In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training s...In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results.展开更多
Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resu...Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resulting in slow convergence, high computational costs, and learning failures, particularly when small datasets are used. Methods A novel method is presented for dense-shape correspondence, whereby the spatial information transformed by neural networks is combined with the projections onto spectral maps to overcome the “chicken or egg” challenge by selectively sampling only points with high confidence in their alignment. These points then contribute to the alignment and spectral loss terms, boosting training, and accelerating convergence by a factor of five. To ensure full unsupervised learning, the Gromov–Hausdorff distance metric was used to select the points with the maximal alignment score displaying most confidence. Results The effectiveness of the proposed approach was demonstrated on several benchmark datasets, whereby results were reported as superior to those of spectral and spatial-based methods. Conclusions The proposed method provides a promising new approach to dense-shape correspondence, addressing the key challenges in the field and offering significant advantages over the current methods, including faster convergence, improved accuracy, and reduced computational costs.展开更多
For mode selection in a quantum cascade laser(QCL),we demonstrate an anti-symmetric sampled grating(ASG).The wavelength of the-1-th mode of this laser has been blue-shifted more than 75 nm(~10 cm^(-1))compared with th...For mode selection in a quantum cascade laser(QCL),we demonstrate an anti-symmetric sampled grating(ASG).The wavelength of the-1-th mode of this laser has been blue-shifted more than 75 nm(~10 cm^(-1))compared with that of an ordinary sampled grating laser with an emission wavelength of approximately 8.6μm,when the periodicities within both the base grating and the sample grating are kept constant.Under this condition,an improvement in the continuous tuning capability of the QCL array is ensured.The ASG structure is fabricated in holographic exposure and optical photolithography,thereby enhancing its flexibility,repeatability,and cost-effectiveness.The wavelength modulation capability of the two channels of the grating is insensitive to the variations in channel size,assuming that the overall waveguide width remains constant.The output wavelength can be tailored freely within a certain range by adjusting the width of the ridge and the material of the cladding layer.展开更多
Near-infrared( NIR) spectroscopy has been widely employed as a process analytical tool( PAT) in various fields; the most important reason for the use of this method is its ability to record spectra in real time to cap...Near-infrared( NIR) spectroscopy has been widely employed as a process analytical tool( PAT) in various fields; the most important reason for the use of this method is its ability to record spectra in real time to capture process properties. In quantitative online applications,the robustness of the established NIR model is often deteriorated by process condition variations,nonlinear of the properties or the high-dimensional of the NIR data set. To cope with such situation,a novel method based on principal component analysis( PCA) and artificial neural network( ANN) is proposed and a new sample-selection method is mentioned. The advantage of the presented approach is that it can select proper calibration samples and establish robust model effectively. The performance of the method was tested on a spectroscopic data set from a refinery process. Compared with traditional partial leastsquares( PLS),principal component regression( PCR) and several other modeling methods, the proposed approach was found to achieve good accuracy in the prediction of gasoline properties. An application of the proposed method is also reported.展开更多
This paper develops a parameter-expanded Monte Carlo EM (PX-MCEM) algorithm to perform maximum likelihood estimation in a multivariate sample selection model. In contrast to the current methods of estimation, the prop...This paper develops a parameter-expanded Monte Carlo EM (PX-MCEM) algorithm to perform maximum likelihood estimation in a multivariate sample selection model. In contrast to the current methods of estimation, the proposed algorithm does not directly depend on the observed-data likelihood, the evaluation of which requires intractable multivariate integrations over normal densities. Moreover, the algorithm is simple to implement and involves only quantities that are easy to simulate or have closed form expressions.展开更多
The complex and uncertain relationship among failures was always ignored in failure sample selection based on traditional testability demonstration experimental method. A failure pervasion model is founded based on fu...The complex and uncertain relationship among failures was always ignored in failure sample selection based on traditional testability demonstration experimental method. A failure pervasion model is founded based on fuzzy probability Petri net (FPPN) which can depict the propagation and pervasion relation among failures,then failure pervasion intensity is defined,the process of failure pervasion was depicted based on k-step fault pervasion algorithm and the pervasion intensity was expressed by a value. The method of sample selection based on failure pervasion intensity and failure rate is introduced into the process of sample selection. The practical application shows that the sample set selected based on failure pervasion intensity and failure rate can represent the failure set adequately.展开更多
