期刊文献+
共找到2,018篇文章
< 1 2 101 >
每页显示 20 50 100
Two stages power generation test of the hot dry rock exploration and production demonstration project in the Gonghe Basin,northeastern Qinghai-Tibet plateau,China
1
作者 Er-yong Zhang Dong-guang Wen +24 位作者 Gui-ling Wang Xian-peng Jin Lin-you Zhang Hai-dong Wu Wen-shi Wang Cheng-ming Ye Wei Weng Kuan Li Jin-sheng Wu Xian-chun Tang Chong-yuan Zhang Qing-da Feng Sheng Lian Li-sha Hu Gui-lin Zhu Xing-long Xie Bin Wu Dan Wang Xue Niu Zhao-xuan Niu Dong-lin Liu Hui Zhang Wen-hao Xu Shu-qing Yao Li Yang 《China Geology》 CAS CSCD 2024年第3期409-421,共13页
The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in eff... The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology. 展开更多
关键词 Power generation Hot dry rock(HDR) Enhanced geothermal system(EGS) Genesis mechanism Gonghe Basin Directional drilling reservoir construction Circulation test Induced seismicity Clean energy exploration engineering
下载PDF
Resource Potential and Exploration Techniques of Stratigraphic and subtle Reservoirs in China 被引量:24
2
作者 JiaChengzao ChiYingliu 《Petroleum Science》 SCIE CAS CSCD 2004年第2期1-12,共12页
The onshore oil and gas exploration has stepped into a new stage in China, with equal attention paid to both stratigraphic and subtle reservoirs and structural reservoirs. In the past few years, the increases in oil r... The onshore oil and gas exploration has stepped into a new stage in China, with equal attention paid to both stratigraphic and subtle reservoirs and structural reservoirs. In the past few years, the increases in oil reserves in most basins were found mainly in the stratigraphic and subtle reservoirs. Latest resource evaluation shows that the onshore stratigraphic and subtle reservoirs in China account for 42% of the total remaining resource, the highest in the four major exploration regions. Therefore, these reservoirs will be the most practical, potential and prevalent fields for long-lasting oil and gas exploration in onshore China. Among PetroChina's annual oil geologic reserves of 4.3 × 108t^4.6× 108t, the stratigraphic and subtle reservoirs account for more than 50%. In such basins as Songliao, Ordos, Bohai Bay, Junggar, Tarim, Sichuan and Erlian basins, stratigraphic and subtle reservoirs with geologic reserves ranging from 5×107t to 3×108t were discovered, including Ansai, Jing'an, Daqingzijing, Liuxi, well-21 area in Shinan, and Hadexun. Stratigraphic and subtle reservoirs in the four types of inland basins differ from each other in the formation conditions and the distribution patterns. While continental basins are controlled by unconformity surface, maximum flooding surface and fracture surface, the Paleozoic marine basins are influenced by paleouplift, unconformity surface, and fluctuation of the sea level. Through exploration practices and research, PetroChina has formed its own technique series focused on 3-D seismics and sequence stratigraphy. 展开更多
关键词 Stratigraphic and subtle reservoirs resource potential geologic characteristic exploration technique
下载PDF
Exploration Potential of Marine Source Rocks Oil-Gas Reservoirs in China 被引量:8
3
作者 ZHAO Zongju 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第5期779-797,共19页
So far, more than 150 marine oil-gas fields have been found onshore and offshore about 350. The marine source rocks are mainly Paleozoic and Mesozoic onshore whereas Tertiary offshore. Three genetic categories of oil-... So far, more than 150 marine oil-gas fields have been found onshore and offshore about 350. The marine source rocks are mainly Paleozoic and Mesozoic onshore whereas Tertiary offshore. Three genetic categories of oil-gas reservoirs have been defined for the marine reservoirs in China: primary reservoirs, secondary reservoirs and hydrocarbon-regeneration reservoirs. And three exploration prospects have also been suggested: (1) Primary reservoirs prospects, which are chiefly distributed in many Tertiary basins of the South China Sea (SCS), the Tertiary shelf basins of the East China Sea (ECS) and the Paleozoic of Tarim basin, Sichuan basin and Ordos basin. To explore large-middle-scale even giant oil-gas fields should chiefly be considered in this category reservoirs. These basins are the most hopeful areas to explore marine oil-gas fields in China, among which especially many Tertiary basins of the SCS should be strengthened to explore. (2) Secondary reservoirs prospects, which are mainly distributed in the Paleozoic and Mesozoic of the Tarim basin, Sichuan basin, Qiangtang basin and Chuxiong basin in western China, of which exploration potential is less than that of the primary reservoirs. (3) Hydrocarbon-regeneration reservoirs prospects, which are chiefly distributed in the Bohai Bay basin, North Jiangsu-South Yellow Sea basin, southern North China basin, Jianghan basin, South Poyang basin in eastern China and the Tarim basin in western China, of which source rocks are generally the Paleozoic. And the reservoirs formed by late-stage (always Cenozoic) secondary hydrocarbon generation of the Paleozoic source rocks should mainly be considered to explore, among which middle-small and small oil-gas fields are the chief exploration targets. As a result of higher thermal evolution of Paleozoic and Mesozoic source rocks, the marine reservoirs onshore are mainly gas fields, and so far marine oil fields have only been found in the Tarim basin. No other than establishing corresponding marine oil-gas exploration and development strategy and policy, sufficiently enhancing cognition to the particularity and complexity of China's marine petroleum geology, and applying new thoughts, new theories and new technologies, at the same time tackling some key technologies, it is possible to fast and effectually exploit and utilize the potential huge marine oil-gas resources of China. 展开更多
