In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where ...In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.展开更多
We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations...We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.展开更多
An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential e...An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.展开更多
Using Nevanlinna theory of the value distribution of meromorphic functions, the author investigates the problem of the growth of solutions of two types of algebraic differential equation and obtains some results.
This is a study of the Durand-Kerner and Nourein methods for finding the roots of a given algebraic equation simultaneously. We consider the conditions under which the iterative methods fail. The numerical example is ...This is a study of the Durand-Kerner and Nourein methods for finding the roots of a given algebraic equation simultaneously. We consider the conditions under which the iterative methods fail. The numerical example is presented.展开更多
The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theore...The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theorems on the existence of solutions are obtained, which perfect the solution theory of linear complex differential equations.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
Using value distribution theory and techniques,the problem of the algebroid solutions of second order algebraic differential equation is investigated.Examples show that the results are sharp.
This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
Linear differential-algebraic equations (DAEs) with time-varying coefficients A(t)x(1)(t) + B(t)x(t) = q(t), which are tractable with a higher index. are discussed. Their essential properties are investigated. Some eq...Linear differential-algebraic equations (DAEs) with time-varying coefficients A(t)x(1)(t) + B(t)x(t) = q(t), which are tractable with a higher index. are discussed. Their essential properties are investigated. Some equivalent system,,; are given. Using them the paper shows how to state properly initial and boundary conditions for these DAEs. The existence and uniqueness theory of the solution of the initial and boundary value problems for higher index DAEs are proposed.展开更多
The algebraic structures of the dynamical equations for the rotational relativistic systems are studied. It is found that the dynamical equations of holonomic conservative rotational relativistic systems and the speci...The algebraic structures of the dynamical equations for the rotational relativistic systems are studied. It is found that the dynamical equations of holonomic conservative rotational relativistic systems and the special nonholonomic rotational relativistic systems have Lie's algebraic structure, and the dynamical equations of the general holonomic rotational relativistic systems and the general nonholonomic rotational relativistic systems have Lie admitted algebraic structure. At last the Poisson integrals of the dynamical equations for the rotational relativistic systems are given.展开更多
In this paper, by means of the normal family theory, we estimate the growth order of meromorphic solutions of some algebraic differential equations and improve the related result of Barsegian et al. [6]. We also give ...In this paper, by means of the normal family theory, we estimate the growth order of meromorphic solutions of some algebraic differential equations and improve the related result of Barsegian et al. [6]. We also give some examples to show that our results occur in some special cases.展开更多
The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding disc...The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding discretization method is presented, and the results can be used to implementation of various numerical integration methods. A numerical example is presented finally.展开更多
In this article, we give a simple proof of Malmquist-Yosida type theorem of higher order algebraic differential equations, which is different from the methods as that of Gackstatter and Laine [2], and Steinmetz [12].
In this paper, we give an estimate result of Gol'dberg's theorem concern- ing the growth of meromorphic solutions of Mgebraic differential equations by using Zalcman Lemma. It is an extending result of the correspon...In this paper, we give an estimate result of Gol'dberg's theorem concern- ing the growth of meromorphic solutions of Mgebraic differential equations by using Zalcman Lemma. It is an extending result of the corresponding theorem by Yuan et al. (Yuan W J, Xiao B, Zhang J J. The general theorem of Gol'dberg concerning the growth of meromorphic solutions of algebraic differential equations. Comput. Math. Appl., 2009, 58:1788 1791). Meanwhile, we also take some examples to show that our estimate is sharp.展开更多
We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic equations. Implementation of inner iterations is carried out in two ways. The former is to fix the numb...We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic equations. Implementation of inner iterations is carried out in two ways. The former is to fix the number of inner iterations in advance. The latter is to use the inexact Newton method for solution of the linear system of equations that arises at each stage of outer iterations. We give some new choices of iteration parameter and of forcing term, that ensure the convergence of iterations. The performance and efficiency of the proposed iteration is illustrated by numerical examples that represent a wide range of typical systems.展开更多
This research aims to solve Differential Algebraic Equation (DAE) problems in their original form, wherein both the differential and algebraic equations remain. The Newton or Newton-Broyden technique along with some i...This research aims to solve Differential Algebraic Equation (DAE) problems in their original form, wherein both the differential and algebraic equations remain. The Newton or Newton-Broyden technique along with some integrators such as the Runge-Kutta method is coupled together to solve the problems. Experiments show that the method developed in this paper is efficient, as it demonstrates that implementation of the method is not difficult, and such method is able to provide approximate solutions with ease within some desired accuracy standards.展开更多
A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate eq...A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate equations and successfully obtain abundant new exact solutions, which include rational solitary wave solutions and rational triangular periodic wave solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.展开更多
How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linea...How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM).展开更多
文摘In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.
基金supported by the Natural Science Foundationof China (10471065)the Natural Science Foundation of Guangdong Province (N04010474)
文摘We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.
基金National Natural Science Foundation of China under Grant No.10672053
文摘An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.
基金The project Supported by NNSF of China(19971052)
文摘Using Nevanlinna theory of the value distribution of meromorphic functions, the author investigates the problem of the growth of solutions of two types of algebraic differential equation and obtains some results.