Multi-label learning deals with data associated with a set of labels simultaneously. Dimensionality reduction is an important but challenging task in multi-label learning. Feature selection is an efficient technique f...Multi-label learning deals with data associated with a set of labels simultaneously. Dimensionality reduction is an important but challenging task in multi-label learning. Feature selection is an efficient technique for dimensionality reduction to search an optimal feature subset preserving the most relevant information. In this paper, we propose an effective feature evaluation criterion for multi-label feature selection, called neighborhood relationship preserving score. This criterion is inspired by similarity preservation, which is widely used in single-label feature selection. It evaluates each feature subset by measuring its capability in preserving neighborhood relationship among samples. Unlike similarity preservation, we address the order of sample similarities which can well express the neighborhood relationship among samples, not just the pairwise sample similarity. With this criterion, we also design one ranking algorithm and one greedy algorithm for feature selection problem. The proposed algorithms are validated in six publicly available data sets from machine learning repository. Experimental results demonstrate their superiorities over the compared state-of-the-art methods.展开更多
The numerical calculation method is widely used in the evaluation of slope stability,but it cannot take the randomness and fuzziness into account that exist in rock and soil engineering objectively.The fuzzy optimizat...The numerical calculation method is widely used in the evaluation of slope stability,but it cannot take the randomness and fuzziness into account that exist in rock and soil engineering objectively.The fuzzy optimization theory is thus introduced to the evaluation of slope stability by this paper and a method of fuzzy optimal selection of similar slopes is put forward to analyze slope stability.By comparing the relative membership degrees that the evaluated object sample of slope is similar to the source samples of which the stabilities are detected clearly,the source sample with the maximal relative membership degree will be chosen as the best similar one to the object sample,and the stability of the object sample can be evaluated by that of the best similar source sample.In the process many uncertain influential factors are considered and characteristics and knowledge of the source samples are obtained.The practical calculation indicates that it can achieve good results to evaluate slope stability by using this method.展开更多
Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data se...Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data selection, selecting all the peak lines of the spectra, selecting intensive spectral partitions and the whole spectra, were utilized to compare the infiuence of different inputs of PCA on the classification of steels. Three intensive partitions were selected based on experience and prior knowledge to compare the classification, as the partitions can obtain the best results compared to all peak lines and the whole spectra. We also used two test data sets, mean spectra after being averaged and raw spectra without any pretreatment, to verify the results of the classification. The results of this comprehensive comparison show that a back propagation network trained using the principal components of appropriate, carefully selecred spectral partitions can obtain the best results accuracy can be achieved using the intensive spectral A perfect result with 100% classification partitions ranging of 357-367 nm.展开更多
This study examines the impact of farmers’cooperatives participation and technology adoption on their economic welfare in China.A double selectivity model(DSM)is applied to correct for sample selection bias stemming ...This study examines the impact of farmers’cooperatives participation and technology adoption on their economic welfare in China.A double selectivity model(DSM)is applied to correct for sample selection bias stemming from both observed and unobserved factors,and a propensity score matching(PSM)method is applied to calculate the agricultural income difference with counter factual analysis using survey data from 396 farmers in 15 provinces in China.The findings indicate that farmers who join farmer cooperatives and adopt agricultural technology can increase agricultural income by 2.77 and 2.35%,respectively,compared with those non-participants and non-adopters.Interestingly,the effect on agricultural income is found to be more significant for the low-income farmers than the high-income ones,with income increasing 5.45 and 4.51%when participating in farmer cooperatives and adopting agricultural technology,respectively.Our findings highlight the positive role of farmer cooperatives and agricultural technology in promoting farmers’economic welfare.Based on the findings,government policy implications are also discussed.展开更多
A novel dynamic batch selective sampling algorithm based on version space analysis is presented. In the traditional batch selective sampling, example selection is entirely determined by the existing unreliable classif...A novel dynamic batch selective sampling algorithm based on version space analysis is presented. In the traditional batch selective sampling, example selection is entirely determined by the existing unreliable classification boundary; meanwhile, within a batch, examples labeled previously fail to provide instructive information for the selection of the rest. As a result, using the examples selected in batch mode for model refinement will jeopardize the classification performance. Based on the duality between feature space and parameter space under the SVM active learning fi:amework, dynamic batch selective sampling is proposed to address the problem. We select a batch of examples dynamically, using the examples labeled previously as guidance for further selection. In this way, the selection of feedback examples is determined by both the existing classification model and the examples labeled previously. Encouraging experimental results demonstrate the effectiveness of the proposed algorithm.展开更多
As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring sys...As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring system.In order to solve the problem of wavelength redundancy in full spectrum partial least squares(PLS)modeling for VOCs concentration analysis,a new method based on improved interval PLS(iPLS)integrated with Monte-Carlo sampling,called iPLS-MC method,was proposed to select optimal characteristic wavelengths of VOCs spectra.This method uses iPLS modeling to preselect the characteristic wavebands of the spectra and generates random wavelength combinations from the selected wavebands by Monte-Carlo sampling.The wavelength combination with the best prediction result in regression model is selected as the characteristic wavelengths of the spectrum.Different wavelength selection methods were built,respectively,on Fourier transform infrared(FTIR)spectra of ethylene and ethanol gas at different concentrations obtained in the laboratory.When the interval number of iPLS model is set to 30 and the Monte-Carlo sampling runs 1000 times,the characteristic wavelengths selected by iPLS-MC method can reduce from 8916 to 10,which occupies only 0.22%of the full spectrum wavelengths.While the RMSECV and correlation coefficient(Rc)for ethylene are 0.2977 and 0.9999 ppm,and those for ethanol gas are 0.2977 ppm and 0.9999.The experimental results show that the iPLS-MC method can select the optimal characteristic wavelengths of VOCs FTIR spectra stably and effectively,and the prediction performance of the regression model can be significantly improved and simplified by using characteristic wavelengths.展开更多
This paper describes preparation, characterization and electrochemical performance of novel planar miniaturized all-solid-state (ASS) screen-printed potentiometric sensors for the detection of Ca2+ ions in environment...This paper describes preparation, characterization and electrochemical performance of novel planar miniaturized all-solid-state (ASS) screen-printed potentiometric sensors for the detection of Ca2+ ions in environmental samples. Screen-printed graphite-based ion-selective electrodes (ISEs) and screen-printed reference electrodes based on silver-containing pastes have been applied in a space saving manner on common ceramic substrates with small dimensions. Applications to environmental samples are shown by direct potentiometry and potentiometric titrations in real water samples. Conducting polymers (CPs) have been used as solid-contact materials and as intermediate layer between the polyvinyl chloride (PVC)-containing ion-selective membrane and the graphite-containing substrate. Different diamides have been incorporated into the PVC membrane. In the range from 10-4 mol/L to 10-1 mol/L, the ISEs show linear slopes of 27 mV/decade, which is close to the Nernstian response. Moreover, the ISEs have response times of 6 months. The novel potentiometric ASS sensors enable simple and exact Ca2+ determinations in real samples.展开更多
基金supported by the National Natural Science Foundation of China(62371049)。
文摘In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results.
基金Supported by the Zimin Institute for Engineering Solutions Advancing Better Lives。
文摘Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resulting in slow convergence, high computational costs, and learning failures, particularly when small datasets are used. Methods A novel method is presented for dense-shape correspondence, whereby the spatial information transformed by neural networks is combined with the projections onto spectral maps to overcome the “chicken or egg” challenge by selectively sampling only points with high confidence in their alignment. These points then contribute to the alignment and spectral loss terms, boosting training, and accelerating convergence by a factor of five. To ensure full unsupervised learning, the Gromov–Hausdorff distance metric was used to select the points with the maximal alignment score displaying most confidence. Results The effectiveness of the proposed approach was demonstrated on several benchmark datasets, whereby results were reported as superior to those of spectral and spatial-based methods. Conclusions The proposed method provides a promising new approach to dense-shape correspondence, addressing the key challenges in the field and offering significant advantages over the current methods, including faster convergence, improved accuracy, and reduced computational costs.
基金Project supported by the National Basic Research Program of China (Grant No. 2021YFB3201900)in part by the National Natural Science Foundation of China (Grant Nos. 61991430, 61774146, 61790583,61627822, and 61774150)in part by the Key Projects of the Chinese Academy of Sciences (Grant Nos. 2018147, YJKYYQ20190002, QYZDJ-SSW-JSC027,XDB43000000)
文摘For mode selection in a quantum cascade laser(QCL),we demonstrate an anti-symmetric sampled grating(ASG).The wavelength of the-1-th mode of this laser has been blue-shifted more than 75 nm(~10 cm^(-1))compared with that of an ordinary sampled grating laser with an emission wavelength of approximately 8.6μm,when the periodicities within both the base grating and the sample grating are kept constant.Under this condition,an improvement in the continuous tuning capability of the QCL array is ensured.The ASG structure is fabricated in holographic exposure and optical photolithography,thereby enhancing its flexibility,repeatability,and cost-effectiveness.The wavelength modulation capability of the two channels of the grating is insensitive to the variations in channel size,assuming that the overall waveguide width remains constant.The output wavelength can be tailored freely within a certain range by adjusting the width of the ridge and the material of the cladding layer.
