The fluidization behavior of SiO2, ZnO and TiO2 non-magnetic nanoparticles was investigated in a magnetically fluidized bed (MFB) by adding coarse magnets. The effects of both the amount of coarse magnets and the ma...The fluidization behavior of SiO2, ZnO and TiO2 non-magnetic nanoparticles was investigated in a magnetically fluidized bed (MFB) by adding coarse magnets. The effects of both the amount of coarse magnets and the magnetic field intensity on the fluidization quality of these nanoparticles were investigated. The results show that the coarse magnets added to the bed lead to a reduction in the size of the aggregates formed naturally by the primary nanopartieles. As the macroscopic performances of improved fluidization quality, the bed expansion ratio increases whilst the minimum fluidization velocity decreases with increasing the magnetic field intensity, but for TiO2 nanoparticles there exists a suitable magnetic field intensity of 0.059 6 T. The optimal amounts of coarse magnets for SiO2, ZnO and TiO2 non-magnetic nanoparticles are 40%, 50% and 60% (mass fraction), respectively. The bed expansion results analyzed by the Richardson-Zaki scaling law show that the exponents depend on both the amount of coarse magnets and the magnetic field intensity.展开更多
In this work,a series of specimens was prepared by the casting method.Sharp cube-textured substrates were processed by heavy cold rolling and recrystallization annealing(i.e.,the rolling-assisted biaxially textured su...In this work,a series of specimens was prepared by the casting method.Sharp cube-textured substrates were processed by heavy cold rolling and recrystallization annealing(i.e.,the rolling-assisted biaxially textured substrates(RABi TS) method).Both the rolling and the recrystallization texture in the alloy tapes were investigated by X-ray diffraction and electron back-scatter diffraction,respectively.The results showed that a strong copper-type deformation texture was obtained in the heavy cold-rolled substrate.In addition,the recrystallization annealing process was found to be very important for the texture transition in the Cu–Ni alloy substrates.The cube texture content in the Cu60 Ni40 alloy substrates reached 99.7%(≤10°) after optimization of the cold-rolling procedure and the recrystallizing heat-treatment process,whereas the content of low-angle grain boundaries(from 2° to 10° misorientation) in the substrate reached 95.1%.展开更多
The effects of non-magnetic atom vacancy on structural, martensitic phase transitions and the corresponding magnetocMoric effect in MnCoGel-x alloys are investigated using x-ray diffraction and magnetic measurements. ...The effects of non-magnetic atom vacancy on structural, martensitic phase transitions and the corresponding magnetocMoric effect in MnCoGel-x alloys are investigated using x-ray diffraction and magnetic measurements. The introduction of non-magnetic atom vacancy leads to the decrease of the martensitic transition temperature and realizes a temperature window where magnetic and martensitic phase transitions can be tuned together. Moreover, the giant magnetocaloric effect accompanied with the coupled magnetic-structural transition is ob- tained. It is observed that the peak values of magnetic entropy change of MnCoGeo.97 are about -13.9, -35.1 and -47.4J.kg-1K-1 for △H = 2, 5, 7T, respectively.展开更多
BACKGROUND Among the most frequent hip fractures are trochanteric fractures,which usually occur from low-energy trauma like minor falls,especially in older people with osteoporotic bones.AIM To evaluate the treatment ...BACKGROUND Among the most frequent hip fractures are trochanteric fractures,which usually occur from low-energy trauma like minor falls,especially in older people with osteoporotic bones.AIM To evaluate the treatment efficacy of dynamic condylar screws(DCS)and proximal femoral nails(PFN)for unstable intertrochanteric fractures.METHODS To find pertinent randomized controlled trials and retrospective observational studies comparing PFN with DCS for the management of unstable femoral