针对超宽带(ultra wide band,UWB)定位中影响定位精度的非视距(non line of sight,NLoS)传播误差问题,提出了一种基于Kalman滤波的NLoS误差二次消除方法.该方法利用NLoS误差与测量误差之间的相互独立性,借助Kalman滤波将NLoS误差从总误...针对超宽带(ultra wide band,UWB)定位中影响定位精度的非视距(non line of sight,NLoS)传播误差问题,提出了一种基于Kalman滤波的NLoS误差二次消除方法.该方法利用NLoS误差与测量误差之间的相互独立性,借助Kalman滤波将NLoS误差从总误差中单独分离出来,对其进行实时估计,并将该NLoS误差估计值作为NLoS误差辨别及测距值修正的依据.通过Kalman滤波对到达时间(time of arrival,TOA)测距值进行二次估计、鉴别及修正以提高TOA测距精度,从而实现室内复杂环境下的UWB精准实时定位.仿真实验结果表明:该方法不仅能够对NLoS误差实现良好的跟踪估计,对视距(line of sight,LoS)/NLoS环境转变也具有较强的灵敏感知能力,同时NLoS误差测距值在应用该方法后的定位性能逼近于LoS环境下的理想状态.展开更多
针对无线定位中非视距(Non-Line of Sight,NLOS)误差对定位精度的影响,在分析NLOS误差特性的基础之上提出了多尺度误差抑制算法。该算法将信号的多尺度估计方法和卡尔曼滤波相结合,利用小波变换特有的低通滤波特性能和小波阀值去噪能够...针对无线定位中非视距(Non-Line of Sight,NLOS)误差对定位精度的影响,在分析NLOS误差特性的基础之上提出了多尺度误差抑制算法。该算法将信号的多尺度估计方法和卡尔曼滤波相结合,利用小波变换特有的低通滤波特性能和小波阀值去噪能够很好地消除到达时间/到达时间差分(Time of Arrival/Time Diff of Arrival,TOA/TDOA)测量值中的NLOS误差,给出了Haar小波的实现方法。仿真实验结果表明,该算法在不同的NLOS误差模型和不同的信道环境下均能很好地抑制NLOS误差,较大幅度地提高了定位精度。展开更多
在无线通信定位中,无线信号中引入的非视距(Non-Line of Sight,NLOS)误差会严重降低系统的定位精度。针对上述问题,首先引入信息阈值和缩放因子,细分非视距误差的影响程度,对卡尔曼迭代过程中的增益进行更为精准的实时调整,利用改进后...在无线通信定位中,无线信号中引入的非视距(Non-Line of Sight,NLOS)误差会严重降低系统的定位精度。针对上述问题,首先引入信息阈值和缩放因子,细分非视距误差的影响程度,对卡尔曼迭代过程中的增益进行更为精准的实时调整,利用改进后的卡尔曼滤波算法更大程度上消除了NLOS误差和系统测量误差;其次引入基于测距残差的加权系数对线性位置线(Linear Line of Position,LLOP)和Taylor定位方法的计算结果进行综合处理,进一步提高定位精度和稳健性。实验结果表明,在NLOS环境下,所提算法优于经典的LLOP算法、Chan算法、LLOP-Taylor算法和基于卡尔曼滤波的LLOP算法。展开更多
针对机器人、无人机和其他智能系统的位置信息,研究了非视距(non line of sight,NLOS)环境中基于到达时间(time of arrival,TOA)测距的目标定位问题。在建模过程中,通过引入平衡参数来抑制NLOS误差对定位精度的影响,并成功将定位问题的...针对机器人、无人机和其他智能系统的位置信息,研究了非视距(non line of sight,NLOS)环境中基于到达时间(time of arrival,TOA)测距的目标定位问题。在建模过程中,通过引入平衡参数来抑制NLOS误差对定位精度的影响,并成功将定位问题的形式与一个广义信赖域子问题(generalized trust region subproblem,GTRS)框架进行耦合。与其他凸优化算法不同的是,本文没有联合估计目标节点的位置和平衡参数,而是采用了一种迭代求精的思想,算法可以用二分法高速有效地进行求解。所提算法与已有的算法相比,不需要任何关于NLOS路径的信息。此外,与大多数现有算法不同,所提算法的计算复杂度低,能够满足实时定位的需求。仿真结果表明:该算法具有稳定的NLOS误差抑制能力,在定位性能和算法复杂度之间有着很好的权衡。展开更多
Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes tech...Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes technical challenges in the design and development of communication systems. Due to the high path loss in THz band,wireless THz communication can be used for relatively short distances. Even,for a distance of few meters( > 5 m),the absorption coefficient is very high and hence the performance of the system is poor. The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last two decades.Multiple Input Multiple Output( MIMO) Spatial diversity technique has been exploited in this paper to improve the performance in terahertz band. The results show that the Bit Error Rate( BER) is considerably improved for short distance( < 5 m) with MIMO. However,as the distance increases,the improvement in the error performance is not significant even with increase in the order of diversity. This is because,as distance increases,in some frequency bands the signal gets absorbed by water vapor and results in poor transmission. Adaptive modulation scheme is implemented to avoid these error prone frequencies. Adaptive modulation with receiver diversity is proposed in this work and has improved the BER performance of the channel for distance greater than 5 m.展开更多
