Problem: The Fresnel equations describe the proportions of reflected and transmitted light from a surface, and are conventionally derived from wave theory continuum mechanics. Particle-based derivations of the Fresnel...Problem: The Fresnel equations describe the proportions of reflected and transmitted light from a surface, and are conventionally derived from wave theory continuum mechanics. Particle-based derivations of the Fresnel equations appear not to exist. Approach: The objective of this work was to derive the basic optical laws from first principles from a particle basis. The particle model used was the Cordus theory, a type of non-local hidden-variable (NLHV) theory that predicts specific substructures to the photon and other particles. Findings: The theory explains the origin of the orthogonal electrostatic and magnetic fields, and re-derives the refraction and reflection laws including Snell’s law and critical angle, and the Fresnel equations for s and p-polarisation. These formulations are identical to those produced by electromagnetic wave theory. Contribution: The work provides a comprehensive derivation and physical explanation of the basic optical laws, which appears not to have previously been shown from a particle basis. Implications: The primary implications are for suggesting routes for the theoretical advancement of fundamental physics. The Cordus NLHV particle theory explains optical phenomena, yet it also explains other physical phenomena including some otherwise only accessible through quantum mechanics (such as the electron spin g-factor) and general relativity (including the Lorentz and relativistic Doppler). It also provides solutions for phenomena of unknown causation, such as asymmetrical baryogenesis, unification of the interactions, and reasons for nuclide stability/instability. Consequently, the implication is that NLHV theories have the potential to represent a deeper physics that may underpin and unify quantum mechanics, general relativity, and wave theory.展开更多
In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the cor...In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the corresponding well known Fredholm integral equation of second kind. The considered in this paper has been solved already numerically in [1].展开更多
In this short note, we investigate the properties of positive solutions for some non-local parabolic equations. The conditions on the global existence and blow-up in finite time of solution are given.
We studied the continuity equation in presence of a local potential, and a non-local potential arising from electron-electron interaction in both commutative and non-commutative phase-space. Furthermore, we examined t...We studied the continuity equation in presence of a local potential, and a non-local potential arising from electron-electron interaction in both commutative and non-commutative phase-space. Furthermore, we examined the influence of the phase-space non-commutativity on both the locality and the non-locality, where the definition of current density in commutative phase-space cannot satisfy the condition of current conservation, but with the steady state, in order to solve this problem, we give a new definition of the current density including the contribution due to the non-local potential. We showed that the calculated current based on the new definition of current density maintains the current. As well for the case when the non- commutativity in phase-space considered, we found that the conservation of the current density completely violated;and the non-commutativity is not suitable for describing the current density in presence of non-local and local potentials. Nevertheless, under some conditions, we modified the current density to solve this problem. Subsequently, as an application we studied the Frahn-Lemmer non-local potential, taking into account that the employed methods concerning the phase-space non-commutativity are both of Bopp-shift linear transformation through the Heisenberg-like commutation relations, and the Moyal-Weyl product.展开更多
Soil erosion is a growing problem especially in areas of agricultural activity where soil erosion not only leads to decreased agricultural productivity but also reduces water availability. Universal Soil Loss Equation...Soil erosion is a growing problem especially in areas of agricultural activity where soil erosion not only leads to decreased agricultural productivity but also reduces water availability. Universal Soil Loss Equation (USLE) is the most popular empirically based model used globally for erosion prediction and control. Remote sensing and GIS techniques have become valuable tools specially when assessing erosion at larger scales due to the amount of data needed and the greater area coverage. The present study area is a part of Chotanagpur plateau with undulating topography, with a very high risk of soil erosion. In the present study an attempt has been made to assess the annual soil loss in Upper South Koel basin using Universal Soil Loss Equation (USLE) in GIS framework. Such information can be of immense help in identifying priority areas for implementation of erosion control measures. The soil erosion rate was determined as a function of land topography, soil texture, land use/land cover, rainfall erosivity, and crop management and practice in the watershed using the Universal Soil Loss Equation (for Indian conditions), remote sensing imagery, and GIS techniques. The rainfall erosivity R-factor of USLE was found as 546 MJ mm/ha/hr/yr and the soil erodibility K-factor varied from 0.23 - 0.37. Slopes in the catchment varied between 0% and 42% having LS factor values ranging from 0 - 21. The C factor was computed from NDVI (Normalized Difference Vegetative Index) values derived from Landsat-TM data. The P value was computed from existing cropping patterns in the catchment. The annual soil loss estimated in the watershed using USLE is 12.2 ton/ha/yr.展开更多