intertrochanteric fractures,a thorough search was carried out.For research studies published between January 1996 and April 2024,PubMed,EMBASE,Scopus,Web of Science,Cochrane Library,and Google Scholar were all searched.The complete texts of the papers were retrieved,vetted,and independently examined by two investigators.Disputes were settled by consensus,and any disagreements that persisted were arbitrated by a third author.RESULTS This study included six articles,comprising a total of 173 patients.Compared to the DCS,the PFN had a shorter operation time[mean difference(MD):-41.7 min,95%confidence interval(95%CI):-63.04 to-20.35,P=0.0001],higher success rates with closed reduction techniques[risk ratio(RR):34.05,95%CI:11.12-104.31,P<0.00001],and required less intraoperative blood transfusion(MD:-1.4 units,95%CI:-1.80 to-1.00,P<0.00001).Additionally,the PFN showed shorter fracture union time(MD:-6.92 wk,95%CI:-10.27 to-3.57,P<0.0001)and a lower incidence of reoperation(RR:0.37,95%CI:0.17-0.82,P=0.01).However,there was no discernible variation regarding hospital stay,implant-related complications,and infections.CONCLUSION Compared to DCS,PFN offers shorter operative times,reduces the blood transfusions requirements,achieves higher closed reduction success,enables faster fracture healing,and lowers reoperation incidence.展开更多
Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,s...Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,screws are evolving from solid and smooth to porous and rough.Additive manufacturing(AM)offers a high degree of manufacturing freedom,enabling the preparation of predesigned screws that are porous and rough.This paper provides an overview of the problems currently faced by bone screws:long-term loosening and screw breakage.Next,advances in osseointegrated screws are summarized hierarchically(sub-micro,micro,and macro).At the sub-microscale level,we describe surface-modification techniques for enhancing osseointegration.At the micro level,we summarize the micro-design parameters that affect the mechanical and biological properties of porous osseointegrated screws,including porosity,pore size,and pore shape.In addition,we highlight three promising pore shapes:triply periodic minimal surface,auxetic structure with negative Poisson ratio,and the Voronoi structure.At the macro level,we outline the strategies of graded design,gradient design,and topology optimization design to improve the mechanical strength of porous osseointegrated screws.Simultaneously,this paper outlines advances in AM technology for enhancing the mechanical properties of porous osseointegrated screws.AM osseointegrated screws with hierarchical design are expected to provide excellent long-term fixation and the required mechanical strength.展开更多
BACKGROUND The pedicle screw technique is widely employed for vertebral body fixation in the treatment of spinal disorders.However,traditional screw placement methods require the dissection of paraspinal muscles and t...BACKGROUND The pedicle screw technique is widely employed for vertebral body fixation in the treatment of spinal disorders.However,traditional screw placement methods require the dissection of paraspinal muscles and the insertion of pedicle screws at specific transverse section angles(TSA).Larger TSA angles require more force to pull the muscle tissue,which can increase the risk of surgical trauma and ischemic injury to the lumbar muscles.AIM To study the feasibility of zero-degree TSA vertical pedicle screw technique in the lumbosacral segment.METHODS Finite element models of vertebral bodies and pedicle screw-rod systems were established for the L4-S1 spinal segments.A standard axial load of 500 N and a rotational torque of 10 N/m were applied.Simulated screw pull-out experiment was conducted to observe pedicle screw resistance to pull-out,maximum stress,load-displacement ratio,maximum stress in vertebral bodies,load-displacement ratio in vertebral bodies,and the stress distribution in pedicle screws and vertebral bodies.Differences between the 0-degree and 17-degree