关键词 MARINE primary reservoirs secondary reservoirs hydrocarbon-regeneration reservoirs reservoirs formation rules exploration strategy China
下载PDF
Reservoir characteristics,formation mechanisms and petroleum exploration potential of volcanic rocks in China 被引量:12
4
作者 Zhi-Guo Mao Ru-Kai Zhu +4 位作者 Jing-Lan Luo Jing-Hong Wang Zhan-Hai Du Ling Su Shao-Min Zhang 《Petroleum Science》 SCIE CAS CSCD 2015年第1期54-66,共13页
Characterized by complex lithology and strong heterogeneity, volcanic reservoirs in China developed three reservoir space types: primary pores, secondary pores and fractures. The formation of reservoir space went thr... Characterized by complex lithology and strong heterogeneity, volcanic reservoirs in China developed three reservoir space types: primary pores, secondary pores and fractures. The formation of reservoir space went through the cooling and solidification stage (including blast fragmentation, crystallization differentiation and solidification) and the epidiagenesis stage (including metasomatism, filling, weathering and leaching, formation fluid dissolution and tectonism). Primary pores were formed at the solidification stage, which laid the foundation for the development and transformation of effective reservoirs. Secondary pores were formed at the epidiagenesis stage, with key factors as weathering and leaching, formation fluid dissolution and tectonism. In China, Mesozoic-Cenozoic volcanic rocks developed in the Songliao Basin and Bohai Bay Basin in the east and Late Paleozoic volcanic rocks developed in the Junggar Basin, Santanghu Basin and Ta- rim Basin in the west. There are primary volcanic reser- voirs and secondary volcanic reservoirs in these volcanic rocks, which have good accumulation conditions and great exploration potential. 展开更多
关键词 Volcanic reservoirs DIAGENESIS Formation mechanism Hydrocarbon exploration
下载PDF
Geologic Characteristics of Volcanic Hydrocarbon Reservoirs and Exploration Directions in China 被引量:12
5
作者 ZOU Caineng ZHU Rukai ZHAO Wenzhi JIA Chengzao ZHANG Guangya YUAN Xuanjun ZHAO Xia WEN Baihong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第1期194-205,共12页
Volcanic rocks are distributed widely in China, which are important exploration targets. By analyzing many discovered volcanic hydrocarbon reservoirs all over the world, the authors summarized the geologic characteris... Volcanic rocks are distributed widely in China, which are important exploration targets. By analyzing many discovered volcanic hydrocarbon reservoirs all over the world, the authors summarized the geologic characteristics of the formation of volcanic hydrocarbon reservoirs in China, and gave further exploration directions and advices. (1) There are mainly Carboniferous-Permian, Jurassic-Cretaceous, Paleogene-Neogene volcanic rocks in oil- and gas-bearing basins in China, which are mainly distributed in the Junggar Basin, Songliao Basin, Bohai Bay Basin, etc. There are mainly intermediate rocks and acidic rocks in east China, and intermediate rocks and basic rocks in west China. They primarily develop in intracontinentai rift settings and island arc environments. (2) Porefissure reservoirs are distributed widely in basins, which are volcanic rocks mainly in explosive and effusive facies. (3) Volcanic hydrocarbon reservoirs are chiefly near-source lithostratigraphic hydrocarbon reservoirs, and the oil and gas accumulation is predominantly controlled by lithotypes, faults and structural positions. (4) Deep-seated oil and gas reservoirs in the Songliao Basin and Carboniferous volcanic hydrocarbon reservoirs in the Junggar Basin are potential giant volcanic gas provinces, the volcanic hydrocarbon reservoirs in the Bohai Bay Basin and Santanghu Basin are favorable for oil and gas reserves increase, and volcanic rocks in the Turpan Basin, Sichuan Basin, Tarim Basin have exploration potentiality. (5) The technology series of oil and gas exploration in volcanic rocks have been preliminarily formed. 展开更多
关键词 volcanic rock geologic characteristics of volcanic hydrocarbon reservoirs lithostratigraphic hydrocarbon reservoirs exploration direction
下载PDF
Oil/Gas Accumulation Characteristics and Exploration Methods of the Deltaic Lithologic Reservoirs in Northern Shaanxi Area 被引量:4
6
作者 YangHua FuJinhua YuJian DuJinliang MuJingkui 《Petroleum Science》 SCIE CAS CSCD 2004年第2期69-78,共10页
