Empirical relationship was developed to predict the fatigue life of gas metal arc welded (GMAW) cruciform joints failing from root region. High strength, age hardenable aluminium alloy of AA7075-T6 grade was used as...Empirical relationship was developed to predict the fatigue life of gas metal arc welded (GMAW) cruciform joints failing from root region. High strength, age hardenable aluminium alloy of AA7075-T6 grade was used as the base material. The design of experiments concept was used to optimize the required number of fatigue testing experiments. Fatigue experiment was conducted in a servo hydraulic controlled fatigue testing machine under constant amplitude loading. The empirical relationship was developed. By using the developed empirical relationship, the fatigue life of GMAW cruciform joints failing from root region was predicted at 95% confidence level. The effect of cruciform joint dimensions on fatigue life was discussed in detail.展开更多
Cruciform joints in ships are prone to fatigue damage and the determination of type of weld plays a significant role in thefatigue design of the joint. In this paper, the effect of weld geometry on fatigue failure of ...Cruciform joints in ships are prone to fatigue damage and the determination of type of weld plays a significant role in thefatigue design of the joint. In this paper, the effect of weld geometry on fatigue failure of load carrying cruciform joints inships is investigated using Effective Notch Stress (ENS) approach. A fictitious notch of 1 mm radius is introduced at theweld root and toe and fatigue stress is evaluated. The effect of weld leg length (l) and weld penetration depth (p) on ENS atweld root and toe are determined. The critical weld leg length (lcr) at which fatigue failure transitions from weld root toweld toe is investigated. An approximation formula for determination of the critical weld leg length considering weldpenetration depth (p) is proposed.展开更多
文摘Empirical relationship was developed to predict the fatigue life of gas metal arc welded (GMAW) cruciform joints failing from root region. High strength, age hardenable aluminium alloy of AA7075-T6 grade was used as the base material. The design of experiments concept was used to optimize the required number of fatigue testing experiments. Fatigue experiment was conducted in a servo hydraulic controlled fatigue testing machine under constant amplitude loading. The empirical relationship was developed. By using the developed empirical relationship, the fatigue life of GMAW cruciform joints failing from root region was predicted at 95% confidence level. The effect of cruciform joint dimensions on fatigue life was discussed in detail.
文摘Cruciform joints in ships are prone to fatigue damage and the determination of type of weld plays a significant role in thefatigue design of the joint. In this paper, the effect of weld geometry on fatigue failure of load carrying cruciform joints inships is investigated using Effective Notch Stress (ENS) approach. A fictitious notch of 1 mm radius is introduced at theweld root and toe and fatigue stress is evaluated. The effect of weld leg length (l) and weld penetration depth (p) on ENS atweld root and toe are determined. The critical weld leg length (lcr) at which fatigue failure transitions from weld root toweld toe is investigated. An approximation formula for determination of the critical weld leg length considering weldpenetration depth (p) is proposed.