TSA were compared.RESULTS At 0-degree TSA,the screw pull-out force decreased by 11.35%compared to that at 17-degree TSA(P<0.05).At 0-degree and 17-degree TSA,the stress range in the screw-rod system was 335.1-657.5 MPa and 242.8-648.5 MPa,separately,which were below the fracture threshold for the screw-rod system(924 MPa).At 0-degree and 17-degree TSA,the stress range in the vertebral bodies was 68.45-78.91 MPa and 39.08-72.73 MPa,separately,which were below the typical bone yield stress range for vertebral bodies(110-125 MPa).At 0-degree TSA,the load-displacement ratio for the vertebral bodies and pedicle screws was slightly lower compared to that at 17-degree TSA,indicating slightly lower stability(P<0.05).CONCLUSION The safety and stability of 0-degree TSA are slightly lower,but the risks of screw-rod system fracture,vertebral body fracture,and rupture are within acceptable limits.展开更多
We are developing a speed reducer that can be considered a transformation of a worm gear reducer: the worm is replaced by an inverted roller screw, and the gear is replaced by a threaded chain drive. This configuratio...We are developing a speed reducer that can be considered a transformation of a worm gear reducer: the worm is replaced by an inverted roller screw, and the gear is replaced by a threaded chain drive. This configuration lessens wear, increases load capacity, and improves efficiency. The threaded chain consists of nut-shaped links. This paper presents the results of tests carried out on a prototype with a reduction ratio of 46.展开更多
Objective: To investigate the effectiveness of the plate screw internal fixation technique on the clinical outcomes of patients with traumatic fractures of long bones in the lower extremities. Methods: From January 20...Objective: To investigate the effectiveness of the plate screw internal fixation technique on the clinical outcomes of patients with traumatic fractures of long bones in the lower extremities. Methods: From January 2022 to December 2023, 70 patients with traumatic fractures of long bones in the lower extremities were admitted to the hospital and randomly divided into two groups: the control group and the observation group, each consisting of 35 cases. The control group underwent traditional closed interlocking intramedullary nailing, while the observation group received internal fixation with steel plates and screws. Relevant surgical indicators, treatment effectiveness, and postoperative complication rates were compared between the two groups. Results: The observation group exhibited significantly short surgical duration (80.65 ± 5.01 vs. 88.36 ± 5.26 minutes), fracture healing time (13.27 ± 0.32 vs. 15.52 ± 0.48 weeks), and hospitalization days (10.49 ± 1.13 vs. 16.57 ± 1.15 days) compared to the control group (P = 0.000). The effective treatment rate was significantly higher in the observation group (29/82.86%) than in the control group (21/60.00%), with a significant difference observed (χ2 = 4.480, P = 0.034). Additionally, the complication rate in the observation group (2/5.71%) was significantly lower than that in the control group (8/22.86%), with a correlated difference (χ2 = 4.200, P = 0.040). Conclusion: The plate screw internal fixation technique demonstrates significant clinical efficacy in treating traumatic fractures of long bones in the lower extremities. It improves the healing rate, reduces complications, and represents a safe and effective treatment strategy worthy of widespread use and application.展开更多
The 3 D non isothermal flow of non Newtonian viscous polymer melt in a co rotating twin screw extruder is modeled. The distributions of the velocity, temperature, pressure and the viscous dissipation in the fl...The 3 D non isothermal flow of non Newtonian viscous polymer melt in a co rotating twin screw extruder is modeled. The distributions of the velocity, temperature, pressure and the viscous dissipation in the flow domain are presented by using a fluid dynamics analysis package (Polyflow). The numerical results show that the temperatures are high in the intermeshing region and on the screw surface, the maximum pressure and the minimum pressure occur in the intermeshing region, and the flow rate is almost proportional to the screw speed.展开更多