There are large deltaic systems in the Triassic Yanchang Formation in the northern Shaanxi area of the Ordos Basin, and developed two sets of good source-reservoir-caprock assemblages and many sets of oil-bearing beds... There are large deltaic systems in the Triassic Yanchang Formation in the northern Shaanxi area of the Ordos Basin, and developed two sets of good source-reservoir-caprock assemblages and many sets of oil-bearing beds. Exploration experience demonstrates that the formation and distribution of the reservoir were controlled by the generative depression of the Yanchang Formation, and deltaic reservoir sand body is the material basis for large-scale oilfields. In addition, secondary laumontite in a low permeable area was dissolved and then a high permeable area was formed. The updip lithologic variety of reservoir sand bodies is favorable to the formation of subtle lithologic traps, and the deltaic reservoirs are characterized by large multi-beds of oil-generation and abundant hydrocarbon resources. In this paper, the petroleum geologic settings of the studied area are analyzed, and the accumulation characteristics and exploration methods of lithologic reservoirs are summarized. It is of theoretical significance for the study of the exploration theories of lithologic reservoirs, and also expedites the exploration steps of deltaic reservoirs in the northern Shaanxi area. 展开更多
关键词 Northern Shaanxi area sedimentary cycle deltaic sand body laumontite solution pore subtle reservoir exploration method
下载PDF
Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China 被引量:6
7
作者 LI Jianzhong TAO Xiaowan +8 位作者 BAI Bin HUANG Shipeng JIANG Qingchun ZHAO Zhenyu CHEN Yanyan MA Debo ZHANG Liping LI Ningxi SONG Wei 《Petroleum Exploration and Development》 CSCD 2021年第1期60-79,共20页
By analyzing the structural background,petroleum geological conditions,and typical regional(paleo) oil and gas reservoirs in marine ultra-deep oil and gas regions in China,this paper reveals the evolution processes of... By analyzing the structural background,petroleum geological conditions,and typical regional(paleo) oil and gas reservoirs in marine ultra-deep oil and gas regions in China,this paper reveals the evolution processes of the marine ultra-deep oil and gas reservoirs and the key controlling factors of accumulation.The marine ultra-deep oil and gas resources in China are buried at depth of greater than 6000 m,and are mainly distributed in the Precambrian and Lower Paleozoic strata in the Sichuan,Tarim and Ordos cratonic basins.The development of marine ultra-deep source rocks in China is controlled by cratonic rifts and cratonic depressions with the background of global supercontinent breakup-convergence cycles.The source rocks in Sichuan Basin have the most developed strata,followed by Tarim Basin,and the development strata and scale of Ordos Basin needs to be further confirmed.The marine ultra-deep reservoir in China is dominated by carbonate rocks,and the reservoir performance is controlled by high-energy sedimentary environment in the early stage,superimposed corrosion and fracture in the later stage.The regional caprocks are dominated by gypsum salt rocks,shale,and tight carbonate rock.The ultra-deep oil and gas fields in China have generally experienced two stages of oil-reservoir forming,cracking(or partial cracking) of paleo-oil reservoirs,and late finalization of cracked gas(or highly mature to over mature oil and gas).The oil and gas accumulation is controlled by static and dynamic geological elements jointly.Major hydrocarbon generation center,high quality and large-scale reservoir resulted from karstification of high energy facies belt,thick gypsum rock or shale caprock,and stable trapping and preservation conditions are the key factors for accumulation of ultra-deep oil and gas.We propose three favorable exploration directions,i.e.the areas around intracratonic rift and intracratonic depression,and craton margin. 展开更多
关键词 ultra-deep strata reservoir evolution Sichuan Basin Tarim Basin Ordos Basin intracratonic rifting exploration direction
下载PDF
Research Advances and Exploration Significance of Large-area Accumulation of Low and Medium Abundance Lithologic Reservoirs 被引量:1
8
作者 ZHAO Wenzhi WANG Zecheng WANG Hongjun CHEN Mengjin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第3期463-476,共14页
In recent years, a series of large low and medium abundance oil and gas fields are discovered through exploration activities onshore China, which are commonly characterized by low porosity-permeability reservoirs, low... In recent years, a series of large low and medium abundance oil and gas fields are discovered through exploration activities onshore China, which are commonly characterized by low porosity-permeability reservoirs, low oil/gas column height, multiple thin hydrocarbon layers, and distribution in overlapping and connection, and so on. The advantageous conditions for large-area accumulation of low-medium abundance hydrocarbon reservoirs include: (1) large (fan) delta sandbodies are developed in the hinterland of large flow-uncontrolled lake basins and they are alternated with source rocks extensively in a structure like "sandwiches"; (2) effective hydrocarbon source kitchens are extensively