We study a general class of holographic superconductor models via the Stiickelberg mechanism in the non-minimal derivative coupling theory in which the charged scalar field is kinetically coupling to Einstein's tenso...We study a general class of holographic superconductor models via the Stiickelberg mechanism in the non-minimal derivative coupling theory in which the charged scalar field is kinetically coupling to Einstein's tensor. We explore the effects of the coupling parameter on the critical temperature, the order of phase transitions and the critical expo- nents near the second-order phase transition point. Moreover, we compute the electrical conductivity using the probe approximation and check the ratios wg/Tc for the different coupling parameters.展开更多
We investigate the constant-roll inflation with non-minimally kinetic coupling to the Einstein tensor.With the slow-roll parameterηφ=-φ/(Hφ)being a constant,we calculate the power spectra for scalar and tensor per...We investigate the constant-roll inflation with non-minimally kinetic coupling to the Einstein tensor.With the slow-roll parameterηφ=-φ/(Hφ)being a constant,we calculate the power spectra for scalar and tensor perturbations,and derive the expressions for the scalar spectral tilt n_(s),the tensor spectral tilt n_(T),and the tensor-to-scalar ratio r.We find that the expressions for n_(s)are different with different ordering of taking the derivative of the scalar power spectrum with respect to the scale k and the horizon crossing condition c_(sk)=a H in the constant-roll inflation,the consistency relation r=-8n_(T)does not hold if|η_(φ)|is not small,and the duality of the tensorto-scalar ratio between the slow-roll inflation and ultra-slow-roll inflation does not exist in inflationary models with non-minimally derivative coupling.The result offers a fresh perspective on the understanding of the inflationary models with non-minimally derivative coupling and is helpful for the production of scalar induced gravitational waves in the framework of ultra-slowroll inflation with non-minimally derivative coupling.展开更多
Excessively high pore water pressure presents unpredictable risks to the safety of rock tunnels in mountainous regions that are predominantly composed of limestone. Investigating the creep characteristics and permeabi...Excessively high pore water pressure presents unpredictable risks to the safety of rock tunnels in mountainous regions that are predominantly composed of limestone. Investigating the creep characteristics and permeability evolution of limestone under varying hydrated conditions is crucial for a better understanding of the delayed deformation mechanisms of limestone rock tunnels. To this end, this paper initially conducts a series of multi-stage triaxial creep tests on limestone samples under varying pore water pressures. The experiment examines how pore water pressure affects limestone’s creep strain, strain rate, long-term strength, lifespan, and permeability, all within the context of hydraulicmechanical(HM) coupling. To better describe the creep behavior associated with pore water pressure, this paper proposes a new nonlinear fractional creep constitutive model. This constitutive model depicts the initial, steady-state, and accelerated phases of limestone’s creep behavior. Finally, the proposed model is applied to the numerical realization of deformation in limestone tunnel, validating the effectiveness of the proposed constitutive model in predicting tunnel’s creep deformation. This research enhances our understanding of limestone’s creep characteristics and permeability evolution under HM coupling, laying a foundation for assessing the longterm stability of mountain tunnels.展开更多
According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under t...According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rssler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods.展开更多
This paper presents a new exact inflationary solution to the non-minimMly coupled scalar field. The inflation is driven by the evolution of a scalar field with inflation potential V(φ) = (λ/4)φ4 + b1φ2 + b2 ...This paper presents a new exact inflationary solution to the non-minimMly coupled scalar field. The inflation is driven by the evolution of a scalar field with inflation potential V(φ) = (λ/4)φ4 + b1φ2 + b2 + b3φ-2 + b4φ-4. The spectral index of the scalar density fluctuations ns is consistent with the result of WMAP3 (Wilkinson Microwave Anisotropy Probe 3) for ACDM (Lambda-Cold Dark Matter). This model relaxes the constraint to the quartic coupling constant. And it can enter smoothly into a radiation-dominated stage when inflation ends.展开更多
In this paper,we study a kind of dark energy models in the framework of the non-minimal coupling.With this kind of models,dark energy could cross the cosmological constant boundary,and at early time,dark energy could ...In this paper,we study a kind of dark energy models in the framework of the non-minimal coupling.With this kind of models,dark energy could cross the cosmological constant boundary,and at early time,dark energy could have 'tracking' behavior.展开更多