目的:颈前路减压融合术是治疗退行性颈椎病的经典手术方式,钉板的使用增加了融合率及稳定性的同时,间接导致了邻近椎体退变和术后吞咽困难的发生。文章通过Meta分析方法比较ROI-C^(TM)自锁系统和传统融合器联合钉板内固定治疗退行性颈...目的:颈前路减压融合术是治疗退行性颈椎病的经典手术方式,钉板的使用增加了融合率及稳定性的同时,间接导致了邻近椎体退变和术后吞咽困难的发生。文章通过Meta分析方法比较ROI-C^(TM)自锁系统和传统融合器联合钉板内固定治疗退行性颈椎病患者的临床结果和并发症情况,为颈前路减压融合术中内固定方式的选择提供循证学支持。方法:检索中国知网、万方、维普、PubMed、Cochrane Library、Web of Science和Embase数据库,检索关于颈前路减压融合术中应用ROI-C^(TM)自锁系统与融合器联合钉板内固定治疗退行性颈椎病的中英文文献。检索时间范围为各数据库建库至2023年7月。由2名研究者严格按照纳入与排除标准选择文献,采用Cochrane偏倚风险工具对随机对照试验进行质量评价,NOS量表对队列研究进行质量评价。采用RevMan 5.4软件进行Meta分析。结局指标包括手术时间、术中出血量、日本骨科协会(Japanese Orthopaedic Association Scores,JOA)评分、颈椎功能障碍指数、C_(2)-C_(7)Cobb角、融合率、邻近椎体退变发生率、融合器沉降率和吞咽困难发生率。结果:共纳入13项研究,其中回顾性队列研究11项,随机对照试验2项,共1136例患者,ROI-C组569例,融合器联合钉板组567例。Meta分析结果显示:ROI-C组与融合器联合钉板组在手术时间(MD=-15.52,95%CI:-18.62至-12.42,P<0.00001),术中出血量(MD=-24.53,95%CI:-32.46至-16.61,P<0.00001),术后邻近节段退变率(RR=0.40,95%CI:0.27-0.60,P<0.00001)和术后总吞咽困难发生率(RR=0.18,95%CI:0.13-0.26,P<0.00001)均具有显著性差异。两者在术后JOA评分、颈椎功能障碍指数、C_(2)-C_(7)Cobb角、融合率和融合器沉降率方面无显著性差异(P≥0.05)。结论:在颈椎前路减压融合术中应用ROI-C^(TM)自锁系统与传统融合器联合钉板内固定治疗退行性颈椎病均可达到满意的临床效果,ROI-C^(TM)自锁系统操作更加简单,相比融合器联合钉板内固定能明显减少手术时间及术中出血量,在减少术后吞咽困难及邻近节段退变发生率等方面具有明显优势,对于跳跃型颈椎病及邻椎病翻修患者,更加推荐使用ROI-C^(TM)自锁系统。但鉴于其可能存在较高的沉降率,对于多节段且合并融合器沉降高危因素如骨质疏松、椎体终板破损的退行性颈椎病患者,仍建议使用融合器联合钉板内固定。展开更多
基金Project(20776163) supported by the National Natural Science Foundation of ChinaProject(20070533121) supported by the PhD Programs Foundation of Ministry of Education of ChinaProject supported by the NSFC-JSPS Cooperation Program
文摘The fluidization behavior of SiO2, ZnO and TiO2 non-magnetic nanoparticles was investigated in a magnetically fluidized bed (MFB) by adding coarse magnets. The effects of both the amount of coarse magnets and the magnetic field intensity on the fluidization quality of these nanoparticles were investigated. The results show that the coarse magnets added to the bed lead to a reduction in the size of the aggregates formed naturally by the primary nanopartieles. As the macroscopic performances of improved fluidization quality, the bed expansion ratio increases whilst the minimum fluidization velocity decreases with increasing the magnetic field intensity, but for TiO2 nanoparticles there exists a suitable magnetic field intensity of 0.059 6 T. The optimal amounts of coarse magnets for SiO2, ZnO and TiO2 non-magnetic nanoparticles are 40%, 50% and 60% (mass fraction), respectively. The bed expansion results analyzed by the Richardson-Zaki scaling law show that the exponents depend on both the amount of coarse magnets and the magnetic field intensity.
基金financially supported by the National Natural Science Foundation of China (No.51571002)the Beijing Natural Science Foundation (No.2172008)+4 种基金the Doctoral Program of Higher Education of Special Research Fund of China (No.20121103110012)the Beijing Municipal Natural Science Foundation B Type (No.KZ201310005003)the China Scholarship Councilthe Technology Program of Beijing CityBeijing University of Technology
文摘In this work,a series of specimens was prepared by the casting method.Sharp cube-textured substrates were processed by heavy cold rolling and recrystallization annealing(i.e.,the rolling-assisted biaxially textured substrates(RABi TS) method).Both the rolling and the recrystallization texture in the alloy tapes were investigated by X-ray diffraction and electron back-scatter diffraction,respectively.The results showed that a strong copper-type deformation texture was obtained in the heavy cold-rolled substrate.In addition,the recrystallization annealing process was found to be very important for the texture transition in the Cu–Ni alloy substrates.The cube texture content in the Cu60 Ni40 alloy substrates reached 99.7%(≤10°) after optimization of the cold-rolling procedure and the recrystallizing heat-treatment process,whereas the content of low-angle grain boundaries(from 2° to 10° misorientation) in the substrate reached 95.1%.