基金National Natural Science Foundations of China(Nos.U1162202,61222303)National High-Tech Research and Development Program of China(No.2013AA040701)the Fundamental Research Funds for the Central Universities and Shanghai Leading Academic Discipline Project,China(No.B504)
文摘Near-infrared( NIR) spectroscopy has been widely employed as a process analytical tool( PAT) in various fields; the most important reason for the use of this method is its ability to record spectra in real time to capture process properties. In quantitative online applications,the robustness of the established NIR model is often deteriorated by process condition variations,nonlinear of the properties or the high-dimensional of the NIR data set. To cope with such situation,a novel method based on principal component analysis( PCA) and artificial neural network( ANN) is proposed and a new sample-selection method is mentioned. The advantage of the presented approach is that it can select proper calibration samples and establish robust model effectively. The performance of the method was tested on a spectroscopic data set from a refinery process. Compared with traditional partial leastsquares( PLS),principal component regression( PCR) and several other modeling methods, the proposed approach was found to achieve good accuracy in the prediction of gasoline properties. An application of the proposed method is also reported.
文摘This paper develops a parameter-expanded Monte Carlo EM (PX-MCEM) algorithm to perform maximum likelihood estimation in a multivariate sample selection model. In contrast to the current methods of estimation, the proposed algorithm does not directly depend on the observed-data likelihood, the evaluation of which requires intractable multivariate integrations over normal densities. Moreover, the algorithm is simple to implement and involves only quantities that are easy to simulate or have closed form expressions.
基金Sponsored by the"11th 5-Year Plan"Advanced Research Fund of a National Ministerial Level Project (51317040102)
文摘The complex and uncertain relationship among failures was always ignored in failure sample selection based on traditional testability demonstration experimental method. A failure pervasion model is founded based on fuzzy probability Petri net (FPPN) which can depict the propagation and pervasion relation among failures,then failure pervasion intensity is defined,the process of failure pervasion was depicted based on k-step fault pervasion algorithm and the pervasion intensity was expressed by a value. The method of sample selection based on failure pervasion intensity and failure rate is introduced into the process of sample selection. The practical application shows that the sample set selected based on failure pervasion intensity and failure rate can represent the failure set adequately.
基金supported in part by the National Natural Science Foundation of China(61379049,61772120)
文摘Multi-label learning deals with data associated with a set of labels simultaneously. Dimensionality reduction is an important but challenging task in multi-label learning. Feature selection is an efficient technique for dimensionality reduction to search an optimal feature subset preserving the most relevant information. In this paper, we propose an effective feature evaluation criterion for multi-label feature selection, called neighborhood relationship preserving score. This criterion is inspired by similarity preservation, which is widely used in single-label feature selection. It evaluates each feature subset by measuring its capability in preserving neighborhood relationship among samples. Unlike similarity preservation, we address the order of sample similarities which can well express the neighborhood relationship among samples, not just the pairwise sample similarity. With this criterion, we also design one ranking algorithm and one greedy algorithm for feature selection problem. The proposed algorithms are validated in six publicly available data sets from machine learning repository. Experimental results demonstrate their superiorities over the compared state-of-the-art methods.
基金Sponsored by the Natural Science Foundation of Liaoning Province in China(Grant No.20022106).
文摘The numerical calculation method is widely used in the evaluation of slope stability,but it cannot take the randomness and fuzziness into account that exist in rock and soil engineering objectively.The fuzzy optimization theory is thus introduced to the evaluation of slope stability by this paper and a method of fuzzy optimal selection of similar slopes is put forward to analyze slope stability.By comparing the relative membership degrees that the evaluated object sample of slope is similar to the source samples of which the stabilities are detected clearly,the source sample with the maximal relative membership degree will be chosen as the best similar one to the object sample,and the stability of the object sample can be evaluated by that of the best similar source sample.In the process many uncertain influential factors are considered and characteristics and knowledge of the source samples are obtained.The practical calculation indicates that it can achieve good results to evaluate slope stability by using this method.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA040608)National Natural Science Foundation of China(Nos.61473279,61004131)the Development of Scientific Research Equipment Program of Chinese Academy of Sciences(No.YZ201247)
文摘Principal component analysis (PCA) combined with artificial neural networks was used to classify the spectra of 27 steel samples acquired using laser-induced breakdown spectroscopy. Three methods of spectral data selection, selecting all the peak lines of the spectra, selecting intensive spectral partitions and the whole spectra, were utilized to compare the infiuence of different inputs of PCA on the classification of steels. Three intensive partitions were selected based on experience and prior knowledge to compare the classification, as the partitions can obtain the best results compared to all peak lines and the whole spectra. We also used two test data sets, mean spectra after being averaged and raw spectra without any pretreatment, to verify the results of the classification. The results of this comprehensive comparison show that a back propagation network trained using the principal components of appropriate, carefully selecred spectral partitions can obtain the best results accuracy can be achieved using the intensive spectral A perfect result with 100% classification partitions ranging of 357-367 nm.