An extension of the linear irreversible thermodynamics is proposed through the inclusion of the first gradients of velocity and of the classical local state parameters as additional independent variables in the fundam...An extension of the linear irreversible thermodynamics is proposed through the inclusion of the first gradients of velocity and of the classical local state parameters as additional independent variables in the fundamental energy state equation of a fluid system. We show that consistency of this hypothesis with the energy balance equation leads to generalized nonlinear constitutive equations, which we discuss in terms of an isotropic non-Newtonian viscous fluid.展开更多
A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) techniques was adopted to determine the soil erosion vulner- ability of a fore...A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) techniques was adopted to determine the soil erosion vulner- ability of a forested mountainous sub-watershed in Kerala, India. The spatial pattern of annual soil erosion rate was obtained by integrating geo-environmental variables in a raster based GIS method. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the area. The resultant map of annual soil erosion shows a maximum soil loss of 17.73 t h-1 y i with a close relation to grass land areas, degraded forests and deciduous forests on the steep side-slopes (with high LS ). The spatial erosion maps generated with RUSLE method and GIS can serve as effective inputs in deriving strategies for land planning and management in the environmentally sensitive mountainous areas.展开更多
In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared wi...In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared with the GI algorithm, the improved algorithm reduces computational cost and storage. Finally, the algorithm is tested with GI several numerical examples.展开更多
The scattering of harmonic waves by two collinear symmetric cracks is studied using the non-local theory. A one-dimensional non-local kernel was used to replace a two-dimensional one for the dynamic problem to obtain ...The scattering of harmonic waves by two collinear symmetric cracks is studied using the non-local theory. A one-dimensional non-local kernel was used to replace a two-dimensional one for the dynamic problem to obtain the stress occurring at the crack tips. The Fourier transform was applied and a mixed boundary value problem was formulated. Then a set of triple integral equations was solved by using Schmidt's method. This method is more exact and more reasonable than Eringen's for solving this problem. Contrary to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the lattice parameter and the circular frequency of incident wave.展开更多
Bilinear forms of the coupled Gerdjikov–Ivanov equation are derived. The $N$-soliton solutions to the equation are obtained by Hirota's method. It is interesting that the two-soliton solutions can generate the rogue...Bilinear forms of the coupled Gerdjikov–Ivanov equation are derived. The $N$-soliton solutions to the equation are obtained by Hirota's method. It is interesting that the two-soliton solutions can generate the rogue-wave-like phenomena by selecting special parameters. The equation can be reduced to the Gerdjikov–Ivanov equation as well as its bilinear forms and its solutions.展开更多
We consider the problem of viscosity solution of integro-partial differential equation( IPDE in short) with one obstacle via the solution of reflected backward stochastic dif ferential equations(RBSDE in short) with j...We consider the problem of viscosity solution of integro-partial differential equation( IPDE in short) with one obstacle via the solution of reflected backward stochastic dif ferential equations(RBSDE in short) with jumps. We show the existence and uniqueness of a continuous viscosity solution of equation with non local terms, if the generator is not monotonous and Levy's measure is infinite.展开更多
Anomalous transport in magnetically confined plasmas is investigated by radial fractional transport equations.It is shown that for fractional transport models,hollow density profiles are formed and uphill transports c...Anomalous transport in magnetically confined plasmas is investigated by radial fractional transport equations.It is shown that for fractional transport models,hollow density profiles are formed and uphill transports can be observed regardless of whether the fractional diffusion coefficients(FDCs)are radially dependent or not.When a radially dependent FDC<D_(α)(r)1 is imposed,compared with the case under=D_(α)(r)1.0,it is observed that the position of the peak of the density profile is closer to the core.Further,it is found that when FDCs at the positions of source injections increase,the peak values of density profiles decrease.The non-local effect becomes significant as the order of fractional derivative a 1 and causes the uphill transport.However,as a 2,the fractional diffusion model returns to the standard model governed by Fick’s law.展开更多
Field equations of the non-local elasticity are solved to determine the state of stress in a plate with a Griffith crack subject to uniform tension. Then a set of dual-integral equations is solved using a new method, ...Field equations of the non-local elasticity are solved to determine the state of stress in a plate with a Griffith crack subject to uniform tension. Then a set of dual-integral equations is solved using a new method, namely Schmidt's method. This method is more exact and more reasonable than Eringen's a one Sor solving this kind of problem. Contrary to the solution of classical elasticity, it is found that no stress singularity is present ar the crack tip. The significance of this result is that the fracture criteria are unified at both the macroscopic and the microscopic scales. The finite hoop stress at the crack tip depends on the crack length.展开更多
