Understanding and predicting the impact of the global energy transition and the United Nations Sustainable Development Goals (SDGs) on global mineral demand and African supply is challenging. This study uses a resourc...Understanding and predicting the impact of the global energy transition and the United Nations Sustainable Development Goals (SDGs) on global mineral demand and African supply is challenging. This study uses a resource nexus approach to investigate and analyze the impact of this transition on energy and water demand and CO2 emissions using three annual material demand scenarios. The results indicate that African mining will consume more energy by 2050, leading to an increase in cumulative demand for energy (from 98 to 14,577 TWh) and water (from 15,013 to 223,000 million m3), as well as CO2 emissions (1318 and 19,561 Gg CO2e). In contrast, only a modest increase in energy demand (207 TWh) will be required by 2050 to achieve the SDGs. Therefore, the African mining industry should reduce its energy consumption and invest more in the renewable energy sector to support the global energy transition.展开更多
This work discusses status of the geologic and economic potentials of minerals and industrial rocks in Jordan. The major mineral resources are presented in details and the paper is designed to cover the lack of publis...This work discusses status of the geologic and economic potentials of minerals and industrial rocks in Jordan. The major mineral resources are presented in details and the paper is designed to cover the lack of published data in this field. Geologically, the structural framework of Jordan is controlled largely by Arabian Nubian Shield in the south, block—faulted areas in the east, upwarping in north and east, and Wadi Araba-Dead Sea Transform Fault in the western part. The geologic environments include Precambrian crystalline basement (Late Proterozoic) of Arabian Nubian Shield (ANS) that is composed of igneous and metamorphic rocks at south-western part. Paleozoic rocks at southern and southeastern part consist of clastic minerals which are dominated by sandstone, whereas Mesozoic sedimentary rocks are widespread throughout southwestern, northern to southeastern parts of the country. They mainly consist of major industrial rocks and minerals such as phosphate, oil shale, limestone, dolomite, chalk, marble, gypsum, diatomite and tripoli. Cenozoic Era is composed of sedimentary and volcanic rocks in different parts of Jordan. There are more than twenty nonmetallic minerals and four main metallic deposits within the various geologic environments. This paper summarizes their distribution, chemical and mineralogical characteristics, in addition to their production statistics.展开更多
This The mineral potential in Egypt is quite high. Almost all sorts of industrial minerals such as metallic and non-metallic commodities exist in commercial amounts. However, Egypt imports many of the mineral commodit...This The mineral potential in Egypt is quite high. Almost all sorts of industrial minerals such as metallic and non-metallic commodities exist in commercial amounts. However, Egypt imports many of the mineral commodities needed for the local mineral industries. The main reason for this is that the investors, either the governmental or the private sectors, refrain from investing into the mineral industry for prospecting, evaluation, and developing the mining and mineral processing technologies. This is because the return on investment in the mining industry is generally low and the pay back period is relatively long compared with easy-to-get money projects. Another reason is the disarray of the mining laws and regulations and lack of administrative capability to deal with domestic and international investors and solve the related problems. Also, lack of skilled personnel in the field of mining and mineral processing is an additional factor for the set back of the mining industry in Egypt. This is why the mining technology in Egypt is not very far from being primitive and extremely simple, with the exception of the underground mining of coal, North of Sinai, and Abu-Tartur phosphate mining, where fully automated long wall operations are designed. Also, the recent gold and tin-tantalum-niobium projects are being designed on modern surface mining and mineral processing technologies. The present review presents an overview of the most important metallic mineral commodities in Egypt, their geological background, reserves and production rates. A brief mention of the existing technologies for their exploitation is also highlighted.展开更多
Clay samples from selected part of Edda were analyzed to identify the clay mineral types present,their chemical and physical properties with a view to appraising their industrial suitability as ceramic materials.The m...Clay samples from selected part of Edda were analyzed to identify the clay mineral types present,their chemical and physical properties with a view to appraising their industrial suitability as ceramic materials.The mineralogical and geochemical analyses were done using the principles of X-Ray diffraction and X-ray fluorescence respectively.A total of seven clay samples were used for the study,other tests such as plasticity,bulk density,shrinkage,loss on ignition(LOI)and water absorption capacity was carried out to determine the amount of water absorbed under specified conditions.The basic industrial properties assessment showed that more than 70%of the clays are fine-grained.The clays exhibited low to moderate plasticity,moderate shrinkage and bulk density,low to moderate values of both loss on ignition and water absorption capacity.The clays are buff to yellowish in colour.The results of x-ray fluorescence revealed that the mean concentration of major oxide in the clays is shown as follows:SiO_(2)(62.78%),Al_(2)O_(3)(20.25%),total Fe(6.09%),CaO(0.56%),MgO(3.21%),Na_(2)O(0.47%),K_(2)O,(1.44%)and TiO_(2)(0.52%).The samples have high silica content,low alumina and low oxide content.The results of x-ray diffraction revealed that kaolinite is the dominant clay mineral with illite and montmorillonite occurring in subordinate amounts,while quartz and feldspar are the non-clay components present.The characteristics of the clays for each parameter were compared with industrial standards.These properties are appropriate for the Afikpo clays to be useful in the manufacturing of ceramics.However,since the silica content of the clays is high further beneficiation is recommended.展开更多
Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionall...Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionally prevented the observation of the same sample over time, under realistic three-dimensional geometries and in an environment representative of real-world operating conditions. X-ray microscopy (XRM) is a rapidly emerging technique that enables non-destructive evaluation of buried structures within hard to soft materials in 3D, requiring little to no sample preparation. Furthermore in situ and 4D quantification of microstructural evolution under controlled environment as a function of time, temperature, chemistry or stress can be done repeatable on the same sample, using practical specimen sizes ranging from tens of microns to several cm diameter, with achievable imaging resolution from submicron to 50 nm. Many of these studies were reported using XRM in synchrotron beamlines. These include crack propagation on composite and construction materials; corrosion studies; microstructural changes during the setting of cement; flow studies within porous media to mention but a few.展开更多
Historically, industrial hemp (Cannabis sativa L.) has been a valuable source of metabolites and compounds, such as cannabidiols. There is a need for large amounts of plant tissue to be grown under controlled environm...Historically, industrial hemp (Cannabis sativa L.) has been a valuable source of metabolites and compounds, such as cannabidiols. There is a need for large amounts of plant tissue to be grown under controlled environments, and plant tissue culture is one unique way to yield this tissue. The purposes of this study were to determine: 1) the optimal concentrations (μM)/ratios of auxin:cytokinin in media and;2) the optimal mineral salts formulation for callus induction and callus growth in select hemp cultivars. To find the optimal concentration/ratios, 16 different combinations of auxin:cytokinin and three different mineral salts formulations were evaluated. The three mineral salts formulations tested were MS salts, MB5D1K and an MTSU formulation. The top performing hormone formulations were determined to be equal concentrations (1:1, 2:2, 3:3 μM) of auxin and cytokinin. The top performing media hormone formulations for callus induction were determined to be 2:1, 2:2, 2:3, and 3:2 μM (auxin:cytokinin). The optimal mineral salts formulation was determined to be MD5D1K. Therefore, the overall optimal media formulation for hemp callus production would be MB5D1K salts with the concentration/ratio of 2:2 μM (auxin:cytokinin).展开更多
Assessing the potential uses as industrial mineral, bauxite from Débélé, Guinea, has been characterised by chemical and mineralogical analyses, the determination of the amorphous content, the rate of po...Assessing the potential uses as industrial mineral, bauxite from Débélé, Guinea, has been characterised by chemical and mineralogical analyses, the determination of the amorphous content, the rate of portlandite consumption in an aqueous solution, the strength activity index, and the thermal behaviour up to 1200<span style="white-space:nowrap;">°</span>C. It was evidenced that the raw sample is gibbsite-rich type bauxite with about 45.06 wt% of alumina, 23.80 wt% of iron oxide, and 1.74 wt% of silica. It meets the chemical composition required for bauxites used for refractory cement. During heating, the raw bauxite undergoes high densification with low linear shrinkage, motivating a potential use in dense ceramic compositions with high thermal stability. Also, the heating at only 600<span style="white-space:nowrap;">°</span>C gives a significant pozzolanic activity in combination with Portland cement. The correlation between the pozzolanicity, the amorphous phase content, and the specific surface area indicated that the raw and the calcined materials present an interesting reactivity for using them in alternative cement formulations.展开更多
The study area is located in Duhok and Sulaimania province in Kurdistan region, lraq. Study soils developed from parent material that has derived from limestone. Randomize, composed and disturbed surface soil samples ...The study area is located in Duhok and Sulaimania province in Kurdistan region, lraq. Study soils developed from parent material that has derived from limestone. Randomize, composed and disturbed surface soil samples were collected. The bulk soils were air dried, crushed and passed through 2 mm sieve. Standard methods were used for chemical, physical, geotechnical and mineralogical analyses of soil samples. The results indicated that the study soils texture were clay to loam clay, this texture was considered as suitable for ceramic and pottery industries as a result of increasing clay contents that ranged between 301 g/kg and 676 g/kg. Soil consistence depending on geotechnical properties increased the ability of study soils for resistance rapture and deformation. Existence the high amount of cementing agents in study soils such as organic matter, iron oxides and particularly total carbonate (247.2-308.8 g/kg) act to reduce the bad effect of the smectite minerals group (high shrinkage) in soils of study locations through increasing the resistance of these soils for rupture and deformation. The existing of Kaolinite, palygorskite and chlorite allows clay to be dried in ceramic and pottery industries without cracking from shrinkage. Study soils were different in their colors as a result of existence, different pigmentation materials that led to coloring soils with different colors in turn caused coloring of pottery and ceramic materials. Since, there are no available academic studies or researches about this subject in Kurdistan region in addition the clay pottery and ceramic sector still has a good market at the same time using this type of soils for arts, therefore, this study was conducted.展开更多
Discovery rates for all metals, including gold, are declining, the cost per significant discovery is increasing sharply, and the economic situation of the industry is one of low base rate. The current hierarchical str...Discovery rates for all metals, including gold, are declining, the cost per significant discovery is increasing sharply, and the economic situation of the industry is one of low base rate. The current hierarchical structure of the exploration and mining industry makes this situation difficult to redress. Economic geologists can do little to influence the required changes to the overall structure and philosophy of an industry driven by business rather than geological principles, However, it should be possible to follow the lead of the oil industry and improve the success rate of greenfield exploration, necessary for the next group of lower-exploration-spend significant mineral deposit discoveries. Here we promote the concept that mineral explorers need to carefully consider the scale at which their exploration targets are viewed. It is necessary to carefully assess the potential of drill targets in terms of terrane to province to district scale, rather than deposit scale, where most current economic geology research and conceptual thinking is concentrated. If orogenic, IRGD, Carlin-style and IOCG gold-rich systems are viewed at the deposit scale, they appear quite different in terms of conventionally adop- ted research parameters. However, recent models for these deposit styles show increasingly similar source-region parameters when viewed at the lithosphere scale, suggesting common tectonic settings. It is only by assessing individual targets in their tectonic context that they can be more reliably ranked in terms of potential to provide a significant drill discovery. Targets adjacent to craton margins, other lithosphere boundaries, and suture zones are clearly favoured for all of these gold deposit styles, and such exploration could lead to incidental discovery of major deposits of other metals sited along the same tectonic boundaries.展开更多
We describe a novel lab based X-ray computed tomography system based on the architecture of X-ray Microscopes (XRM) used in synchrotron radiation facilities to be adapted for mineral processing and mineral liberation ...We describe a novel lab based X-ray computed tomography system based on the architecture of X-ray Microscopes (XRM) used in synchrotron radiation facilities to be adapted for mineral processing and mineral liberation analysis. As this is a tomographic technique performed with an XRM, it is non-destructive and does not require complex preparation of polished sections typical of SEM-EDS techniques (such as MLA and QEMSCAN). It complements these existing techniques by providing 3D information and mineral liberation of multi-phase particles with much larger sample volume statistics but at a fraction of the time. In several applications, the technique is superior. These include the characterization of tailing loss in precious minerals; the characterization of porosity, particle size distribution, crack and pore network analysis during comminution, heap leaching and for texture and exposure/lock class analysis for floatation.展开更多
To evaluate the effectiveness of apatite mineral in removing different contaminants from low quality water in the industrial city of abha,Asir region,southwestern of Saudi Arabia two phosphatic clay dominated by apati...To evaluate the effectiveness of apatite mineral in removing different contaminants from low quality water in the industrial city of abha,Asir region,southwestern of Saudi Arabia two phosphatic clay dominated by apatite mineral were selected.In situ remediation experiment proved that apatite mineral has the highest affinity for Pb and removed more than 94% from initial Pb concentration.The rest of contaminants followed the descending order of:Zn>Mn>Cu>Co>Ni.The sorption of Pb,Zn and Mn onto apatite mineral was well characterized by the Langmuir model.Ternary-metal addition induced competitive sorption among the three metals,with the interfering effect of Pb>Zn>Mn.During metal retention by apatite mineral calcium and phosphate were determined in equilibrium solution.Calcium increased and phosphate decreased with increasing metal disappearance.The greatest increase of calcium and the largest phosphate reduction were found with Pb+2 sorption. This is suggested that Pb+2 retention by apatite was through the dissolution of apatite which mean release of Ca and P into solution and formation of pyromorphite(lead phosphate)as consuming of P.Obtained results suggested that there are two general mechanisms for the ability of apatite mineral to take up Pb2+,Zn+2 and Mn+2.The first is (ion-ion exchange mechanism)concerned with adsorption of ions on the solid surface followed by their diffusion into apatite mineral and the release of cations originally contained within apatite.The second is (dissolution- precipitation mechanism)concerned to the dissolution of apatite in the aqueous solution containing Pb2+,Zn+2 and Mn+2 followed by the precipitation or coprecipitation.Pb+2 desorption responding to solution pH may indicate that not all the Pb+2 was chemisorbed and fraction of Pb+2 was weakly adsorbed or complexed on the surface of apatite mineral.展开更多
This study focused on the geochemical, mineralogical and technological characterization of clays in Makthar area (Central of Tunisia) of Cretaceous-Paleogene. Its aims are to identify and promote use in the field of c...This study focused on the geochemical, mineralogical and technological characterization of clays in Makthar area (Central of Tunisia) of Cretaceous-Paleogene. Its aims are to identify and promote use in the field of ceramics industry. The result of the mineralogical analysis of clays showed a dominance of illite with a percentage higher than 65%, of kaolinite and smectite with percentages of 15%. Geochemical analysis of the major elements of clay showed a SiO<sub>2</sub> content exceeding 29% and a percentage of Al<sub>2</sub>O<sub>3</sub> higher than 7.5%. The Fe<sub>2</sub>O<sub>3</sub> percentage was ranging from 3% to 8%. The percentage of CaO was between 22.5% and 28% while that of K<sub>2</sub>O is 4%. The percentages of SO<sub>4</sub>, MgO and NaO<sub>2</sub> were in very small fractions. Granulometric and microgranulometric analysis showed that the clay fraction (<2 μm) varies from 30% to 37%. The plasticity index showed the plasticity character of clays which presented a specific surface area ranging from 112 m<sup>2</sup>/g to 178 m<sup>2</sup>/g reflecting illite dominance. Drying behavior indicated that clay mixture had a drying shrinkage less than 7%, while the firing shrinkage didn’t exceed 2% giving the possibility of clay using in the ceramics field.展开更多
Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typ...Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typical industrial wastes to prepare ultrafine CaCO_(3).This work surveys the mechanisms of CO_(2) mineralization using these wastes and its capacities to synthesize CaCO_(3),evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO_(3),analyzes the current industrial application status and economics of this technology.Due to the large amount of impurities in solid wastes,the purity of CaCO_(3) prepared by indirect methods is greater than that prepared by direct methods.Crystalline CaCO_(3) includes three polymorphs.The polymorph of CaCO_(3) synthesized by carbonation process is determined the combined effects of various factors.These parameters essentially impact the nucleation and growth of CaCO_(3) by altering the CO_(2) supersaturation in the reaction system and the surface energy of CaCO_(3) grains.Increasing the initial pH of the solution and the CO_(2)flow rate favors the formation of vaterite,but calcite is formed under excessively high pH.Vaterite formation is favored at lower temperatures and residence time.With increased temperature and prolonged residence time,it passes through aragonite metastable phase and eventually transforms into calcite.Moreover,polymorph modifiers can decrease the surface energy of CaCO_(3) grains,facilitating the synthesis of vaterite.However,the large-scale application of this technology still faces many problems,including high costs,high energy consumption,low calcium leaching rate,low carbonation efficiency,and low product yield.Therefore,it is necessary to investigate ways to accelerate carbonation,optimize operating parameters,develop cost-effective agents,and understand the kinetics of CaCO_(3) nucleation and crystallization to obtain products with specific crystal forms.Furthermore,more studies on life cycle assessment(LCA)should be conducted to fully confirm the feasibility of the developed technologies.展开更多
文摘Understanding and predicting the impact of the global energy transition and the United Nations Sustainable Development Goals (SDGs) on global mineral demand and African supply is challenging. This study uses a resource nexus approach to investigate and analyze the impact of this transition on energy and water demand and CO2 emissions using three annual material demand scenarios. The results indicate that African mining will consume more energy by 2050, leading to an increase in cumulative demand for energy (from 98 to 14,577 TWh) and water (from 15,013 to 223,000 million m3), as well as CO2 emissions (1318 and 19,561 Gg CO2e). In contrast, only a modest increase in energy demand (207 TWh) will be required by 2050 to achieve the SDGs. Therefore, the African mining industry should reduce its energy consumption and invest more in the renewable energy sector to support the global energy transition.
文摘This work discusses status of the geologic and economic potentials of minerals and industrial rocks in Jordan. The major mineral resources are presented in details and the paper is designed to cover the lack of published data in this field. Geologically, the structural framework of Jordan is controlled largely by Arabian Nubian Shield in the south, block—faulted areas in the east, upwarping in north and east, and Wadi Araba-Dead Sea Transform Fault in the western part. The geologic environments include Precambrian crystalline basement (Late Proterozoic) of Arabian Nubian Shield (ANS) that is composed of igneous and metamorphic rocks at south-western part. Paleozoic rocks at southern and southeastern part consist of clastic minerals which are dominated by sandstone, whereas Mesozoic sedimentary rocks are widespread throughout southwestern, northern to southeastern parts of the country. They mainly consist of major industrial rocks and minerals such as phosphate, oil shale, limestone, dolomite, chalk, marble, gypsum, diatomite and tripoli. Cenozoic Era is composed of sedimentary and volcanic rocks in different parts of Jordan. There are more than twenty nonmetallic minerals and four main metallic deposits within the various geologic environments. This paper summarizes their distribution, chemical and mineralogical characteristics, in addition to their production statistics.
文摘This The mineral potential in Egypt is quite high. Almost all sorts of industrial minerals such as metallic and non-metallic commodities exist in commercial amounts. However, Egypt imports many of the mineral commodities needed for the local mineral industries. The main reason for this is that the investors, either the governmental or the private sectors, refrain from investing into the mineral industry for prospecting, evaluation, and developing the mining and mineral processing technologies. This is because the return on investment in the mining industry is generally low and the pay back period is relatively long compared with easy-to-get money projects. Another reason is the disarray of the mining laws and regulations and lack of administrative capability to deal with domestic and international investors and solve the related problems. Also, lack of skilled personnel in the field of mining and mineral processing is an additional factor for the set back of the mining industry in Egypt. This is why the mining technology in Egypt is not very far from being primitive and extremely simple, with the exception of the underground mining of coal, North of Sinai, and Abu-Tartur phosphate mining, where fully automated long wall operations are designed. Also, the recent gold and tin-tantalum-niobium projects are being designed on modern surface mining and mineral processing technologies. The present review presents an overview of the most important metallic mineral commodities in Egypt, their geological background, reserves and production rates. A brief mention of the existing technologies for their exploitation is also highlighted.
文摘Clay samples from selected part of Edda were analyzed to identify the clay mineral types present,their chemical and physical properties with a view to appraising their industrial suitability as ceramic materials.The mineralogical and geochemical analyses were done using the principles of X-Ray diffraction and X-ray fluorescence respectively.A total of seven clay samples were used for the study,other tests such as plasticity,bulk density,shrinkage,loss on ignition(LOI)and water absorption capacity was carried out to determine the amount of water absorbed under specified conditions.The basic industrial properties assessment showed that more than 70%of the clays are fine-grained.The clays exhibited low to moderate plasticity,moderate shrinkage and bulk density,low to moderate values of both loss on ignition and water absorption capacity.The clays are buff to yellowish in colour.The results of x-ray fluorescence revealed that the mean concentration of major oxide in the clays is shown as follows:SiO_(2)(62.78%),Al_(2)O_(3)(20.25%),total Fe(6.09%),CaO(0.56%),MgO(3.21%),Na_(2)O(0.47%),K_(2)O,(1.44%)and TiO_(2)(0.52%).The samples have high silica content,low alumina and low oxide content.The results of x-ray diffraction revealed that kaolinite is the dominant clay mineral with illite and montmorillonite occurring in subordinate amounts,while quartz and feldspar are the non-clay components present.The characteristics of the clays for each parameter were compared with industrial standards.These properties are appropriate for the Afikpo clays to be useful in the manufacturing of ceramics.However,since the silica content of the clays is high further beneficiation is recommended.
文摘Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionally prevented the observation of the same sample over time, under realistic three-dimensional geometries and in an environment representative of real-world operating conditions. X-ray microscopy (XRM) is a rapidly emerging technique that enables non-destructive evaluation of buried structures within hard to soft materials in 3D, requiring little to no sample preparation. Furthermore in situ and 4D quantification of microstructural evolution under controlled environment as a function of time, temperature, chemistry or stress can be done repeatable on the same sample, using practical specimen sizes ranging from tens of microns to several cm diameter, with achievable imaging resolution from submicron to 50 nm. Many of these studies were reported using XRM in synchrotron beamlines. These include crack propagation on composite and construction materials; corrosion studies; microstructural changes during the setting of cement; flow studies within porous media to mention but a few.
文摘Historically, industrial hemp (Cannabis sativa L.) has been a valuable source of metabolites and compounds, such as cannabidiols. There is a need for large amounts of plant tissue to be grown under controlled environments, and plant tissue culture is one unique way to yield this tissue. The purposes of this study were to determine: 1) the optimal concentrations (μM)/ratios of auxin:cytokinin in media and;2) the optimal mineral salts formulation for callus induction and callus growth in select hemp cultivars. To find the optimal concentration/ratios, 16 different combinations of auxin:cytokinin and three different mineral salts formulations were evaluated. The three mineral salts formulations tested were MS salts, MB5D1K and an MTSU formulation. The top performing hormone formulations were determined to be equal concentrations (1:1, 2:2, 3:3 μM) of auxin and cytokinin. The top performing media hormone formulations for callus induction were determined to be 2:1, 2:2, 2:3, and 3:2 μM (auxin:cytokinin). The optimal mineral salts formulation was determined to be MD5D1K. Therefore, the overall optimal media formulation for hemp callus production would be MB5D1K salts with the concentration/ratio of 2:2 μM (auxin:cytokinin).
文摘Assessing the potential uses as industrial mineral, bauxite from Débélé, Guinea, has been characterised by chemical and mineralogical analyses, the determination of the amorphous content, the rate of portlandite consumption in an aqueous solution, the strength activity index, and the thermal behaviour up to 1200<span style="white-space:nowrap;">°</span>C. It was evidenced that the raw sample is gibbsite-rich type bauxite with about 45.06 wt% of alumina, 23.80 wt% of iron oxide, and 1.74 wt% of silica. It meets the chemical composition required for bauxites used for refractory cement. During heating, the raw bauxite undergoes high densification with low linear shrinkage, motivating a potential use in dense ceramic compositions with high thermal stability. Also, the heating at only 600<span style="white-space:nowrap;">°</span>C gives a significant pozzolanic activity in combination with Portland cement. The correlation between the pozzolanicity, the amorphous phase content, and the specific surface area indicated that the raw and the calcined materials present an interesting reactivity for using them in alternative cement formulations.
