The concentration variation of C3-C11 non-methane hydrocarbons(NMHCs)collected in several types of commercial flexible bags and adsorption tubes was systematically inves-tigated using a gas chromatography-flame ioniza...The concentration variation of C3-C11 non-methane hydrocarbons(NMHCs)collected in several types of commercial flexible bags and adsorption tubes was systematically inves-tigated using a gas chromatography-flame ionization detector(GC-FID)system.The per-centage loss of each NMHC in the polyvinyl fluoride(PVF)bags was less than 5%during a 7-hr storage period;significant NMHCs loss was detected in aluminum foil composite film and fluorinated ethylene propylene bags.The thermal desorption efficiency of NMHCs for adsorption tubes filled Carbopack B and Carboxen1000 sorbents was greater than 95%at 300℃,and the loss of NMHCs in the adsorption tubes during 20-days storage at 4℃was less than 8%.The thermal desorption efficiency for C11 NMHCs in the adsorption tube filled with Carbograph 1 and Carbosieve SⅢabsorbents was less than 40%at 300℃,and pyrolysis of the absorbents at 330℃interfered significantly with the measurements of some alkenes.The loss of alkenes was significant when NMHCs were sampled by cryo-enrichment at-90℃in the presence of O3 for the online NMHC measurements,and negligible for enrichment us-ing adsorption tubes at 25℃.Although O_(3)scrubbers have been widely used to eliminate the influence of O_(3)on NMHC measurements,the loss of NMHCs with carbon numbers greater than 8 was more than 10%.Therefore,PVF bags and adsorption tubes filled Carbopack B and Carboxen1000 sorbents were recommended for the sampling of atmospheric NMHCs.展开更多
The capture of trace amounts of non-methane hydrocarbons(NMHCs)from air due to the toxicity of volatile organic compounds is a significant challenge.A total of 31399 hydrophobic metal–organic frameworks(MOFs)were fir...The capture of trace amounts of non-methane hydrocarbons(NMHCs)from air due to the toxicity of volatile organic compounds is a significant challenge.A total of 31399 hydrophobic metal–organic frameworks(MOFs)were first screened from 137953 hypothetical MOFs using high-throughput computational screening(HTCS),and their performance indices(adsorption capacity and selectivity)for the adsorption of NMHCs(C_(3)–C_(6))were obtained by molecular simulations.The discovery of a“second peak”near twice the kinetic diameter of the corresponding NMHC provided more choices for excellent MOFs that adsorb NMHCs.Four machine learning(ML)classification and regression algorithms predicted the performance of MOFs,and the relative importance values of the six descriptors were determined.The combination of the Random Forests algorithm and Molecular ACCess Systems molecular fingerprint(MF)had an excellent predictive ability for MOFs.According to the performance,the fingerprint commonalities of the 100 top-performing MOFs were counted,and the excellent bits(EBs)that could promote the performance were defined.Finally,new substructures containing all of the EBs were designed for each NMHC to build a new MOF database.This work combined the HTCS,ML,and MF to provide a detailed insight into the design of efficient MOFs for adsorbing NMHCs.展开更多
The field observation of 54 non-methane hydrocarbon compounds(NMHCs)was conducted from September 1 to October 20 in 2020 during autumn in Haidian District,Beijing.The mean concentration of total NMHCs was 29.81±1...The field observation of 54 non-methane hydrocarbon compounds(NMHCs)was conducted from September 1 to October 20 in 2020 during autumn in Haidian District,Beijing.The mean concentration of total NMHCs was 29.81±11.39 ppbv during this period,and alkanes were the major components.There were typical festival effects of NMHCs with lower concentration during the National Day.Alkenes and aromatics were the dominant groups in ozone formation potential(OFP)and OH radical loss rate(L_(OH)).The positive matrix factorization(PMF)running results revealed that vehicular exhaust became the biggest source in urban areas,followed by liquefied petroleum gas(LPG)usage,solvent usage,and fuel evaporation.The box model coupled with master chemical mechanism(MCM)was applied to study the impacts of different NMHCs sources on ozone(O_(3))formation in an O_(3)episode.The simulation results indicated that reducing NMHCs concentration could effectively suppress O_(3)formation.Moreover,reducing traffic-related emissions of NMHCs was an effective way to control O_(3)pollution at an urban site in Beijing.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.21976190,21707151,22076202,41727805,41975164,21876186,41931287,and 41905109).