In this paper, the scattering of harmonic anti-plane shear wavesby a finite crack in infinitely long strip is studied using thenon-local theory. The Fourier transform is applied and a mixedboundary value problem is fo...In this paper, the scattering of harmonic anti-plane shear wavesby a finite crack in infinitely long strip is studied using thenon-local theory. The Fourier transform is applied and a mixedboundary value problem is formulated. Then a set of dual integralequations is solved using the Schmidt method instead of the first orthe second integral equation method. A one-dimensional non-localkernel is used instead of a two-di- mensional one for the anti-planedynamic problem to obtain the stress occurring at the crack tips.Contrary to the classical elasticity solution, it is found that nostress singularity is present at the crack tip. The non-local dynamicelastic solutions yield a finite hoop stress at the crack tip, thusallowing for a fracture criterion based on the maximum dynamic stresshypothesis. The finite hoop stress at the crack tip depends on thecrack length, the width of the strip and the lattice parameters.展开更多
In this paper, the global blowup properties of solutions for a class of nonlinear non-local reaction-diffusion problems are investigated by the methods of the prior estimates. Moreover, the blowup rate estimate of the...In this paper, the global blowup properties of solutions for a class of nonlinear non-local reaction-diffusion problems are investigated by the methods of the prior estimates. Moreover, the blowup rate estimate of the solution is given.展开更多
In this pager, the displacement discontinuity fundamental solutions ( DDFS) corresponding to the unit concentrated displacement discontinuity for plane problems of non-local elasticity are obtained. Based on the displ...In this pager, the displacement discontinuity fundamental solutions ( DDFS) corresponding to the unit concentrated displacement discontinuity for plane problems of non-local elasticity are obtained. Based on the displacement discontinuity boundary integral equation (DDBIE) and boundary element method (BEM), a method of analysis of crack problems in non-local elasticity with generalized purpose is proposed. By using this method, several important problems in fracture mechanics such as edge crack are studied. The study of edge crack shows that the stress concentration factor (SCF) near the crack tip is not a constant but varies with the crack length. With this result the effect of crack length on the fracture roughness K (I c) is studied. The results obtained in this paper are in accordance with the published ones.展开更多
The paper is devoted to the proof of the uniqueness theorem for solution of the equation for the non-local ionization source in a glow discharge and a hollow cathode in general 3D geometry. The theorem is applied to w...The paper is devoted to the proof of the uniqueness theorem for solution of the equation for the non-local ionization source in a glow discharge and a hollow cathode in general 3D geometry. The theorem is applied to wide class of electric field configurations, and to the walls of discharge volume, which have a property of incomplete absorption of the electrons. Cathode is regarded as interior singular source, which is placed arbitrarily close to the wall. The existence of solution is considered also. During the proof of the theorem many of useful structure formulae are obtained. Elements of the proof structure, which have arisen, are found to have physical sense. It makes clear physical construction of non-local electron avalanche, which builds a source of ionization in glow discharge at low pressures. Last has decisive significance to understand the hollow cathode discharge configuration and the hollow cathode effect.展开更多
文摘Problem: The Fresnel equations describe the proportions of reflected and transmitted light from a surface, and are conventionally derived from wave theory continuum mechanics. Particle-based derivations of the Fresnel equations appear not to exist. Approach: The objective of this work was to derive the basic optical laws from first principles from a particle basis. The particle model used was the Cordus theory, a type of non-local hidden-variable (NLHV) theory that predicts specific substructures to the photon and other particles. Findings: The theory explains the origin of the orthogonal electrostatic and magnetic fields, and re-derives the refraction and reflection laws including Snell’s law and critical angle, and the Fresnel equations for s and p-polarisation. These formulations are identical to those produced by electromagnetic wave theory. Contribution: The work provides a comprehensive derivation and physical explanation of the basic optical laws, which appears not to have previously been shown from a particle basis. Implications: The primary implications are for suggesting routes for the theoretical advancement of fundamental physics. The Cordus NLHV particle theory explains optical phenomena, yet it also explains other physical phenomena including some otherwise only accessible through quantum mechanics (such as the electron spin g-factor) and general relativity (including the Lorentz and relativistic Doppler). It also provides solutions for phenomena of unknown causation, such as asymmetrical baryogenesis, unification of the interactions, and reasons for nuclide stability/instability. Consequently, the implication is that NLHV theories have the potential to represent a deeper physics that may underpin and unify quantum mechanics, general relativity, and wave theory.
文摘In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the corresponding well known Fredholm integral equation of second kind. The considered in this paper has been solved already numerically in [1].