distributed, offering maximum contact chances with various sandbodies and hydrocarbon source rocks; (3) oil and gas columns are low in height, hydrocarbon layers are mainly of normal-low pressure, and requirements for seal rock are low; (4) reservoirs have strong inheterogeneity and gas reservoirs are badly connected; (5) the hydrocarbon desorption and expulsion under uplifting and unloading environments cause widely distributed hydrocarbon source rocks of coal measures to form large-area reservoirs; (6) deep basin areas and synclinal areas possess reservoir-forming dynamics. The areas with great exploration potential include the Paleozoic and Mesozoic in the Ordos Basin, the Xujiahe Formation in Dachuanzhong in the Sichuan basin, deep basin areas in the Songliao basin etc. The core techniques of improving exploration efficiency consist of the sweetspot prediction technique that focuses on fine characterization of reservoirs, the hydrocarbon layer protecting and high-speed drilling technique, and the rework technique for enhancing productivity. 展开更多
关键词 reserve abundance lithologic hydrocarbon reservoir hydrocarbon-rich sag sweet spot exploration technique
下载PDF
Accumulation and exploration of petroleum reservoirs in west slope of northern Songliao Basin, China 被引量:1
9
作者 MENG Qi’an BAI Xuefeng +3 位作者 ZHANG Wenjing FU Li XUE Tao BAO Li 《Petroleum Exploration and Development》 2020年第2期254-265,共12页
On the basis of the present situation of oil and gas exploration and geological research of the west slope in the northern Songliao Basin, the factors controlling reservoir formation, oil and gas migration and accumul... On the basis of the present situation of oil and gas exploration and geological research of the west slope in the northern Songliao Basin, the factors controlling reservoir formation, oil and gas migration and accumulation, have been re-examined from the aspects of structure, deposition and reservoir formation. The results show that:(1) The west slope is a gentle slope which overlaps to the west, and nose structure is developed near the hydrocarbon generation depression, which is in the dominant direction area of hydrocarbon migration. A series of NE structural belts are developed on the slope and are favorable places for oil and gas accumulation.(2) The west slope can be further divided into the upper slope and the lower slope, and there are many kinds of oil and gas reservoirs, including structural, structural-lithologic and lithologic ones. In the upper slope, the major oil layer is Sartu controlled by structure;in the lower slope, multi-layers are oil-bearing, and the oil reservoirs are mostly composite ones.(3) Faults, unconformity surfaces and continuous sand bodies are the main channels of oil and gas migration;structure, sand body and fault jointly control the oil and gas enrichment in the slope;and the matching relationship between micro-amplitude and sand body, small fault and sand body control the oil and gas accumulation. On the basis of the above research, fine identification and effectiveness evaluation technology of composite trap has been developed through extensive study. Combination traps were identified by multiple technologies, including fault classification, micro-amplitude structure identification, fine sedimentation research, and lithologic trap identification by waveform indication inversion;and then the configuration relationship between fault and sand body, structural amplitude and sand body were analyzed to set up the evaluation criteria of effective traps. According to the criteria, the traps were selected to enhance the exploration success rate. 展开更多
关键词 reservoir type accumulation features exploration practice slope accumulation west slope Songliao Basin
下载PDF
Geological characteristics of unconventional tight oil reservoir (10^(9) t): A case study of Upper Cretaceous Qingshankou Formation, northern Songliao Basin, NE China
10
作者 Li-zhi Shi Zhuo-zhuo Wang +4 位作者 Zhan-tao Xing Shan Meng Shuai Guo Si-miao Wu Li-yan Luo 《China Geology》 CAS CSCD 2024年第1期51-62,共12页
The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important r... The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area. 展开更多
关键词 Unconventional oil and gas Tight oil Thin-bedded mudstone-siltstone-sandstone reservoir Qijia area Qingshankou Formation Oil and gas exploration engineering Songliao Basin Daqing oilfield
下载PDF
Formation Conditions and Exploration-favoring Areas of Subtle Reservoirs in West Taibei Sag
11
作者 YuanMingsheng WangJinsong LiBin 《Petroleum Science》 SCIE CAS CSCD 2004年第2期87-98,共12页
