Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirica...Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirical orthogonal function) temporal-spatial separation technique, the disassembled EOF time coefficients series were regarded as dynamical model variables, and dynamic system retrieval idea as well as genetic algorithm were introduced to make dynamical model parameters optimization search, then, a reasonable non-linear dynamic model of EOF time-coefficients was established. By dynamic model integral and EOF temporal-spatial components assembly, a mid-/long-term forecast of subtropical high was carried out. The experimental results show that the forecast results of dynamic model are superior to that of general numerical model forecast results. A new modeling idea and forecast technique is presented for diagnosing and forecasting such complicated weathers as subtropical high.展开更多
The non-linear inversion of rock mechanics parameters based on genetic algorithm is presented. The principIe and step of genetic algorithm is also given. A brief discussion of this method and an application example is...The non-linear inversion of rock mechanics parameters based on genetic algorithm is presented. The principIe and step of genetic algorithm is also given. A brief discussion of this method and an application example is presented at the end of this paper. From the satisfied result, quick, convenient and practical new approach is developed to solve this kind of problems.展开更多
In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact infor...In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact information (inexact non-linear operation programming). GAINLP was developed based on a GA-based inexact quadratic solving method. The Genetic Algorithm Solver of the Global Optimization Toolbox (GASGOT) developed by MATLABTM was adopted as the implementation environment of this study. GAINLP was applied to a municipality solid waste management case. The results from different scenarios indicated that the proposed GA-based heuristic optimization approach was able to generate a solution for a complicated nonlinear problem, which also involved uncertainty.展开更多
At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear globa...At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.展开更多
A novel adaptive non-linear mapping (ANLM), integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear map...A novel adaptive non-linear mapping (ANLM), integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear mapping (NLM). The value of AME weight factor is determined according to the relative deviation square of distance between the two mapping points and the corresponding original objects distance. The larger the relative deviation square between two distances is, the larger the value of the corresponding weight factor is. Due to chaotic mapping operator, the evolutional process of CGA makes the individuals of subgenerations distributed ergodieally in the defined space and circumvents the premature of the individuals of subgenerations. The comparison results demonstrated that the whole performance of CGA is better than that of traditional genetic algorithm. Furthermore, a typical example of mapping eight-dimenslonal olive oil samples onto two-dimensional plane was employed to verify the effectiveness of ANLM. The results showed that the topology-preserving map obtained by ANLM can well represent the classification of original objects and is much better than that obtained by NLM.展开更多
A novel nonlinear gray transform method is proposed to enhance the contrast of a typhoon cloud image.Generally,the typhoon cloud image obtained by a satellite cannot be directly used to make an accurate prediction of ...A novel nonlinear gray transform method is proposed to enhance the contrast of a typhoon cloud image.Generally,the typhoon cloud image obtained by a satellite cannot be directly used to make an accurate prediction of the typhoon's center or intensity because the contrast of the received typhoon cloud image may be bad.Our aim is to extrude the typhoon's eye in the typhoon cloud image.A normalized arc-tangent transformation operation is designed to enhance global contrast of the typhoon cloud image.Differential evolution algorithm is used to choose the optimal nonlinear transform parameter.Finally,geodesic activity contour model is used to extract the typhoon's eye to verify the performance of the proposed method.Experimental results show that the proposed method can efficiently enhance the global contrast of the typhoon cloud image while greatly extruding the typhoon's eye.展开更多
An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established ...An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established via a response surface technique with the resulting optimization formulation being a non-linear goal programming model. For optimization, a computationally efficient, FA-driven method is employed and the resulting solution is shown to be superior to those from previous approaches for determining the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this evolutionary metaheuristic approach over a range of the two key parameters that most influence its running time-the number of iterations and the number of fireflies. This sensitivity analysis revealed that for intermediate-to-high values of either of these two key parameters, the FA would always determine overall optimal solutions, while lower values of either parameter would generate greater variability in solution quality. Since the running time complexity of the FA is polynomial in the number of fireflies but linear in the number of iterations, this experimentation shows that it is more computationally practical to run the FA using a “reasonably small” number of fireflies together with a relatively larger number of iterations than the converse.展开更多
基金Project supported by the National Natural Science Foundation of China (No.40375019) the Tropical Marine and Meteorology Science Foundation (No.200609) the Jiangsu Key Laboratory of Meteorological Disaster Foundation (No.KLME0507)
文摘Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirical orthogonal function) temporal-spatial separation technique, the disassembled EOF time coefficients series were regarded as dynamical model variables, and dynamic system retrieval idea as well as genetic algorithm were introduced to make dynamical model parameters optimization search, then, a reasonable non-linear dynamic model of EOF time-coefficients was established. By dynamic model integral and EOF temporal-spatial components assembly, a mid-/long-term forecast of subtropical high was carried out. The experimental results show that the forecast results of dynamic model are superior to that of general numerical model forecast results. A new modeling idea and forecast technique is presented for diagnosing and forecasting such complicated weathers as subtropical high.