We study the effect of the non-minimal coupling between matter and geometry on the gravitational constant in the context of f(R) theories of gravity on cosmic scales. For a class of f(R) models,the result shows that t...We study the effect of the non-minimal coupling between matter and geometry on the gravitational constant in the context of f(R) theories of gravity on cosmic scales. For a class of f(R) models,the result shows that the value of the gravitational constant not only changes over time but also has the dampened oscillation behavior.Compared with the result of the standard ACDM model, the consequence suggests that the coupling between matter and geometry should be weak.展开更多
This article aims to address the global exponential synchronization problem for fractional-order complex dynamical networks(FCDNs)with derivative couplings and impulse effects via designing an appropriate feedback con...This article aims to address the global exponential synchronization problem for fractional-order complex dynamical networks(FCDNs)with derivative couplings and impulse effects via designing an appropriate feedback control based on discrete time state observations.In contrast to the existing works on integer-order derivative couplings,fractional derivative couplings are introduced into FCDNs.First,a useful lemma with respect to the relationship between the discrete time observations term and a continuous term is developed.Second,by utilizing an inequality technique and auxiliary functions,the rigorous global exponential synchronization analysis is given and synchronization criterions are achieved in terms of linear matrix inequalities(LMIs).Finally,two examples are provided to illustrate the correctness of the obtained results.展开更多
Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysi...Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysiological model of neuron membrane dynamics is given.The variable orders fractional Noether symmetry criterion and Noether conserved quantities are given.The forms of variable orders fractional Noether conserved quantities corresponding to Noether symmetry generators solutions of the model under different conditions are discussed in detail,and it is found that the expressions of variable orders fractional Noether conserved quantities are closely dependent on the external nonconservative forces and material parameters of the neuron.展开更多
Oxygen electrocatalysis,exemplified by the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is central to energy storage and conversion technologies such as fuel cells,metal-air batteries,and water ele...Oxygen electrocatalysis,exemplified by the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is central to energy storage and conversion technologies such as fuel cells,metal-air batteries,and water electrolysis.However,highly effective and inexpensive earth-abundant materials are sought after to replace the noble metal-based electrocatalysts currently in use.Recently,metal-organic frameworks(MOFs)and carbon-based MOF derivatives have attracted considerable attention as efficient catalysts due to their exceedingly tunable morphologies,structures,compositions,and functionalization.Here,we report two-dimensional(2D)MOF/MOF derivative coupled arrays on nickel foam as binder-free bifunctional ORR/OER catalysts with enhanced electrocatalytic activity and stability.Their remarkable electrochemical properties are primarily attributed to fully exposed active sites and facilitated charge-transfer kinetics.The coupled and hierarchical nanosheet arrays produced via our growth-pyrolysis-regrowth strategy offer promise in the development of highly active electrodes for energy-related electrochemical devices.展开更多
A fractional-order thermo-elastic model taking into account the small-scale effects of the thermo-elastic coupled behavior is developed to study the free vibration of a higher-order shear microplate.The nonlocal strai...A fractional-order thermo-elastic model taking into account the small-scale effects of the thermo-elastic coupled behavior is developed to study the free vibration of a higher-order shear microplate.The nonlocal strain gradient theory is modified with the introduction of the fractional-order derivatives and the nonlocal characteristic length.The Fourier heat conduction is replaced by the non-Fourier heat conduction with the introduction of the fractional order and the memory characteristic time.Numerical calculations are performed to analyze the effects of the nonlocal strain gradient parameters,the spatiotemporal fractional order,the nonlocal characteristic length,and the memory characteristic time on the natural frequencies,the vibration attenuation,and the phase shift between the temperature field and the displacement field.The numerical results show that the new thermo-elastic model with the spatiotemporal fractional order can provide more exquisite descriptions of the thermo-elastic behavior at a small scale.展开更多
In this paper,we propose a hybrid metric Palatini approach in which the Palatini scalar curvature is non minimally coupled to the scalar field.We derive Einstein’s field equations,i.e.,the equations of motion of the ...In this paper,we propose a hybrid metric Palatini approach in which the Palatini scalar curvature is non minimally coupled to the scalar field.We derive Einstein’s field equations,i.e.,the equations of motion of the scalar field.Furthermore,the background and perturbative parameters are obtained by means of Friedmann equations in the slow roll regime.The analysis of cosmological perturbations allowed us to obtain the main inflationary parameters,e.g.,the scalar spectral index and tensor to scalar ratio r.From this perspective,as an application of our analysis,we consider the Higgs field with quartic potential,which plays the inflaton role,and show that predictions of Higgs hybrid inflation are in good agreement with recent observational data[Astron.Astrophys.641,61(2020)].展开更多
The first six Chebyshev polynomial coefficients (i.e., A00, A01, A10, A11, A02, A20) were derived from monthly mean geopotential height over East Asia for the period 1951-1983. Spectral analysis of these coefficients ...The first six Chebyshev polynomial coefficients (i.e., A00, A01, A10, A11, A02, A20) were derived from monthly mean geopotential height over East Asia for the period 1951-1983. Spectral analysis of these coefficients reveals relative maxima of power in the frequency bands of 200 months (- 16.7 years), 25 months (the quasi-biennial oscillation), 5-6 months, and 2-3 months. Cross-spectral characteristics between Chebyshev coefficients and the Southern Oscillation Index (SOI) were also explored. Coherence spectrum for the zonal and meridional circulation index (A01 and A 10) with the SOI was significant near 4 years, the QBO, and 2-3 months. Some physical explanations were offered for the spatial linkages (i.e., teleconnections) between the SO and atmospheric circulation anomalies overEast Asia.展开更多
An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt...An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt porphyrin derivatives with sulfo groups are employed as not only the coupling agents to form and anchor Co_9S_8 on the graphene in situ, but also the heteroatom?doped agent to generate S and N dual?doped graphene. The tight coupling of multiple active sites endows the composite materials with fast electrochemical kinetics and excellent stability for both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The obtained electrocatalyst exhibits better activity parameter(ΔE = 0.82 V) and smaller Tafel slope(47.7 mV dec^(-1) for ORR and 69.2 mV dec^(-1) for OER) than commercially available Pt/C and RuO_2. Most importantly, as electrocatalyst for rechargeable Zn–air battery, Co_9S_8/NSG displays low charge–discharge voltage gap and outstanding long?term cycle stability over 138 h compared to Pt/C–RuO_2. To further broaden its application scope, a homemade all?solid?state Zn–air battery is also prepared, which displays good charge–discharge performance and cycle performance. The function?oriented design of N_4?metallomacrocycle derivatives might open new avenues to strategic construction of high?performance and long?life multifunctional electrocatalysts for wider electro?chemical energy applications.展开更多
In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to im...In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to implement of PD control, strong robustness of SMC with respect to external disturbances and uncertain system parameters, and adaptation for unknown system dynamics associated with the feedforward parts. In the proposed APD-SMC law, the PD control part is used to stabilize the controlled system, the SMC part is used to compensate the external disturbances and system uncertainties,and the adaptive control part is utilized to estimate the unknown system parameters. The coupling behavior between the trolley movement and the payload swing is enhanced and, therefore, the transient performance of the proposed controller is improved.The Lyapunov techniques and the La Salle's invariance theorem are employed in to support the theoretical derivations. Experimental results are provided to validate the superior performance of the proposed control law.展开更多
A series of linear and V-shaped oligo(phenylene ethynylene) derivatives 1-3 were synthesized through sequent Sonogashira coupling and propargyl alcohol deprotection reaction in high yields.The alkoxy chains(i.e.,n-hex...A series of linear and V-shaped oligo(phenylene ethynylene) derivatives 1-3 were synthesized through sequent Sonogashira coupling and propargyl alcohol deprotection reaction in high yields.The alkoxy chains(i.e.,n-hexyloxy groups) were introduced to assure good solubility of compounds 1-3 in common solvents.The photophysical properties of 1-3 in solution depend strongly on the geometries of these compounds.展开更多