基金the Special Project of Major Theoretical Research and Interpretation of Philosophy and Social Sciences of Chongqing Municipal Education Commission,China(19SKZDZX15)the Key Project of Humanities and Social Sciences Research of Chongqing Education Commission,China(18SKSJ003)the Funding for Cultivating Major Projects in Humanities and Social Sciences of Southwest University,China(SWU1809009)。
文摘This study examines the impact of farmers’cooperatives participation and technology adoption on their economic welfare in China.A double selectivity model(DSM)is applied to correct for sample selection bias stemming from both observed and unobserved factors,and a propensity score matching(PSM)method is applied to calculate the agricultural income difference with counter factual analysis using survey data from 396 farmers in 15 provinces in China.The findings indicate that farmers who join farmer cooperatives and adopt agricultural technology can increase agricultural income by 2.77 and 2.35%,respectively,compared with those non-participants and non-adopters.Interestingly,the effect on agricultural income is found to be more significant for the low-income farmers than the high-income ones,with income increasing 5.45 and 4.51%when participating in farmer cooperatives and adopting agricultural technology,respectively.Our findings highlight the positive role of farmer cooperatives and agricultural technology in promoting farmers’economic welfare.Based on the findings,government policy implications are also discussed.
文摘A novel dynamic batch selective sampling algorithm based on version space analysis is presented. In the traditional batch selective sampling, example selection is entirely determined by the existing unreliable classification boundary; meanwhile, within a batch, examples labeled previously fail to provide instructive information for the selection of the rest. As a result, using the examples selected in batch mode for model refinement will jeopardize the classification performance. Based on the duality between feature space and parameter space under the SVM active learning fi:amework, dynamic batch selective sampling is proposed to address the problem. We select a batch of examples dynamically, using the examples labeled previously as guidance for further selection. In this way, the selection of feedback examples is determined by both the existing classification model and the examples labeled previously. Encouraging experimental results demonstrate the effectiveness of the proposed algorithm.
基金supported by National Key Scientific Instrument and Equipment Development Project of China,Grant Nos.2013YQ220643the National 863 Program of China,Grant Nos.2014AA06A503.
文摘As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring system.In order to solve the problem of wavelength redundancy in full spectrum partial least squares(PLS)modeling for VOCs concentration analysis,a new method based on improved interval PLS(iPLS)integrated with Monte-Carlo sampling,called iPLS-MC method,was proposed to select optimal characteristic wavelengths of VOCs spectra.This method uses iPLS modeling to preselect the characteristic wavebands of the spectra and generates random wavelength combinations from the selected wavebands by Monte-Carlo sampling.The wavelength combination with the best prediction result in regression model is selected as the characteristic wavelengths of the spectrum.Different wavelength selection methods were built,respectively,on Fourier transform infrared(FTIR)spectra of ethylene and ethanol gas at different concentrations obtained in the laboratory.When the interval number of iPLS model is set to 30 and the Monte-Carlo sampling runs 1000 times,the characteristic wavelengths selected by iPLS-MC method can reduce from 8916 to 10,which occupies only 0.22%of the full spectrum wavelengths.While the RMSECV and correlation coefficient(Rc)for ethylene are 0.2977 and 0.9999 ppm,and those for ethanol gas are 0.2977 ppm and 0.9999.The experimental results show that the iPLS-MC method can select the optimal characteristic wavelengths of VOCs FTIR spectra stably and effectively,and the prediction performance of the regression model can be significantly improved and simplified by using characteristic wavelengths.
文摘This paper describes preparation, characterization and electrochemical performance of novel planar miniaturized all-solid-state (ASS) screen-printed potentiometric sensors for the detection of Ca2+ ions in environmental samples. Screen-printed graphite-based ion-selective electrodes (ISEs) and screen-printed reference electrodes based on silver-containing pastes have been applied in a space saving manner on common ceramic substrates with small dimensions. Applications to environmental samples are shown by direct potentiometry and potentiometric titrations in real water samples. Conducting polymers (CPs) have been used as solid-contact materials and as intermediate layer between the polyvinyl chloride (PVC)-containing ion-selective membrane and the graphite-containing substrate. Different diamides have been incorporated into the PVC membrane. In the range from 10-4 mol/L to 10-1 mol/L, the ISEs show linear slopes of 27 mV/decade, which is close to the Nernstian response. Moreover, the ISEs have response times of 6 months. The novel potentiometric ASS sensors enable simple and exact Ca2+ determinations in real samples.