At the initial stage of subtle reservoir exploration in the shallow to medium formations of the Taibei Sag, Tuha Basin, so far, three kinds of subtle reservoirs (stratigraphic, lithologic and structural-lithologic res... At the initial stage of subtle reservoir exploration in the shallow to medium formations of the Taibei Sag, Tuha Basin, so far, three kinds of subtle reservoirs (stratigraphic, lithologic and structural-lithologic reservoirs) have been found. Since both the amount and reserve of the discovered subtle reservoirs are small, a great exploration potential remains in the Taibei Sag. The shallow to medium formations in the west of the Taibei Sag were divided into three second-order sequences and ten third-order sequences, of which the rising cyclothems of SQ(J2q) and SQ8 (J2s2) datum level are major exploration targets for the subtle reservoirs (lithologic). The depositional systems of Qiquanhu and Subashi braided river delta were developed there, where the sedimentary sand body is dominated by the regional slopes and slope break belts. There are four main modes the formation of lithologic traps: deltaic front onlap on the slope belt, deltaic front toplap on the slope break belt, lately tilted frontal sand body and sublacustrine fan—slope fan on the slope break belt, of which the first three modes are the major styles of the formation of subtle reservoirs. Major targets for subtle reservoir exploration in the near future include Putaogou Member on the north slope of Huoyanshan, the east slope of Pubei, the nose-like palaeohigh regions of Huobei, Subashi and Lianmuqin, around the Shengbei secondary sag. 展开更多
关键词 Taibei Sag subtle reservoir exploration potential target sequence lithologic trap target zone
下载PDF
Geological reservoir and resource potential(10^(13)m^(3))of gas hydrates in the South China Sea
12
作者 Pi-bo Su Wei Wei +5 位作者 Yun-bao Sun Yao-yao Lü Huai Cheng Wei-feng Han Wei Zhang Jin-qiang Liang 《China Geology》 CAS CSCD 2024年第3期422-444,共23页
A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this ... A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs. 展开更多
关键词 reservoir characteristics Natural gas hydrates Gas migration Resource potential Resource evaluation methods Hierarchical evaluation system Volumetric method South China Sea Clean energy exploration engineering
下载PDF
Reservoir characteristics of the first member of Middle Permian Maokou Formation in Sichuan Basin and its periphery and inspirations to petroleum exploration,SW China
13
作者 SU Chengpeng LI Rong +2 位作者 SHI Guoshan JIA Huofu SONG Xiaobo 《Petroleum Exploration and Development》 CSCD 2021年第6期1329-1340,共12页
Based on a large number of field outcrops and cores taken systematically from boreholes,by microscopic observa-tion,physical property analysis,mineralogy analysis,geochemical analysis etc.,reservoir characteristics of... Based on a large number of field outcrops and cores taken systematically from boreholes,by microscopic observa-tion,physical property analysis,mineralogy analysis,geochemical analysis etc.,reservoir characteristics of the first member of Middle Permian Maokou Formation in Sichuan Basin("Mao 1 Me mber"for short)are analyzed.(1)Rhythmic limestone-marl reservoirs of this member mostly exist in marl layers are a set of tight carbonate fracture-pore type reservoir with low porosity and low permeability,with multiple types of storage space,mainly secondary dissolution pores and fissures of clay minerals.(2)The clay minerals are mainly diagenetic clay minerals,such as sepiolite,talc and their intermediate products,aliettite,with hardly terrigenous clay minerals,and the reservoir in different regions have significant differences in the types of clay minerals.(3)The formation of high quality tight carbonate reservoir with limestone-marl interbeds is related to the differential diagene-sis in the early seawater burial stage and the exposure karstification in the early diagenetic stage.It is inferred through th e study that the inner ramp of southwestern Sichuan Basin is more likely to have sweet spots with high production,while the outer ramp in eastern Sichuan Basin is more likely to have large scale contiguous reservoir with low production. 展开更多
关键词 Sichuan Basin Maokou Formation limestone-marl alternations tight carbonate reservoir secondary dissolution pore authigenic clay minerals exploration direction
下载PDF
Theoretical Progress and Key Technologies of Onshore Ultra-Deep Oil/Gas Exploration 被引量:20
14
作者 Xusheng Guo Dongfeng Hu +5 位作者 Yuping Li Jinbao Duan Xuefeng Zhang Xiaojun Fan Hua Duan Wencheng Li 《Engineering》 SCIE EI 2019年第3期458-470,共13页
Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, Chin... Oil/gas exploration around the world has extended into deep and ultra-deep strata because it is increasingly difficult to find new large-scale oil/gas reservoirs in shallow–middle buried strata. In recent years, China has made remarkable achievements in oil/gas exploration in ultra-deep areas including carbonate and clastic reservoirs. Some (ultra) large-scale oil and gas fields have been discovered. The oil/gas accumulation mechanisms and key technologies of oil/gas reservoir exploration and development are summarized in this study in order to share China’s experiences. Ultra-deep oil/gas originates from numerous sources of hydrocarbons and multiphase charging. Liquid hydrocarbons can form in ultradeep layers due to low geothermal gradients or overpressures, and the natural gas composition in ultra-deep areas is complicated by the reactions between deep hydrocarbons, water, and rock or by the addition of mantle- or crust-sourced gases. These oils/gases are mainly stored in the original highenergy reef/shoal complexes or in sand body