文摘The non-linear inversion of rock mechanics parameters based on genetic algorithm is presented. The principIe and step of genetic algorithm is also given. A brief discussion of this method and an application example is presented at the end of this paper. From the satisfied result, quick, convenient and practical new approach is developed to solve this kind of problems.
文摘In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact information (inexact non-linear operation programming). GAINLP was developed based on a GA-based inexact quadratic solving method. The Genetic Algorithm Solver of the Global Optimization Toolbox (GASGOT) developed by MATLABTM was adopted as the implementation environment of this study. GAINLP was applied to a municipality solid waste management case. The results from different scenarios indicated that the proposed GA-based heuristic optimization approach was able to generate a solution for a complicated nonlinear problem, which also involved uncertainty.
基金supported by the National Natural Science Foundation of China(No.41374123)
文摘At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.
基金Supported by the National Natural Science Foun-dation of China (20506003) the National Basic Research ProgramofChina (973 Program2002CB312200) the ShangHai Science andTechnology of Phosphor of China (04QMX1433)
文摘A novel adaptive non-linear mapping (ANLM), integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear mapping (NLM). The value of AME weight factor is determined according to the relative deviation square of distance between the two mapping points and the corresponding original objects distance. The larger the relative deviation square between two distances is, the larger the value of the corresponding weight factor is. Due to chaotic mapping operator, the evolutional process of CGA makes the individuals of subgenerations distributed ergodieally in the defined space and circumvents the premature of the individuals of subgenerations. The comparison results demonstrated that the whole performance of CGA is better than that of traditional genetic algorithm. Furthermore, a typical example of mapping eight-dimenslonal olive oil samples onto two-dimensional plane was employed to verify the effectiveness of ANLM. The results showed that the topology-preserving map obtained by ANLM can well represent the classification of original objects and is much better than that obtained by NLM.
基金supported by National Natural Science Foundation of China (No. 40805048,No. 11026226)Typhoon Research Foundation of Shanghai Typhoon Institute/China Meteorological Administration (No. 2008ST01)+1 种基金Research Foundation of State Key Laboratory of Remote Sensing Science,Jointly sponsored by the Instituteof Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University (No. 2009KFJJ013)Research Foundation of State Key Laboratory of Severe Weather/Chinese Academy of Meteorological Sciences (No. 2008LASW-B03)
文摘A novel nonlinear gray transform method is proposed to enhance the contrast of a typhoon cloud image.Generally,the typhoon cloud image obtained by a satellite cannot be directly used to make an accurate prediction of the typhoon's center or intensity because the contrast of the received typhoon cloud image may be bad.Our aim is to extrude the typhoon's eye in the typhoon cloud image.A normalized arc-tangent transformation operation is designed to enhance global contrast of the typhoon cloud image.Differential evolution algorithm is used to choose the optimal nonlinear transform parameter.Finally,geodesic activity contour model is used to extract the typhoon's eye to verify the performance of the proposed method.Experimental results show that the proposed method can efficiently enhance the global contrast of the typhoon cloud image while greatly extruding the typhoon's eye.
文摘An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established via a response surface technique with the resulting optimization formulation being a non-linear goal programming model. For optimization, a computationally efficient, FA-driven method is employed and the resulting solution is shown to be superior to those from previous approaches for determining the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this evolutionary metaheuristic approach over a range of the two key parameters that most influence its running time-the number of iterations and the number of fireflies. This sensitivity analysis revealed that for intermediate-to-high values of either of these two key parameters, the FA would always determine overall optimal solutions, while lower values of either parameter would generate greater variability in solution quality. Since the running time complexity of the FA is polynomial in the number of fireflies but linear in the number of iterations, this experimentation shows that it is more computationally practical to run the FA using a “reasonably small” number of fireflies together with a relatively larger number of iterations than the converse.