With the usual definitions for the entropy and the temperature associated with the apparent horizon, we discuss the first law of the thermodynamics on the apparent in the general scalar-tensor theory of gravity with t...With the usual definitions for the entropy and the temperature associated with the apparent horizon, we discuss the first law of the thermodynamics on the apparent in the general scalar-tensor theory of gravity with the kinetic term of the scalar field nonminimally coupling to Einstein tensor. We show the equivalence between the first law of thermodynamics on the apparent horizon and Friedmann equation for the general models, by using a mass-like function which is equal to the Misner-Sharp mass on the apparent horizon. The results further support the universal relationship between the first law of thermodynamics and Friedmann equation.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10875041)the Program for New Century Excellent Talents in University (Grant No. 10-0165)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0964)the Construct Program of Key Disciplines in Hunan Provincethe Project of Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2.YW.W10)
文摘We study a general class of holographic superconductor models via the Stiickelberg mechanism in the non-minimal derivative coupling theory in which the charged scalar field is kinetically coupling to Einstein's tensor. We explore the effects of the coupling parameter on the critical temperature, the order of phase transitions and the critical expo- nents near the second-order phase transition point. Moreover, we compute the electrical conductivity using the probe approximation and check the ratios wg/Tc for the different coupling parameters.
基金supported by the Hainan Provincial Natural Science Foundation of China under Grant No.121MS033partially supported by the National Key Research and Development Program of China under Grant No.2020YFC2201504supported by the National Natural Science Foundation of China under Grant No.12205015。
文摘We investigate the constant-roll inflation with non-minimally kinetic coupling to the Einstein tensor.With the slow-roll parameterηφ=-φ/(Hφ)being a constant,we calculate the power spectra for scalar and tensor perturbations,and derive the expressions for the scalar spectral tilt n_(s),the tensor spectral tilt n_(T),and the tensor-to-scalar ratio r.We find that the expressions for n_(s)are different with different ordering of taking the derivative of the scalar power spectrum with respect to the scale k and the horizon crossing condition c_(sk)=a H in the constant-roll inflation,the consistency relation r=-8n_(T)does not hold if|η_(φ)|is not small,and the duality of the tensorto-scalar ratio between the slow-roll inflation and ultra-slow-roll inflation does not exist in inflationary models with non-minimally derivative coupling.The result offers a fresh perspective on the understanding of the inflationary models with non-minimally derivative coupling and is helpful for the production of scalar induced gravitational waves in the framework of ultra-slowroll inflation with non-minimally derivative coupling.
基金financially supported by the China Postdoctoral Science Foundation (No. 2023M742898)the Postdoctoral Fellowship Program of CPSF (No. GZC20232193)。
文摘Excessively high pore water pressure presents unpredictable risks to the safety of rock tunnels in mountainous regions that are predominantly composed of limestone. Investigating the creep characteristics and permeability evolution of limestone under varying hydrated conditions is crucial for a better understanding of the delayed deformation mechanisms of limestone rock tunnels. To this end, this paper initially conducts a series of multi-stage triaxial creep tests on limestone samples under varying pore water pressures. The experiment examines how pore water pressure affects limestone’s creep strain, strain rate, long-term strength, lifespan, and permeability, all within the context of hydraulicmechanical(HM) coupling. To better describe the creep behavior associated with pore water pressure, this paper proposes a new nonlinear fractional creep constitutive model. This constitutive model depicts the initial, steady-state, and accelerated phases of limestone’s creep behavior. Finally, the proposed model is applied to the numerical realization of deformation in limestone tunnel, validating the effectiveness of the proposed constitutive model in predicting tunnel’s creep deformation. This research enhances our understanding of limestone’s creep characteristics and permeability evolution under HM coupling, laying a foundation for assessing the longterm stability of mountain tunnels.