文摘This is a study of the Durand-Kerner and Nourein methods for finding the roots of a given algebraic equation simultaneously. We consider the conditions under which the iterative methods fail. The numerical example is presented.
基金Supported by Guangdong Natural Science Foundation(2015A030313628,S2012010010376)Training plan for Distinguished Young Teachers in Higher Education of Guangdong(Yqgdufe1405)+1 种基金Guangdong Education Science Planning Project(2014GXJK091,GDJG20142304)the National Natural Science Foundation of China(11301140,11101096)
文摘The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theorems on the existence of solutions are obtained, which perfect the solution theory of linear complex differential equations.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized higher order algebraic differential equations.
文摘Using value distribution theory and techniques,the problem of the algebroid solutions of second order algebraic differential equation is investigated.Examples show that the results are sharp.
基金Supported by the Natural Science Foundation of Guangdong Province(04010474) Supported by the Foundation of the Education Department of Anhui Province for Outstanding Young Teachers in University(2011SQRL172)
文摘This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
基金Project supported by the National Natural Science Foundation of China by Jiangsu Provincial Natural Science Foundation
文摘Linear differential-algebraic equations (DAEs) with time-varying coefficients A(t)x(1)(t) + B(t)x(t) = q(t), which are tractable with a higher index. are discussed. Their essential properties are investigated. Some equivalent system,,; are given. Using them the paper shows how to state properly initial and boundary conditions for these DAEs. The existence and uniqueness theory of the solution of the initial and boundary value problems for higher index DAEs are proposed.
文摘The algebraic structures of the dynamical equations for the rotational relativistic systems are studied. It is found that the dynamical equations of holonomic conservative rotational relativistic systems and the special nonholonomic rotational relativistic systems have Lie's algebraic structure, and the dynamical equations of the general holonomic rotational relativistic systems and the general nonholonomic rotational relativistic systems have Lie admitted algebraic structure. At last the Poisson integrals of the dynamical equations for the rotational relativistic systems are given.
基金supported by the NNSF of China(11101048)supported by the Tianyuan Youth Fund of the NNSF of China(11326083)+4 种基金the Shanghai University Young Teacher Training Program(ZZSDJ12020)the Innovation Program of Shanghai Municipal Education Commission(14YZ164)the Projects(13XKJC01)from the Leading Academic Discipline Project of Shanghai Dianji Universitysupported by the NNSF of China(11271090)the NSF of Guangdong Province(S2012010010121)
文摘In this paper, by means of the normal family theory, we estimate the growth order of meromorphic solutions of some algebraic differential equations and improve the related result of Barsegian et al. [6]. We also give some examples to show that our results occur in some special cases.
文摘The second order Euler-Lagrange equations are transformed to a set of first order differential/algebraic equations, which are then transformed to state equations by using local parameterization. The corresponding discretization method is presented, and the results can be used to implementation of various numerical integration methods. A numerical example is presented finally.
基金supported by the Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-aged Teachers and PresidentsNatural Science Foundation of China(11671191,11426118)+1 种基金Natural Science Foundation of Jiangsu Province(BK20140767)Qing Lan Project of Jiangsu Province
文摘In this article, we give a simple proof of Malmquist-Yosida type theorem of higher order algebraic differential equations, which is different from the methods as that of Gackstatter and Laine [2], and Steinmetz [12].
基金The NSF(10471065)of Chinathe Foundation(2011SQRL172)of the Education Department of Anhui Province for Outstanding Young Teachers in Universitythe Foundation(2012xq26)of the Huaibei Normal University for Young Teachers
文摘In this paper, we give an estimate result of Gol'dberg's theorem concern- ing the growth of meromorphic solutions of Mgebraic differential equations by using Zalcman Lemma. It is an extending result of the corresponding theorem by Yuan et al. (Yuan W J, Xiao B, Zhang J J. The general theorem of Gol'dberg concerning the growth of meromorphic solutions of algebraic differential equations. Comput. Math. Appl., 2009, 58:1788 1791). Meanwhile, we also take some examples to show that our estimate is sharp.
文摘We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic equations. Implementation of inner iterations is carried out in two ways. The former is to fix the number of inner iterations in advance. The latter is to use the inexact Newton method for solution of the linear system of equations that arises at each stage of outer iterations. We give some new choices of iteration parameter and of forcing term, that ensure the convergence of iterations. The performance and efficiency of the proposed iteration is illustrated by numerical examples that represent a wide range of typical systems.
文摘This research aims to solve Differential Algebraic Equation (DAE) problems in their original form, wherein both the differential and algebraic equations remain. The Newton or Newton-Broyden technique along with some integrators such as the Runge-Kutta method is coupled together to solve the problems. Experiments show that the method developed in this paper is efficient, as it demonstrates that implementation of the method is not difficult, and such method is able to provide approximate solutions with ease within some desired accuracy standards.
文摘A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate equations and successfully obtain abundant new exact solutions, which include rational solitary wave solutions and rational triangular periodic wave solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.
基金support provided by the Ministry of Science and Technology,Taiwan,ROC under Contract No.MOST 110-2221-E-019-044.
文摘How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM).