In this paper, we first present constructing a Lyapunov function for (1. 1) and then we show the asymptotic stability in the large of the trivial solution x=0 for case p≡ 0,and the boundedness result of the sol...In this paper, we first present constructing a Lyapunov function for (1. 1) and then we show the asymptotic stability in the large of the trivial solution x=0 for case p≡ 0,and the boundedness result of the solutions of (1 .1 ) for case p≠0. These results improve sveral well-known results.展开更多
This paper investigates equation (1) in twocases:(i)P=0, (ii)P satisfies|P (i,x,y,z,w)<(A+|y|+|z|+|w|)q(t).whereq(t) is a nonnegative function of t. For case (i) the asymptotic stability in the large of the trivial...This paper investigates equation (1) in twocases:(i)P=0, (ii)P satisfies|P (i,x,y,z,w)<(A+|y|+|z|+|w|)q(t).whereq(t) is a nonnegative function of t. For case (i) the asymptotic stability in the large of the trivial solution x=0 is investigated and for case (ii) the boundedness result is obtained for solutions of equation (1). These results improve and include several well-known results.展开更多
In this paper, by defining an appropriate Lyapunov functional, we obtain sufficient conditions for which all solutions of certain real non-autonomous third order nonlinear differential equations are asymptotically sta...In this paper, by defining an appropriate Lyapunov functional, we obtain sufficient conditions for which all solutions of certain real non-autonomous third order nonlinear differential equations are asymptotically stable and bounded. The results obtained improve and extend some known results in the literature.展开更多
By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established re...By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.展开更多
In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the eq...In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the equations. The conditions stated complement previously known results. Example is also given to illustrate the correctness and significance of the result obtained.展开更多
By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are o...By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are obtained for the existence of C2[0,1] positive solutions and C3[0,1] positive solutions.展开更多
There are given sufficient conditions for the ultimate boundedness of solutions and for the existence of periodic solutions of a certain vector differential equation of third-order.
In this paper we are concerned with the oscillation criteria of second order non-linear homogeneous differential equation. Example have been given to illustrate the results.
This paper deals with a new higher order compact difference scheme, which is, O(h4) using coupled approach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At each inter...This paper deals with a new higher order compact difference scheme, which is, O(h4) using coupled approach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At each internal grid point, the solution u(x,y,z) and its Laplacian Δ4u are obtained. The resulting stencil algo-rithm is presented and hence this new algorithm can be easily incorporated to solve many problems. The present discretization allows us to use the Dirichlet boundary conditions only and there is no need to discretize the derivative boundary conditions near the boundary. We also show that special treatment is required to handle the boundary conditions. Convergence analysis for a model problem is briefly discussed. The method is tested on three problems and compares very favourably with the corresponding second order approximation which we also discuss using coupled approach.展开更多
The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, wher...The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, where A is a closed operator on Banach space X. The case that the problem is ill-posed is treated, and two subspaces Y(A, k) and H(A, ω) are introduced. Y(A, k) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v( t, x) such that ess sup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞. H(A, ω) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v(t,x)such that ess sup{e^-ωl|d/(dt)〈v(t,x),x^*)|:t≥0,x^*∈X^*,‖x^*‖≤1}〈+∞. The following conclusions are proved that Y(A, k) and H(A, ω) are Banach spaces, and both are continuously embedded in X; the restriction operator A | Y(A,k) generates a once-integrated cosine operator family { C(t) }t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,arbitary t≥0; the restriction operator A |H(A,ω) generates a once- integrated cosine operator family {C(t)}t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,arbitary t≥0.展开更多
We obtain maximum principles for solutions of some general fourth order elliptic equations by modifying an auxiliary function introduced by L.E. Payne. We give a brief application of these maximum principles by deduci...We obtain maximum principles for solutions of some general fourth order elliptic equations by modifying an auxiliary function introduced by L.E. Payne. We give a brief application of these maximum principles by deducing apriori bounds on a certain quantity of interest.展开更多
In this paper we investigate the global asymptotic stability,boundedness as well as the ultimate boundedness of solutions to a general third order nonlinear differential equation,using complete Lyapunov function.
In this paper,we show the asymptotic stability in the large of the trivial solution x 0 for case p=0 and the boundedness result of solutions(1.1) for case p≠0.The resultobtained here extend the author's results i...In this paper,we show the asymptotic stability in the large of the trivial solution x 0 for case p=0 and the boundedness result of solutions(1.1) for case p≠0.The resultobtained here extend the author's results in[3].AMS Classification numbers:34D20,34D99展开更多
By the Lyapunov functional approach, some better results on the asymptotic stabiBy the Lyapunov functional approach, some better results on the asymptotic stability and global asymptotic stability of zero solution to ...By the Lyapunov functional approach, some better results on the asymptotic stabiBy the Lyapunov functional approach, some better results on the asymptotic stability and global asymptotic stability of zero solution to a certain fourth-order non-linear differential equation with delay are obtained.展开更多
The main object of this paper is to give sufficient conditions, which ensure that all solutions of the real vector differential equation of the form (1.1) are ultimately bounded.