基金Supported by the National Natural Science Foundation of China under Grant No 11504222
文摘The effects of non-magnetic atom vacancy on structural, martensitic phase transitions and the corresponding magnetocMoric effect in MnCoGel-x alloys are investigated using x-ray diffraction and magnetic measurements. The introduction of non-magnetic atom vacancy leads to the decrease of the martensitic transition temperature and realizes a temperature window where magnetic and martensitic phase transitions can be tuned together. Moreover, the giant magnetocaloric effect accompanied with the coupled magnetic-structural transition is ob- tained. It is observed that the peak values of magnetic entropy change of MnCoGeo.97 are about -13.9, -35.1 and -47.4J.kg-1K-1 for △H = 2, 5, 7T, respectively.
文摘BACKGROUND Among the most frequent hip fractures are trochanteric fractures,which usually occur from low-energy trauma like minor falls,especially in older people with osteoporotic bones.AIM To evaluate the treatment efficacy of dynamic condylar screws(DCS)and proximal femoral nails(PFN)for unstable intertrochanteric fractures.METHODS To find pertinent randomized controlled trials and retrospective observational studies comparing PFN with DCS for the management of unstable femoral intertrochanteric fractures,a thorough search was carried out.For research studies published between January 1996 and April 2024,PubMed,EMBASE,Scopus,Web of Science,Cochrane Library,and Google Scholar were all searched.The complete texts of the papers were retrieved,vetted,and independently examined by two investigators.Disputes were settled by consensus,and any disagreements that persisted were arbitrated by a third author.RESULTS This study included six articles,comprising a total of 173 patients.Compared to the DCS,the PFN had a shorter operation time[mean difference(MD):-41.7 min,95%confidence interval(95%CI):-63.04 to-20.35,P=0.0001],higher success rates with closed reduction techniques[risk ratio(RR):34.05,95%CI:11.12-104.31,P<0.00001],and required less intraoperative blood transfusion(MD:-1.4 units,95%CI:-1.80 to-1.00,P<0.00001).Additionally,the PFN showed shorter fracture union time(MD:-6.92 wk,95%CI:-10.27 to-3.57,P<0.0001)and a lower incidence of reoperation(RR:0.37,95%CI:0.17-0.82,P=0.01).However,there was no discernible variation regarding hospital stay,implant-related complications,and infections.CONCLUSION Compared to DCS,PFN offers shorter operative times,reduces the blood transfusions requirements,achieves higher closed reduction success,enables faster fracture healing,and lowers reoperation incidence.
基金supported by the National Natural Science Foundation of China(Nos.82272504 and 82072456)the National Key R&D Program of China(No.2018YFB1105100)+4 种基金the Department of Science and Technology of Jilin Province,China(Nos.20200404202YY,20200403086SF,20210101321JC,20210204104YY,20200201453JC,20220204119YY,202201ZYTS131,202201ZYTS129,20220401084YY,202201ZYTS505,and YDZJ202301ZYTS076)the Department of Finance of Jilin Province,China(No.2020SCZT037)the Jilin Provincial Development and Reform Commission,China(Nos.2018C010 and 2022C043-5)the Interdisciplinary Integration and Cultivation Project of Jilin University(No.JLUXKJC2020307)the Central University Basic Scientific Research Fund(No.2023-JCXK-04).