基金se work of the first author was supported by the "333" Project of Jiangsu Province.
文摘In this short note, we investigate the properties of positive solutions for some non-local parabolic equations. The conditions on the global existence and blow-up in finite time of solution are given.
文摘We studied the continuity equation in presence of a local potential, and a non-local potential arising from electron-electron interaction in both commutative and non-commutative phase-space. Furthermore, we examined the influence of the phase-space non-commutativity on both the locality and the non-locality, where the definition of current density in commutative phase-space cannot satisfy the condition of current conservation, but with the steady state, in order to solve this problem, we give a new definition of the current density including the contribution due to the non-local potential. We showed that the calculated current based on the new definition of current density maintains the current. As well for the case when the non- commutativity in phase-space considered, we found that the conservation of the current density completely violated;and the non-commutativity is not suitable for describing the current density in presence of non-local and local potentials. Nevertheless, under some conditions, we modified the current density to solve this problem. Subsequently, as an application we studied the Frahn-Lemmer non-local potential, taking into account that the employed methods concerning the phase-space non-commutativity are both of Bopp-shift linear transformation through the Heisenberg-like commutation relations, and the Moyal-Weyl product.
文摘Soil erosion is a growing problem especially in areas of agricultural activity where soil erosion not only leads to decreased agricultural productivity but also reduces water availability. Universal Soil Loss Equation (USLE) is the most popular empirically based model used globally for erosion prediction and control. Remote sensing and GIS techniques have become valuable tools specially when assessing erosion at larger scales due to the amount of data needed and the greater area coverage. The present study area is a part of Chotanagpur plateau with undulating topography, with a very high risk of soil erosion. In the present study an attempt has been made to assess the annual soil loss in Upper South Koel basin using Universal Soil Loss Equation (USLE) in GIS framework. Such information can be of immense help in identifying priority areas for implementation of erosion control measures. The soil erosion rate was determined as a function of land topography, soil texture, land use/land cover, rainfall erosivity, and crop management and practice in the watershed using the Universal Soil Loss Equation (for Indian conditions), remote sensing imagery, and GIS techniques. The rainfall erosivity R-factor of USLE was found as 546 MJ mm/ha/hr/yr and the soil erodibility K-factor varied from 0.23 - 0.37. Slopes in the catchment varied between 0% and 42% having LS factor values ranging from 0 - 21. The C factor was computed from NDVI (Normalized Difference Vegetative Index) values derived from Landsat-TM data. The P value was computed from existing cropping patterns in the catchment. The annual soil loss estimated in the watershed using USLE is 12.2 ton/ha/yr.
文摘An extension of the linear irreversible thermodynamics is proposed through the inclusion of the first gradients of velocity and of the classical local state parameters as additional independent variables in the fundamental energy state equation of a fluid system. We show that consistency of this hypothesis with the energy balance equation leads to generalized nonlinear constitutive equations, which we discuss in terms of an isotropic non-Newtonian viscous fluid.
文摘A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) techniques was adopted to determine the soil erosion vulner- ability of a forested mountainous sub-watershed in Kerala, India. The spatial pattern of annual soil erosion rate was obtained by integrating geo-environmental variables in a raster based GIS method. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the area. The resultant map of annual soil erosion shows a maximum soil loss of 17.73 t h-1 y i with a close relation to grass land areas, degraded forests and deciduous forests on the steep side-slopes (with high LS ). The spatial erosion maps generated with RUSLE method and GIS can serve as effective inputs in deriving strategies for land planning and management in the environmentally sensitive mountainous areas.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271074), and the Special Funds for Major Specialities of Shanghai Education Commission (Grant No.J50101)
文摘In this paper, an improved gradient iterative (GI) algorithm for solving the Lyapunov matrix equations is studied. Convergence of the improved method for any initial value is proved with some conditions. Compared with the GI algorithm, the improved algorithm reduces computational cost and storage. Finally, the algorithm is tested with GI several numerical examples.
文摘The scattering of harmonic waves by two collinear symmetric cracks is studied using the non-local theory. A one-dimensional non-local kernel was used to replace a two-dimensional one for the dynamic problem to obtain the stress occurring at the crack tips. The Fourier transform was applied and a mixed boundary value problem was formulated. Then a set of triple integral equations was solved by using Schmidt's method. This method is more exact and more reasonable than Eringen's for solving this problem. Contrary to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the lattice parameter and the circular frequency of incident wave.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11671177 and 11271168the Jiangsu Qing Lan Project(2014)the Six Talent Peaks Project of Jiangsu Province under Grant No 2016-JY-08
文摘Bilinear forms of the coupled Gerdjikov–Ivanov equation are derived. The $N$-soliton solutions to the equation are obtained by Hirota's method. It is interesting that the two-soliton solutions can generate the rogue-wave-like phenomena by selecting special parameters. The equation can be reduced to the Gerdjikov–Ivanov equation as well as its bilinear forms and its solutions.