文摘In this paper, we first present constructing a Lyapunov function for (1. 1) and then we show the asymptotic stability in the large of the trivial solution x=0 for case p≡ 0,and the boundedness result of the solutions of (1 .1 ) for case p≠0. These results improve sveral well-known results.
文摘This paper investigates equation (1) in twocases:(i)P=0, (ii)P satisfies|P (i,x,y,z,w)<(A+|y|+|z|+|w|)q(t).whereq(t) is a nonnegative function of t. For case (i) the asymptotic stability in the large of the trivial solution x=0 is investigated and for case (ii) the boundedness result is obtained for solutions of equation (1). These results improve and include several well-known results.
文摘In this paper, by defining an appropriate Lyapunov functional, we obtain sufficient conditions for which all solutions of certain real non-autonomous third order nonlinear differential equations are asymptotically stable and bounded. The results obtained improve and extend some known results in the literature.
文摘By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.
文摘In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the equations. The conditions stated complement previously known results. Example is also given to illustrate the correctness and significance of the result obtained.
基金Research supported by the National Natural Science Foundation of China(10471075)the Natural Science Foun-dation of Shandong Province of China(Y2006A04)
文摘By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are obtained for the existence of C2[0,1] positive solutions and C3[0,1] positive solutions.
文摘There are given sufficient conditions for the ultimate boundedness of solutions and for the existence of periodic solutions of a certain vector differential equation of third-order.
文摘In this paper we are concerned with the oscillation criteria of second order non-linear homogeneous differential equation. Example have been given to illustrate the results.
文摘This paper deals with a new higher order compact difference scheme, which is, O(h4) using coupled approach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At each internal grid point, the solution u(x,y,z) and its Laplacian Δ4u are obtained. The resulting stencil algo-rithm is presented and hence this new algorithm can be easily incorporated to solve many problems. The present discretization allows us to use the Dirichlet boundary conditions only and there is no need to discretize the derivative boundary conditions near the boundary. We also show that special treatment is required to handle the boundary conditions. Convergence analysis for a model problem is briefly discussed. The method is tested on three problems and compares very favourably with the corresponding second order approximation which we also discuss using coupled approach.
基金The Natural Science Foundation of Department ofEducation of Jiangsu Province (No06KJD110087)
文摘The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, where A is a closed operator on Banach space X. The case that the problem is ill-posed is treated, and two subspaces Y(A, k) and H(A, ω) are introduced. Y(A, k) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v( t, x) such that ess sup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞. H(A, ω) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v(t,x)such that ess sup{e^-ωl|d/(dt)〈v(t,x),x^*)|:t≥0,x^*∈X^*,‖x^*‖≤1}〈+∞. The following conclusions are proved that Y(A, k) and H(A, ω) are Banach spaces, and both are continuously embedded in X; the restriction operator A | Y(A,k) generates a once-integrated cosine operator family { C(t) }t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,arbitary t≥0; the restriction operator A |H(A,ω) generates a once- integrated cosine operator family {C(t)}t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,arbitary t≥0.
文摘We obtain maximum principles for solutions of some general fourth order elliptic equations by modifying an auxiliary function introduced by L.E. Payne. We give a brief application of these maximum principles by deducing apriori bounds on a certain quantity of interest.
文摘In this paper we investigate the global asymptotic stability,boundedness as well as the ultimate boundedness of solutions to a general third order nonlinear differential equation,using complete Lyapunov function.
文摘In this paper,we show the asymptotic stability in the large of the trivial solution x 0 for case p=0 and the boundedness result of solutions(1.1) for case p≠0.The resultobtained here extend the author's results in[3].AMS Classification numbers:34D20,34D99
基金supported by the National Natural Science Foundation of China(10461006)Basic Subject Foundation of Changzhou University(JS201004)
文摘By the Lyapunov functional approach, some better results on the asymptotic stabiBy the Lyapunov functional approach, some better results on the asymptotic stability and global asymptotic stability of zero solution to a certain fourth-order non-linear differential equation with delay are obtained.
文摘The main object of this paper is to give sufficient conditions, which ensure that all solutions of the real vector differential equation of the form (1.1) are ultimately bounded.