文摘针对超宽带(ultra wide band,UWB)定位中影响定位精度的非视距(non line of sight,NLoS)传播误差问题,提出了一种基于Kalman滤波的NLoS误差二次消除方法.该方法利用NLoS误差与测量误差之间的相互独立性,借助Kalman滤波将NLoS误差从总误差中单独分离出来,对其进行实时估计,并将该NLoS误差估计值作为NLoS误差辨别及测距值修正的依据.通过Kalman滤波对到达时间(time of arrival,TOA)测距值进行二次估计、鉴别及修正以提高TOA测距精度,从而实现室内复杂环境下的UWB精准实时定位.仿真实验结果表明:该方法不仅能够对NLoS误差实现良好的跟踪估计,对视距(line of sight,LoS)/NLoS环境转变也具有较强的灵敏感知能力,同时NLoS误差测距值在应用该方法后的定位性能逼近于LoS环境下的理想状态.
文摘针对无线定位中非视距(Non-Line of Sight,NLOS)误差对定位精度的影响,在分析NLOS误差特性的基础之上提出了多尺度误差抑制算法。该算法将信号的多尺度估计方法和卡尔曼滤波相结合,利用小波变换特有的低通滤波特性能和小波阀值去噪能够很好地消除到达时间/到达时间差分(Time of Arrival/Time Diff of Arrival,TOA/TDOA)测量值中的NLOS误差,给出了Haar小波的实现方法。仿真实验结果表明,该算法在不同的NLOS误差模型和不同的信道环境下均能很好地抑制NLOS误差,较大幅度地提高了定位精度。
文摘在无线通信定位中,无线信号中引入的非视距(Non-Line of Sight,NLOS)误差会严重降低系统的定位精度。针对上述问题,首先引入信息阈值和缩放因子,细分非视距误差的影响程度,对卡尔曼迭代过程中的增益进行更为精准的实时调整,利用改进后的卡尔曼滤波算法更大程度上消除了NLOS误差和系统测量误差;其次引入基于测距残差的加权系数对线性位置线(Linear Line of Position,LLOP)和Taylor定位方法的计算结果进行综合处理,进一步提高定位精度和稳健性。实验结果表明,在NLOS环境下,所提算法优于经典的LLOP算法、Chan算法、LLOP-Taylor算法和基于卡尔曼滤波的LLOP算法。
文摘针对机器人、无人机和其他智能系统的位置信息,研究了非视距(non line of sight,NLOS)环境中基于到达时间(time of arrival,TOA)测距的目标定位问题。在建模过程中,通过引入平衡参数来抑制NLOS误差对定位精度的影响,并成功将定位问题的形式与一个广义信赖域子问题(generalized trust region subproblem,GTRS)框架进行耦合。与其他凸优化算法不同的是,本文没有联合估计目标节点的位置和平衡参数,而是采用了一种迭代求精的思想,算法可以用二分法高速有效地进行求解。所提算法与已有的算法相比,不需要任何关于NLOS路径的信息。此外,与大多数现有算法不同,所提算法的计算复杂度低,能够满足实时定位的需求。仿真结果表明:该算法具有稳定的NLOS误差抑制能力,在定位性能和算法复杂度之间有着很好的权衡。
文摘Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes technical challenges in the design and development of communication systems. Due to the high path loss in THz band,wireless THz communication can be used for relatively short distances. Even,for a distance of few meters( > 5 m),the absorption coefficient is very high and hence the performance of the system is poor. The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last two decades.Multiple Input Multiple Output( MIMO) Spatial diversity technique has been exploited in this paper to improve the performance in terahertz band. The results show that the Bit Error Rate( BER) is considerably improved for short distance( < 5 m) with MIMO. However,as the distance increases,the improvement in the error performance is not significant even with increase in the order of diversity. This is because,as distance increases,in some frequency bands the signal gets absorbed by water vapor and results in poor transmission. Adaptive modulation scheme is implemented to avoid these error prone frequencies. Adaptive modulation with receiver diversity is proposed in this work and has improved the BER performance of the channel for distance greater than 5 m.