sediments. They usually have high original porosity. Secondary pores are often developed by dissolution, dolomitization, and fracturing in the late stage. The early pores have been preserved by retentive diageneses such as the early charging of hydrocarbons. Oil/gas accumulation in ultra-deep areas generally has the characteristics of near-source accumulation and sustained preservation. The effective exploration and development of ultra-deep oil/gas reservoirs depend on the support of key technologies. Use of the latest technologies such as seismic signal acquisition and processing, low porosity and permeability zone prediction, and gas–water identification has enabled the discovery of ultra-deep oil/gas resources. In addition, advanced technologies for drilling, completion, and oil/gas testing have ensured the effective development of these fields. 展开更多
关键词 Oil/gas exploration Ultra-deep sources reservoir Petroleum accumulation exploration and EXPLOITATION technologies
下载PDF
Distribution characteristics, exploration and development, geological theories research progress and exploration directions of shale gas in China 被引量:6
15
作者 Shi-zhen Li Zhi Zhou +7 位作者 Hai-kuan Nie Lei-fu Zhang Teng Song Wei-bin Liu Hao-han Li Qiu-chen Xu Si-yu Wei Shu Tao 《China Geology》 2022年第1期110-135,共26页
The shale gas resources in China have great potential and the geological resources of shale gas is over 100×10^(12)m^(3),which includes about 20×10^(12)m^(3) of recoverable resources.Organic-rich shales can ... The shale gas resources in China have great potential and the geological resources of shale gas is over 100×10^(12)m^(3),which includes about 20×10^(12)m^(3) of recoverable resources.Organic-rich shales can be divided into three types according to their sedimentary environments,namely marine,marine-continental transitional,and continental shales,which are distributed in 13 stratigraphic systems from the Mesoproterozoic to the Cenozoic.The Sichuan Basin and its surrounding areas have the highest geological resources of shale gas,and the commercial development of shale gas has been achieved in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in these areas,with a shale gas production of up to 20×10^(9)m^(3) in 2020.China has seen rapid shale gas exploration and development over the last five years,successively achieving breakthroughs and important findings in many areas and strata.The details are as follows.(1)Large-scale development of middle-shallow shale gas(burial depth:less than 3500 m)has been realized,with the productivity having rapidly increased;(2)breakthroughs have been constantly made in the development of deep shale gas(burial depth:3500-4500 m),and the ultradeep shale gas(burial depth:greater than 4500 m)is under testing;(3)breakthroughs have been made in the development of normal-pressure shale gas,and the assessment of the shale gas in complex tectonic areas is being accelerated;(4)shale gas has been frequently discovered in new areas and new strata,exhibiting a great prospect.Based on the exploration and development practice,three aspects of consensus have been gradually reached on the research progress in the geological theories of shale gas achieved in China.(1)in terms of deep-water fine-grained sediments,organic-rich shales are the base for the formation of shale gas;(2)in terms of high-quality reservoirs,the development of micro-nano organic matter-hosted pores serves as the core of shale gas accumulation;(3)in terms of preservation conditions,weak structural transformation,a moderate degree of thermal evolution,and a high pressure coefficient are the key to shale gas enrichment.As a type of important low-carbon fossil energy,shale gas will play an increasingly important role in achieving the strategic goals of peak carbon dioxide emissions and carbon neutrality.Based on the in-depth study of shale gas geological conditions and current exploration progress,three important directions for shale gas exploration in China in the next five years are put forward. 展开更多
关键词 Shale gas Shale gas distribution Formation era Deep-water fine-grained sediments Shale reservoirs Preservation conditions exploration and development Wufeng-Longmaxi formations exploration directions Oil-gas exploration engineering China
下载PDF
Application and development trend of artificial intelligence in petroleum exploration and development 被引量:11
16
作者 KUANG Lichun LIU He +4 位作者 REN Yili LUO Kai SHI Mingyu SU Jian LI Xin 《Petroleum Exploration and Development》 CSCD 2021年第1期1-14,共14页