文摘We consider the problem of viscosity solution of integro-partial differential equation( IPDE in short) with one obstacle via the solution of reflected backward stochastic dif ferential equations(RBSDE in short) with jumps. We show the existence and uniqueness of a continuous viscosity solution of equation with non local terms, if the generator is not monotonous and Levy's measure is infinite.
基金supported by the National MCF Energy R&D Program of China(No.2019YFE03090300)National Natural Science Foundation of China(No.11925501)Fundamental Research Funds for the Central Universities(No.DUT21GJ204)。
文摘Anomalous transport in magnetically confined plasmas is investigated by radial fractional transport equations.It is shown that for fractional transport models,hollow density profiles are formed and uphill transports can be observed regardless of whether the fractional diffusion coefficients(FDCs)are radially dependent or not.When a radially dependent FDC<D_(α)(r)1 is imposed,compared with the case under=D_(α)(r)1.0,it is observed that the position of the peak of the density profile is closer to the core.Further,it is found that when FDCs at the positions of source injections increase,the peak values of density profiles decrease.The non-local effect becomes significant as the order of fractional derivative a 1 and causes the uphill transport.However,as a 2,the fractional diffusion model returns to the standard model governed by Fick’s law.
文摘Field equations of the non-local elasticity are solved to determine the state of stress in a plate with a Griffith crack subject to uniform tension. Then a set of dual-integral equations is solved using a new method, namely Schmidt's method. This method is more exact and more reasonable than Eringen's a one Sor solving this kind of problem. Contrary to the solution of classical elasticity, it is found that no stress singularity is present ar the crack tip. The significance of this result is that the fracture criteria are unified at both the macroscopic and the microscopic scales. The finite hoop stress at the crack tip depends on the crack length.
基金the Post Doctoral Science Foundation of Heilongjiang Provincethe Natural Science Foundation of Heilongjiang Provincethe National Foundation for Excellent Young Investigators.
文摘In this paper, the scattering of harmonic anti-plane shear wavesby a finite crack in infinitely long strip is studied using thenon-local theory. The Fourier transform is applied and a mixedboundary value problem is formulated. Then a set of dual integralequations is solved using the Schmidt method instead of the first orthe second integral equation method. A one-dimensional non-localkernel is used instead of a two-di- mensional one for the anti-planedynamic problem to obtain the stress occurring at the crack tips.Contrary to the classical elasticity solution, it is found that nostress singularity is present at the crack tip. The non-local dynamicelastic solutions yield a finite hoop stress at the crack tip, thusallowing for a fracture criterion based on the maximum dynamic stresshypothesis. The finite hoop stress at the crack tip depends on thecrack length, the width of the strip and the lattice parameters.
文摘In this paper, the global blowup properties of solutions for a class of nonlinear non-local reaction-diffusion problems are investigated by the methods of the prior estimates. Moreover, the blowup rate estimate of the solution is given.
文摘In this pager, the displacement discontinuity fundamental solutions ( DDFS) corresponding to the unit concentrated displacement discontinuity for plane problems of non-local elasticity are obtained. Based on the displacement discontinuity boundary integral equation (DDBIE) and boundary element method (BEM), a method of analysis of crack problems in non-local elasticity with generalized purpose is proposed. By using this method, several important problems in fracture mechanics such as edge crack are studied. The study of edge crack shows that the stress concentration factor (SCF) near the crack tip is not a constant but varies with the crack length. With this result the effect of crack length on the fracture roughness K (I c) is studied. The results obtained in this paper are in accordance with the published ones.
文摘The paper is devoted to the proof of the uniqueness theorem for solution of the equation for the non-local ionization source in a glow discharge and a hollow cathode in general 3D geometry. The theorem is applied to wide class of electric field configurations, and to the walls of discharge volume, which have a property of incomplete absorption of the electrons. Cathode is regarded as interior singular source, which is placed arbitrarily close to the wall. The existence of solution is considered also. During the proof of the theorem many of useful structure formulae are obtained. Elements of the proof structure, which have arisen, are found to have physical sense. It makes clear physical construction of non-local electron avalanche, which builds a source of ionization in glow discharge at low pressures. Last has decisive significance to understand the hollow cathode discharge configuration and the hollow cathode effect.