文摘The concentration variation of C3-C11 non-methane hydrocarbons(NMHCs)collected in several types of commercial flexible bags and adsorption tubes was systematically inves-tigated using a gas chromatography-flame ionization detector(GC-FID)system.The per-centage loss of each NMHC in the polyvinyl fluoride(PVF)bags was less than 5%during a 7-hr storage period;significant NMHCs loss was detected in aluminum foil composite film and fluorinated ethylene propylene bags.The thermal desorption efficiency of NMHCs for adsorption tubes filled Carbopack B and Carboxen1000 sorbents was greater than 95%at 300℃,and the loss of NMHCs in the adsorption tubes during 20-days storage at 4℃was less than 8%.The thermal desorption efficiency for C11 NMHCs in the adsorption tube filled with Carbograph 1 and Carbosieve SⅢabsorbents was less than 40%at 300℃,and pyrolysis of the absorbents at 330℃interfered significantly with the measurements of some alkenes.The loss of alkenes was significant when NMHCs were sampled by cryo-enrichment at-90℃in the presence of O3 for the online NMHC measurements,and negligible for enrichment us-ing adsorption tubes at 25℃.Although O_(3)scrubbers have been widely used to eliminate the influence of O_(3)on NMHC measurements,the loss of NMHCs with carbon numbers greater than 8 was more than 10%.Therefore,PVF bags and adsorption tubes filled Carbopack B and Carboxen1000 sorbents were recommended for the sampling of atmospheric NMHCs.
基金National Natural Science Foundation of China(Nos.21978058 and 21676094)the Pearl River Talent Recruitment Program,China(No.2019QN01L255)+1 种基金the Natural Science Foundation of Guangdong Province,China(No.2020A1515010800)the Guangzhou Municipal Science and Technology Project,China(No.202102020875)for the financial support.
文摘The capture of trace amounts of non-methane hydrocarbons(NMHCs)from air due to the toxicity of volatile organic compounds is a significant challenge.A total of 31399 hydrophobic metal–organic frameworks(MOFs)were first screened from 137953 hypothetical MOFs using high-throughput computational screening(HTCS),and their performance indices(adsorption capacity and selectivity)for the adsorption of NMHCs(C_(3)–C_(6))were obtained by molecular simulations.The discovery of a“second peak”near twice the kinetic diameter of the corresponding NMHC provided more choices for excellent MOFs that adsorb NMHCs.Four machine learning(ML)classification and regression algorithms predicted the performance of MOFs,and the relative importance values of the six descriptors were determined.The combination of the Random Forests algorithm and Molecular ACCess Systems molecular fingerprint(MF)had an excellent predictive ability for MOFs.According to the performance,the fingerprint commonalities of the 100 top-performing MOFs were counted,and the excellent bits(EBs)that could promote the performance were defined.Finally,new substructures containing all of the EBs were designed for each NMHC to build a new MOF database.This work combined the HTCS,ML,and MF to provide a detailed insight into the design of efficient MOFs for adsorbing NMHCs.
基金supported by the National Key Research and Development Program of China(No.2017YFC0210001)National Natural Science Foundation of China(Nos.42022039,21671089)+2 种基金the Scientific Research Fund of Liaoning Provincial Education Department(No.L2020002)Beijing National Laboratory for Molecular Sciences(No.BNLMS-CXXM-202011)the Youth Innovation Promotion Association CAS(No.2017042)
文摘The field observation of 54 non-methane hydrocarbon compounds(NMHCs)was conducted from September 1 to October 20 in 2020 during autumn in Haidian District,Beijing.The mean concentration of total NMHCs was 29.81±11.39 ppbv during this period,and alkanes were the major components.There were typical festival effects of NMHCs with lower concentration during the National Day.Alkenes and aromatics were the dominant groups in ozone formation potential(OFP)and OH radical loss rate(L_(OH)).The positive matrix factorization(PMF)running results revealed that vehicular exhaust became the biggest source in urban areas,followed by liquefied petroleum gas(LPG)usage,solvent usage,and fuel evaporation.The box model coupled with master chemical mechanism(MCM)was applied to study the impacts of different NMHCs sources on ozone(O_(3))formation in an O_(3)episode.The simulation results indicated that reducing NMHCs concentration could effectively suppress O_(3)formation.Moreover,reducing traffic-related emissions of NMHCs was an effective way to control O_(3)pollution at an urban site in Beijing.