文摘Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,screws are evolving from solid and smooth to porous and rough.Additive manufacturing(AM)offers a high degree of manufacturing freedom,enabling the preparation of predesigned screws that are porous and rough.This paper provides an overview of the problems currently faced by bone screws:long-term loosening and screw breakage.Next,advances in osseointegrated screws are summarized hierarchically(sub-micro,micro,and macro).At the sub-microscale level,we describe surface-modification techniques for enhancing osseointegration.At the micro level,we summarize the micro-design parameters that affect the mechanical and biological properties of porous osseointegrated screws,including porosity,pore size,and pore shape.In addition,we highlight three promising pore shapes:triply periodic minimal surface,auxetic structure with negative Poisson ratio,and the Voronoi structure.At the macro level,we outline the strategies of graded design,gradient design,and topology optimization design to improve the mechanical strength of porous osseointegrated screws.Simultaneously,this paper outlines advances in AM technology for enhancing the mechanical properties of porous osseointegrated screws.AM osseointegrated screws with hierarchical design are expected to provide excellent long-term fixation and the required mechanical strength.
基金the institutional review board of Mingzhou Hospital of Ningbo(No.202208501).
文摘BACKGROUND The pedicle screw technique is widely employed for vertebral body fixation in the treatment of spinal disorders.However,traditional screw placement methods require the dissection of paraspinal muscles and the insertion of pedicle screws at specific transverse section angles(TSA).Larger TSA angles require more force to pull the muscle tissue,which can increase the risk of surgical trauma and ischemic injury to the lumbar muscles.AIM To study the feasibility of zero-degree TSA vertical pedicle screw technique in the lumbosacral segment.METHODS Finite element models of vertebral bodies and pedicle screw-rod systems were established for the L4-S1 spinal segments.A standard axial load of 500 N and a rotational torque of 10 N/m were applied.Simulated screw pull-out experiment was conducted to observe pedicle screw resistance to pull-out,maximum stress,load-displacement ratio,maximum stress in vertebral bodies,load-displacement ratio in vertebral bodies,and the stress distribution in pedicle screws and vertebral bodies.Differences between the 0-degree and 17-degree TSA were compared.RESULTS At 0-degree TSA,the screw pull-out force decreased by 11.35%compared to that at 17-degree TSA(P<0.05).At 0-degree and 17-degree TSA,the stress range in the screw-rod system was 335.1-657.5 MPa and 242.8-648.5 MPa,separately,which were below the fracture threshold for the screw-rod system(924 MPa).At 0-degree and 17-degree TSA,the stress range in the vertebral bodies was 68.45-78.91 MPa and 39.08-72.73 MPa,separately,which were below the typical bone yield stress range for vertebral bodies(110-125 MPa).At 0-degree TSA,the load-displacement ratio for the vertebral bodies and pedicle screws was slightly lower compared to that at 17-degree TSA,indicating slightly lower stability(P<0.05).CONCLUSION The safety and stability of 0-degree TSA are slightly lower,but the risks of screw-rod system fracture,vertebral body fracture,and rupture are within acceptable limits.
文摘We are developing a speed reducer that can be considered a transformation of a worm gear reducer: the worm is replaced by an inverted roller screw, and the gear is replaced by a threaded chain drive. This configuration lessens wear, increases load capacity, and improves efficiency. The threaded chain consists of nut-shaped links. This paper presents the results of tests carried out on a prototype with a reduction ratio of 46.