文摘The study area is located in Duhok and Sulaimania province in Kurdistan region, lraq. Study soils developed from parent material that has derived from limestone. Randomize, composed and disturbed surface soil samples were collected. The bulk soils were air dried, crushed and passed through 2 mm sieve. Standard methods were used for chemical, physical, geotechnical and mineralogical analyses of soil samples. The results indicated that the study soils texture were clay to loam clay, this texture was considered as suitable for ceramic and pottery industries as a result of increasing clay contents that ranged between 301 g/kg and 676 g/kg. Soil consistence depending on geotechnical properties increased the ability of study soils for resistance rapture and deformation. Existence the high amount of cementing agents in study soils such as organic matter, iron oxides and particularly total carbonate (247.2-308.8 g/kg) act to reduce the bad effect of the smectite minerals group (high shrinkage) in soils of study locations through increasing the resistance of these soils for rupture and deformation. The existing of Kaolinite, palygorskite and chlorite allows clay to be dried in ceramic and pottery industries without cracking from shrinkage. Study soils were different in their colors as a result of existence, different pigmentation materials that led to coloring soils with different colors in turn caused coloring of pottery and ceramic materials. Since, there are no available academic studies or researches about this subject in Kurdistan region in addition the clay pottery and ceramic sector still has a good market at the same time using this type of soils for arts, therefore, this study was conducted.
文摘Discovery rates for all metals, including gold, are declining, the cost per significant discovery is increasing sharply, and the economic situation of the industry is one of low base rate. The current hierarchical structure of the exploration and mining industry makes this situation difficult to redress. Economic geologists can do little to influence the required changes to the overall structure and philosophy of an industry driven by business rather than geological principles, However, it should be possible to follow the lead of the oil industry and improve the success rate of greenfield exploration, necessary for the next group of lower-exploration-spend significant mineral deposit discoveries. Here we promote the concept that mineral explorers need to carefully consider the scale at which their exploration targets are viewed. It is necessary to carefully assess the potential of drill targets in terms of terrane to province to district scale, rather than deposit scale, where most current economic geology research and conceptual thinking is concentrated. If orogenic, IRGD, Carlin-style and IOCG gold-rich systems are viewed at the deposit scale, they appear quite different in terms of conventionally adop- ted research parameters. However, recent models for these deposit styles show increasingly similar source-region parameters when viewed at the lithosphere scale, suggesting common tectonic settings. It is only by assessing individual targets in their tectonic context that they can be more reliably ranked in terms of potential to provide a significant drill discovery. Targets adjacent to craton margins, other lithosphere boundaries, and suture zones are clearly favoured for all of these gold deposit styles, and such exploration could lead to incidental discovery of major deposits of other metals sited along the same tectonic boundaries.
文摘We describe a novel lab based X-ray computed tomography system based on the architecture of X-ray Microscopes (XRM) used in synchrotron radiation facilities to be adapted for mineral processing and mineral liberation analysis. As this is a tomographic technique performed with an XRM, it is non-destructive and does not require complex preparation of polished sections typical of SEM-EDS techniques (such as MLA and QEMSCAN). It complements these existing techniques by providing 3D information and mineral liberation of multi-phase particles with much larger sample volume statistics but at a fraction of the time. In several applications, the technique is superior. These include the characterization of tailing loss in precious minerals; the characterization of porosity, particle size distribution, crack and pore network analysis during comminution, heap leaching and for texture and exposure/lock class analysis for floatation.
