the malondialdehyde (MDA) and superoxide dismutase (SOD) activities of pigeon pea seeds cultivated with karst water were all smaller than that of the allogenic water group. However, under drought stress, the SOD activity was significantly higher than that of allogenic water group, suggesting pigeon pea SOD in karst water was able to more rapidly respond to external drought stress, and increase its own activity to reduce the damage to the plants. And (iii) with and without drought stress, the soluble protein level of the karst water group was higher than that of the allogenic water group, while the free amino acid level was lower than that of the allogenic water group. This difference was more significant with the presence of drought stress, suggesting that the karst water environment was more favorable to the accumulation of soluble proteins and thus produced larger biomass. Hence, pigeon pea is a tree species that is adapted to high-calcium, alkaline environments in karst areas, and is of great significance for the revegetation and rocky desertification control in mountainous karst areas.
文摘2004年2月、9月、12月和2005年3月,利用澳大利亚产的微侵蚀计(M EM,M icroe-rosion m eter)对湖南郴州礼家洞观测点非岩溶流水中的碳酸盐岩(包括石灰岩和白云岩)试块进行了侵蚀速率的精确测定,共取得数据1550个。用SPSS应用软件对数据进行了处理,发现礼家洞非岩溶流水中的碳酸盐岩的侵蚀速率异常的高,最大的达到了13.6mm/a。在每次测量碳酸盐岩侵蚀速率的同时,使用德国WTW公司生产的MultilineP3多参数自动记录仪,对每个碳酸盐岩试块放置点的水温、pH值、电导率进行了现场监测,并取回水样分析了其中的主要阴阳离子浓度。通过对这些水化学资料的分析,发现礼家洞非岩溶流水的侵蚀能力很强,表现在水的CO2分压很高(可达到12882Pa),而方解石和白云石的饱和指数很低(分别达到-4.78和-10.35)。对比发现,非岩溶流水中碳酸盐岩的侵蚀速率与其方解石和白云石的饱和指数呈负相关关系,即水中方解石和白云石的饱和指数愈低,碳酸盐岩的侵蚀速率就愈高。此外,观察发现,碳酸盐岩试块本身的结构特别是本试验中白云岩的粗晶结构对其侵蚀速率有巨大的影响,反映了机械侵蚀(流水的物理搬运)对侵蚀速率的贡献(可达90%以上),这与传统的将碳酸盐岩试片放入土壤中测得的主要是化学溶蚀速率不同。