Aiming at the actual demands of petroleum exploration and development,this paper describes the research progress and application of artificial intelligence(AI)in petroleum exploration and development,and discusses the... Aiming at the actual demands of petroleum exploration and development,this paper describes the research progress and application of artificial intelligence(AI)in petroleum exploration and development,and discusses the applications and development directions of AI in the future.Machine learning has been preliminarily applied in lithology identification,logging curve reconstruction,reservoir parameter estimation,and other logging processing and interpretation,exhibiting great potential.Computer vision is effective in picking of seismic first breaks,fault identification,and other seismic processing and interpretation.Deep learning and optimization technology have been applied to reservoir engineering,and realized the real-time optimization of waterflooding development and prediction of oil and gas production.The application of data mining in drilling,completion,and surface facility engineering etc.has resulted in intelligent equipment and integrated software.The potential development directions of artificial intelligence in petroleum exploration and development are intelligent production equipment,automatic processing and interpretation,and professional software platform.The highlights of development will be digital basins,fast intelligent imaging logging tools,intelligent seismic nodal acquisition systems,intelligent rotary-steering drilling,intelligent fracturing technology and equipment,real-time monitoring and control of zonal injection and production. 展开更多
关键词 artificial intelligence logging interpretation seismic exploration reservoir engineering drilling and completion surface facility engineering
下载PDF
Enrichment characteristics and exploration directions of deep shale gas of Ordovician-Silurian in the Sichuan Basin and its surrounding areas,China 被引量:6
17
作者 NIE Haikuan LI Pei +8 位作者 DANG Wei DING Jianghui SUN Chuanxiang LIU Mi WANG Jin DU Wei ZHANG Peixian LI Donghui SU Haikun 《Petroleum Exploration and Development》 CSCD 2022年第4期744-757,共14页
The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and hig... The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and high pressure,including petrophysical properties analyses,triaxial stress test and isothermal adsorption of methane experiment.(1)The deep shale reservoirs drop significantly in porosity and permeability compared with shallower shale reservoirs,and contain mainly free gas.(2)With higher deviatoric stress and axial strain,the deep shale reservoirs have higher difficulty fracturing.(3)Affected by structural location and morphology,fracture characteristics,geofluid activity stages and intensity,deep shale gas reservoirs have more complicated preservation conditions.(4)To achieve the commercial development of deep shale gas reservoirs,deepening geological understanding is the basis,and exploring reservoir simulation technology befitting the geological features is the key.(5)The siliceous shale and limestone-bearing siliceous shale in the Metabolograptus persculptus-Parakidograptus acuminatus zones(LM1-LM3 graptolite zones)are the high-production intervals for deep shale gas and the most favorable landing targets for horizontal drilling.Deeps water areas such as Jiaoshiba,Wulong,Luzhou and Changning with deep shale reservoirs over 10 m thickness are the most favorable areas for deep shale gas enrichment.It is recommended to carry out exploration and development practice in deep-water shale gas areas deposited deep with burial depth no more than 5000 m where the geological structure is simple and the shale thickness in the LM1-LM3 graptolite zone is greater than 10 m.It is better to increase the lateral length of horizontal wells,and apply techniques including high intensity of perforations,large volume of proppant,far-field and near-wellbore diversions to maximize the stimulated deep reservoir volume. 展开更多
关键词 deep shale gas enrichment conditions reservoir characteristics exploration direction Ordovician Wufeng Formation Silurian Longmaxi Formation Sichuan Basin
下载PDF
Geological characteristics and co-exploration and co-production methods of Upper Permian Longtan coal measure gas in Yangmeishu Syncline, Western Guizhou Province, China 被引量:8
18
作者 Cai-qin Bi Jia-qiang Zhang +6 位作者 Yan-sheng Shan Zhi-fang Hu Fu-guo Wang Huan-peng Chi Yue Tang Yuan Yuan Ya-ran Liu 《China Geology》 2020年第1期38-51,共14页
Coal measure gas(also known as coal-bearing unconventional gas)is the key field and development direction of unconventional natural gas in recent years.The exploration and evaluation of coal measure gas(coalbed methan... Coal measure gas(also known as coal-bearing unconventional gas)is the key field and development direction of unconventional natural gas in recent years.The exploration and evaluation of coal measure gas(coalbed methane,coal shale gas and coal measure tight sandstone gas)from single coalbed methane has greatly expanded the field and space of resource evaluation,which is of positive significance for realizing the comprehensive utilization of coal resources,maximizing the benefits and promoting the innovation of oil and gas geological theory and technological advances in exploration and development.For the first time,in Yangmeishu Syncline of Western Guizhou Province,the public welfare coalbed methane geological survey project of China Geological Survey has been carried out a systematic geological survey of coal measure gas for the Upper Permian Longtan Formation,identified the geological conditions of coal measure gas and found high quality resources.The total geological resource quantity of coalbed methane