With rapid advances of solar blind ultraviolet LED and ultraviolet detecting technology in recent years, ultraviolet communication gradually becomes a research hotspot due to its inherent advantages: low solar backgro...With rapid advances of solar blind ultraviolet LED and ultraviolet detecting technology in recent years, ultraviolet communication gradually becomes a research hotspot due to its inherent advantages: low solar background noise, non-line-of-sight(NLOS) and good secrecy. The strong scattering characteristics in atmospheric render ultraviolet waveband the ideal choice for achieving NLOS optical communication. This paper reviews the research history and status of ultraviolet communication both in China and abroad, and especially introduces three main issues of ultraviolet communication: channel model, system analysis and design, light sources and detectors. For each aspect, current open issues and prospective research directions are analyzed.展开更多
With recent developments of deep ultraviolet(DUV)light-emitting diodes and solar-blind detectors,UV communication(UVC)shows great potential in replacing traditional wireless communication in more and more scenarios.Ba...With recent developments of deep ultraviolet(DUV)light-emitting diodes and solar-blind detectors,UV communication(UVC)shows great potential in replacing traditional wireless communication in more and more scenarios.Based on the atmospheric scattering of UV radiation,UVC has gained considerable attention due to its non-line-of-sight ability,omnidirectional communication links and low background noise.These advantages make UVC an ideal option for covert secure communication,especially for military communication.In this review,we present the history and working principle of UVC with a special focus on its light sources and detectors.Comprehensive comparison and application of its light sources and detectors are provided to the best of our knowledge.We further discuss the future application and outlook of UVC.Hopefully,this review will offer valuable insights into the future development of UVC.展开更多
<div style="text-align:justify;"> In the channel estimation for ultraviolet communication, the single scattering power is usually used to approximate the received total power. This approximation error ...<div style="text-align:justify;"> In the channel estimation for ultraviolet communication, the single scattering power is usually used to approximate the received total power. This approximation error is affected by the transceiver configuration. Here, we employ the proportion of received single scattering power in received total power to indicate the approximation error of the single scattering model in different configurations. This is useful for reducing the approximation error by selecting a more appropriate transceiver configuration. </div>展开更多
A 300 kbps wide-angle non-line-of-sight ultraviolet communication system with voice transmission function is designed here.Based on Poisson distribution theory,we design the symbol detecting method for the receiving d...A 300 kbps wide-angle non-line-of-sight ultraviolet communication system with voice transmission function is designed here.Based on Poisson distribution theory,we design the symbol detecting method for the receiving discrete photon signals.Using 272 nm LED array as the light source and PMT as the detector,the voice transceiver is integrated into the carriable size of 200×90×65 mm^(3).An outfield test shows the system obtains the BER of 0.88% under 200 m.Under 10°wide-angle deviation of the transmitter,a BER below 1.33% is achieved.展开更多
This paper considers the non-line-of-sight(NLOS)vehicle localization problem by using millimeter-wave(MMW)automotive radar.Several preliminary attempts for NLOS vehicle detection are carried out and achieve good resul...This paper considers the non-line-of-sight(NLOS)vehicle localization problem by using millimeter-wave(MMW)automotive radar.Several preliminary attempts for NLOS vehicle detection are carried out and achieve good results.Firstly,an electromagnetic(EM)wave NLOS multipath propagation model for vehicle scene is established.Subsequently,with the help of available multipath echoes,a complete NLOS vehicle localiza-tion algorithm is proposed.Finally,simulation and experimental results validate the effectiveness of the established EM wave propagation model and the proposed NLOS vehicle localization algorithm.展开更多
基金supported by the National High-tech R&D Program of China grant 2015AA043302the Basic research project of Shenzhen grant JCYJ20140417115840236
文摘With rapid advances of solar blind ultraviolet LED and ultraviolet detecting technology in recent years, ultraviolet communication gradually becomes a research hotspot due to its inherent advantages: low solar background noise, non-line-of-sight(NLOS) and good secrecy. The strong scattering characteristics in atmospheric render ultraviolet waveband the ideal choice for achieving NLOS optical communication. This paper reviews the research history and status of ultraviolet communication both in China and abroad, and especially introduces three main issues of ultraviolet communication: channel model, system analysis and design, light sources and detectors. For each aspect, current open issues and prospective research directions are analyzed.
基金financially supported by the National Key R&D Program of China(No.2019YFA0708203)the National Natural Science Foundation of China(No.61974139)the Beijing Natural Science Foundation(No.4182063)。
文摘With recent developments of deep ultraviolet(DUV)light-emitting diodes and solar-blind detectors,UV communication(UVC)shows great potential in replacing traditional wireless communication in more and more scenarios.Based on the atmospheric scattering of UV radiation,UVC has gained considerable attention due to its non-line-of-sight ability,omnidirectional communication links and low background noise.These advantages make UVC an ideal option for covert secure communication,especially for military communication.In this review,we present the history and working principle of UVC with a special focus on its light sources and detectors.Comprehensive comparison and application of its light sources and detectors are provided to the best of our knowledge.We further discuss the future application and outlook of UVC.Hopefully,this review will offer valuable insights into the future development of UVC.
文摘<div style="text-align:justify;"> In the channel estimation for ultraviolet communication, the single scattering power is usually used to approximate the received total power. This approximation error is affected by the transceiver configuration. Here, we employ the proportion of received single scattering power in received total power to indicate the approximation error of the single scattering model in different configurations. This is useful for reducing the approximation error by selecting a more appropriate transceiver configuration. </div>
基金the National Key R&D Program of China under Grant 2019YFB2203700in part by the National Nature Science Fund of China under Grants 61527820 and 61625504.
文摘A 300 kbps wide-angle non-line-of-sight ultraviolet communication system with voice transmission function is designed here.Based on Poisson distribution theory,we design the symbol detecting method for the receiving discrete photon signals.Using 272 nm LED array as the light source and PMT as the detector,the voice transceiver is integrated into the carriable size of 200×90×65 mm^(3).An outfield test shows the system obtains the BER of 0.88% under 200 m.Under 10°wide-angle deviation of the transmitter,a BER below 1.33% is achieved.
基金supported by the National Natural Science Foundation of China(62201510,62001091,61801435,61871080,61801435)the Initial Scientific Research Foundation of University of Science and Technology of China(Y030202059018051)+2 种基金Yangtze River Scholar Program,Sichuan Science and Technology Program(2019JDJQ0014)111 Project(B17008)Henan Provincial Department of Science and Technology Research Project(202102210315,212102210029,202102210-137).
文摘This paper considers the non-line-of-sight(NLOS)vehicle localization problem by using millimeter-wave(MMW)automotive radar.Several preliminary attempts for NLOS vehicle detection are carried out and achieve good results.Firstly,an electromagnetic(EM)wave NLOS multipath propagation model for vehicle scene is established.Subsequently,with the help of available multipath echoes,a complete NLOS vehicle localiza-tion algorithm is proposed.Finally,simulation and experimental results validate the effectiveness of the established EM wave propagation model and the proposed NLOS vehicle localization algorithm.