文摘To evaluate the effectiveness of apatite mineral in removing different contaminants from low quality water in the industrial city of abha,Asir region,southwestern of Saudi Arabia two phosphatic clay dominated by apatite mineral were selected.In situ remediation experiment proved that apatite mineral has the highest affinity for Pb and removed more than 94% from initial Pb concentration.The rest of contaminants followed the descending order of:Zn>Mn>Cu>Co>Ni.The sorption of Pb,Zn and Mn onto apatite mineral was well characterized by the Langmuir model.Ternary-metal addition induced competitive sorption among the three metals,with the interfering effect of Pb>Zn>Mn.During metal retention by apatite mineral calcium and phosphate were determined in equilibrium solution.Calcium increased and phosphate decreased with increasing metal disappearance.The greatest increase of calcium and the largest phosphate reduction were found with Pb+2 sorption. This is suggested that Pb+2 retention by apatite was through the dissolution of apatite which mean release of Ca and P into solution and formation of pyromorphite(lead phosphate)as consuming of P.Obtained results suggested that there are two general mechanisms for the ability of apatite mineral to take up Pb2+,Zn+2 and Mn+2.The first is (ion-ion exchange mechanism)concerned with adsorption of ions on the solid surface followed by their diffusion into apatite mineral and the release of cations originally contained within apatite.The second is (dissolution- precipitation mechanism)concerned to the dissolution of apatite in the aqueous solution containing Pb2+,Zn+2 and Mn+2 followed by the precipitation or coprecipitation.Pb+2 desorption responding to solution pH may indicate that not all the Pb+2 was chemisorbed and fraction of Pb+2 was weakly adsorbed or complexed on the surface of apatite mineral.
文摘This study focused on the geochemical, mineralogical and technological characterization of clays in Makthar area (Central of Tunisia) of Cretaceous-Paleogene. Its aims are to identify and promote use in the field of ceramics industry. The result of the mineralogical analysis of clays showed a dominance of illite with a percentage higher than 65%, of kaolinite and smectite with percentages of 15%. Geochemical analysis of the major elements of clay showed a SiO<sub>2</sub> content exceeding 29% and a percentage of Al<sub>2</sub>O<sub>3</sub> higher than 7.5%. The Fe<sub>2</sub>O<sub>3</sub> percentage was ranging from 3% to 8%. The percentage of CaO was between 22.5% and 28% while that of K<sub>2</sub>O is 4%. The percentages of SO<sub>4</sub>, MgO and NaO<sub>2</sub> were in very small fractions. Granulometric and microgranulometric analysis showed that the clay fraction (<2 μm) varies from 30% to 37%. The plasticity index showed the plasticity character of clays which presented a specific surface area ranging from 112 m<sup>2</sup>/g to 178 m<sup>2</sup>/g reflecting illite dominance. Drying behavior indicated that clay mixture had a drying shrinkage less than 7%, while the firing shrinkage didn’t exceed 2% giving the possibility of clay using in the ceramics field.
基金support was received the Science&Technology Foundation of RIPP(PR20230092,PR20230259)the National Natural Science Foundation of China(22278419)the Key Core Technology Research(Social Development)Foundation of Suzhou(2023ss06).
文摘Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typical industrial wastes to prepare ultrafine CaCO_(3).This work surveys the mechanisms of CO_(2) mineralization using these wastes and its capacities to synthesize CaCO_(3),evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO_(3),analyzes the current industrial application status and economics of this technology.Due to the large amount of impurities in solid wastes,the purity of CaCO_(3) prepared by indirect methods is greater than that prepared by direct methods.Crystalline CaCO_(3) includes three polymorphs.The polymorph of CaCO_(3) synthesized by carbonation process is determined the combined effects of various factors.These parameters essentially impact the nucleation and growth of CaCO_(3) by altering the CO_(2) supersaturation in the reaction system and the surface energy of CaCO_(3) grains.Increasing the initial pH of the solution and the CO_(2)flow rate favors the formation of vaterite,but calcite is formed under excessively high pH.Vaterite formation is favored at lower temperatures and residence time.With increased temperature and prolonged residence time,it passes through aragonite metastable phase and eventually transforms into calcite.Moreover,polymorph modifiers can decrease the surface energy of CaCO_(3) grains,facilitating the synthesis of vaterite.However,the large-scale application of this technology still faces many problems,including high costs,high energy consumption,low calcium leaching rate,low carbonation efficiency,and low product yield.Therefore,it is necessary to investigate ways to accelerate carbonation,optimize operating parameters,develop cost-effective agents,and understand the kinetics of CaCO_(3) nucleation and crystallization to obtain products with specific crystal forms.Furthermore,more studies on life cycle assessment(LCA)should be conducted to fully confirm the feasibility of the developed technologies.