and coal shale gas is 51.423×109 m3 and the geological resource abundance is up to 566×106 m3/km2.In this area,the coal measures are characterized by many layers of minable coal seams,large total thickness,thin to the medium thickness of the single layer,good gas-bearing property of coal seams and coal measure mudstone and sandstone,good reservoir physical property and high-pressure coefficient.According to the principle of combination of high quality and similarity of key parameters of the coal reservoir,the most favorable intervals are No.5-2,No.7 and No.13-2 coal seam in Well YMC1.And the pilot tests are carried out on coal seams and roof silty mudstone,such as staged perforation,increasing hydraulic fracturing scale and"three gas"production.The high and stable industrial gas flow with a daily gas output of more than 4000 m3 has been obtained,which has realized the breakthrough in the geological survey of coal measure gas in Southwest China.Based on the above investigation results,the geological characteristics of coal measure gas in the multi-thin-coal-seam-developed area and the coexploration and co-production methods,such as the optimization method of favorable intervals,the highefficiency fracturing and reservoir reconstruction method of coal measures,and the"three gas"drainage and production system,are systematically summarized in this paper.It will provide a reference for efficient exploration and development of coal measure gas in similar geological conditions in China. 展开更多
关键词 Coal measure gas reservoir characteristics Favorable interval optimization reservoir fracturing reconstruction Coal measures"three gas"drainage Oil and gas exploration enginerreing Upper Permian Longtan Formation Yangmeishu Syncline Western Guizhou Prov
下载PDF
Accumulation and exploration of continental shale gas resources of Cretaceous Shahezi Formation in Lishu fault depression,Songliao Basin,NE China 被引量:1
19
作者 ZHANG Junfeng XU Xingyou +3 位作者 BAI Jing CHEN Shan LIU Weibin LI Yaohua 《Petroleum Exploration and Development》 CSCD 2022年第3期502-515,共14页
Distribution characteristics,organic matter development characteristics,gas-bearing characteristics,reservoir characteristics,and preservation conditions of the Shahezi Formation shale of Lower Cretaceous in the Lishu... Distribution characteristics,organic matter development characteristics,gas-bearing characteristics,reservoir characteristics,and preservation conditions of the Shahezi Formation shale of Lower Cretaceous in the Lishu fault depression,Songliao Basin,NE China,are analyzed using organic geochemical,whole rock,and SEM analysis data,and CO_(2)and N_(2) adsorption and high-pressure mercury injection experiment data in combination with the tectonic and sedimentation evolution of the region to reveal the geological conditions for enrichment and resource potential of continental shale gas.The organic-rich shale in the Lower Cretaceous of the Lishu fault depression is mainly developed in the lower submember of the second member of the Shahezi Formation(K_(1)sh_(2)^(1) Fm.)and is thick and stable in distribution.The shale has high TOC,mainly types II_(1) and II_(2) organic matter,and is in the mature to the over-mature stage.The volcanic activity,salinization,and reduction of the water environment are conducive to the formation of the organic-rich shale.The shale reservoirs have mainly clay mineral intergranular pores,organic matter pores,carbonate mineral dissolution pores,and foliated microfractures as storage space.The pores are in the mesopore range of 10–50 nm,and the microfractures are mostly 5–10μm wide.Massive argillaceous rocks of lowland and highstand domains are deposited above and below the gas-bearing shale separately in the lower submember of the K_(1)sh_(2)^(1) Fm.,act as the natural roof and floor in the process of shale gas accumulation and preservation,and control the shale gas enrichment.Based on the above understandings,the first shale gas exploration well in Shahezi Formation was drilled in the Lishu fault depression of Songliao Basin.After fracturing,the well tested a daily gas production of 7.6×10^(4) m^(3),marking a breakthrough in continental shale gas exploration in the Shahezi Formation(K1 sh Fm.)of the Lishu fault depression in Songliao Basin.The exploration practice has reference significance for the exploration of continental shale gas in the Lower Cretaceous of Songliao Basin and its periphery. 展开更多
关键词 continental shale gas shale reservoir space organic matter gas-bearing exploration CRETACEOUS Shahezi Formation Lishu fault depression Songliao Basin
下载PDF
Situation and Prospectfor Petroleum Exploration of the Central Gasfield in Shaan-Gan-Ning Basin 被引量:1
20
作者 Yang Junjie(Vice President, Changqing PetroleumExploration Bureau) 《China Oil & Gas》 CAS 1995年第2期10-13,共4页
SituationandProspectforPetroleumExplorationoftheCentralGasfieldinShaan-Gan-NingBasin¥YangJunjie(VicePresiden... SituationandProspectforPetroleumExplorationoftheCentralGasfieldinShaan-Gan-NingBasin¥YangJunjie(VicePresident,ChangqingPetrol... 展开更多
关键词 GEOLOGIC exploration Gas reservoir PROSPECTIVE evaluation
下载PDF
上一页 1 2 101 下一页 到第
使用帮助 返回顶部