文摘Objective: To investigate the effectiveness of the plate screw internal fixation technique on the clinical outcomes of patients with traumatic fractures of long bones in the lower extremities. Methods: From January 2022 to December 2023, 70 patients with traumatic fractures of long bones in the lower extremities were admitted to the hospital and randomly divided into two groups: the control group and the observation group, each consisting of 35 cases. The control group underwent traditional closed interlocking intramedullary nailing, while the observation group received internal fixation with steel plates and screws. Relevant surgical indicators, treatment effectiveness, and postoperative complication rates were compared between the two groups. Results: The observation group exhibited significantly short surgical duration (80.65 ± 5.01 vs. 88.36 ± 5.26 minutes), fracture healing time (13.27 ± 0.32 vs. 15.52 ± 0.48 weeks), and hospitalization days (10.49 ± 1.13 vs. 16.57 ± 1.15 days) compared to the control group (P = 0.000). The effective treatment rate was significantly higher in the observation group (29/82.86%) than in the control group (21/60.00%), with a significant difference observed (χ2 = 4.480, P = 0.034). Additionally, the complication rate in the observation group (2/5.71%) was significantly lower than that in the control group (8/22.86%), with a correlated difference (χ2 = 4.200, P = 0.040). Conclusion: The plate screw internal fixation technique demonstrates significant clinical efficacy in treating traumatic fractures of long bones in the lower extremities. It improves the healing rate, reduces complications, and represents a safe and effective treatment strategy worthy of widespread use and application.
文摘The 3 D non isothermal flow of non Newtonian viscous polymer melt in a co rotating twin screw extruder is modeled. The distributions of the velocity, temperature, pressure and the viscous dissipation in the flow domain are presented by using a fluid dynamics analysis package (Polyflow). The numerical results show that the temperatures are high in the intermeshing region and on the screw surface, the maximum pressure and the minimum pressure occur in the intermeshing region, and the flow rate is almost proportional to the screw speed.
文摘目的:颈前路减压融合术是治疗退行性颈椎病的经典手术方式,钉板的使用增加了融合率及稳定性的同时,间接导致了邻近椎体退变和术后吞咽困难的发生。文章通过Meta分析方法比较ROI-C^(TM)自锁系统和传统融合器联合钉板内固定治疗退行性颈椎病患者的临床结果和并发症情况,为颈前路减压融合术中内固定方式的选择提供循证学支持。方法:检索中国知网、万方、维普、PubMed、Cochrane Library、Web of Science和Embase数据库,检索关于颈前路减压融合术中应用ROI-C^(TM)自锁系统与融合器联合钉板内固定治疗退行性颈椎病的中英文文献。检索时间范围为各数据库建库至2023年7月。由2名研究者严格按照纳入与排除标准选择文献,采用Cochrane偏倚风险工具对随机对照试验进行质量评价,NOS量表对队列研究进行质量评价。采用RevMan 5.4软件进行Meta分析。结局指标包括手术时间、术中出血量、日本骨科协会(Japanese Orthopaedic Association Scores,JOA)评分、颈椎功能障碍指数、C_(2)-C_(7)Cobb角、融合率、邻近椎体退变发生率、融合器沉降率和吞咽困难发生率。结果:共纳入13项研究,其中回顾性队列研究11项,随机对照试验2项,共1136例患者,ROI-C组569例,融合器联合钉板组567例。Meta分析结果显示:ROI-C组与融合器联合钉板组在手术时间(MD=-15.52,95%CI:-18.62至-12.42,P<0.00001),术中出血量(MD=-24.53,95%CI:-32.46至-16.61,P<0.00001),术后邻近节段退变率(RR=0.40,95%CI:0.27-0.60,P<0.00001)和术后总吞咽困难发生率(RR=0.18,95%CI:0.13-0.26,P<0.00001)均具有显著性差异。两者在术后JOA评分、颈椎功能障碍指数、C_(2)-C_(7)Cobb角、融合率和融合器沉降率方面无显著性差异(P≥0.05)。结论:在颈椎前路减压融合术中应用ROI-C^(TM)自锁系统与传统融合器联合钉板内固定治疗退行性颈椎病均可达到满意的临床效果,ROI-C^(TM)自锁系统操作更加简单,相比融合器联合钉板内固定能明显减少手术时间及术中出血量,在减少术后吞咽困难及邻近节段退变发生率等方面具有明显优势,对于跳跃型颈椎病及邻椎病翻修患者,更加推荐使用ROI-C^(TM)自锁系统。但鉴于其可能存在较高的沉降率,对于多节段且合并融合器沉降高危因素如骨质疏松、椎体终板破损的退行性颈椎病患者,仍建议使用融合器联合钉板内固定。