基金Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 61134012)the National Natural Science Foundation of China (Grant Nos. 11271146 and 61070238)the Science and Technology Program of Wuhan (Grant No. 20130105010117)
文摘According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rssler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods.
基金Project supported by the National Natural Science Foundation of China (Grant No 10773008)
文摘This paper presents a new exact inflationary solution to the non-minimMly coupled scalar field. The inflation is driven by the evolution of a scalar field with inflation potential V(φ) = (λ/4)φ4 + b1φ2 + b2 + b3φ-2 + b4φ-4. The spectral index of the scalar density fluctuations ns is consistent with the result of WMAP3 (Wilkinson Microwave Anisotropy Probe 3) for ACDM (Lambda-Cold Dark Matter). This model relaxes the constraint to the quartic coupling constant. And it can enter smoothly into a radiation-dominated stage when inflation ends.
基金Supported by the Natural Science Foundation of Shandong Province under Grant No.ZR2009AL001
文摘In this paper,we study a kind of dark energy models in the framework of the non-minimal coupling.With this kind of models,dark energy could cross the cosmological constant boundary,and at early time,dark energy could have 'tracking' behavior.
基金Supported by the National Natural Science Foundation of China under Grant No 11647079the Scientific Research Foundation of Education Department of Yunnan Province under Grant No 2016ZZX011+1 种基金the Key Laboratory of Astroparticle Physics of Yunnan Provincethe Donglu Youth Teacher Plan of Yunnan University
文摘We study the effect of the non-minimal coupling between matter and geometry on the gravitational constant in the context of f(R) theories of gravity on cosmic scales. For a class of f(R) models,the result shows that the value of the gravitational constant not only changes over time but also has the dampened oscillation behavior.Compared with the result of the standard ACDM model, the consequence suggests that the coupling between matter and geometry should be weak.
基金supported by Key Projectof Natural Science Foundation of China(61833005)the Natural Science Foundation of Hebei Province of China(A2018203288)。
文摘This article aims to address the global exponential synchronization problem for fractional-order complex dynamical networks(FCDNs)with derivative couplings and impulse effects via designing an appropriate feedback control based on discrete time state observations.In contrast to the existing works on integer-order derivative couplings,fractional derivative couplings are introduced into FCDNs.First,a useful lemma with respect to the relationship between the discrete time observations term and a continuous term is developed.Second,by utilizing an inequality technique and auxiliary functions,the rigorous global exponential synchronization analysis is given and synchronization criterions are achieved in terms of linear matrix inequalities(LMIs).Finally,two examples are provided to illustrate the correctness of the obtained results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12272148 and 11772141).
文摘Noether theorem is applied to a variable order fractional multiscale mechano-electrophysiological model of neuron membrane dynamics.The variable orders fractional Lagrange equation of a multiscale mechano-electrophysiological model of neuron membrane dynamics is given.The variable orders fractional Noether symmetry criterion and Noether conserved quantities are given.The forms of variable orders fractional Noether conserved quantities corresponding to Noether symmetry generators solutions of the model under different conditions are discussed in detail,and it is found that the expressions of variable orders fractional Noether conserved quantities are closely dependent on the external nonconservative forces and material parameters of the neuron.
文摘Oxygen electrocatalysis,exemplified by the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is central to energy storage and conversion technologies such as fuel cells,metal-air batteries,and water electrolysis.However,highly effective and inexpensive earth-abundant materials are sought after to replace the noble metal-based electrocatalysts currently in use.Recently,metal-organic frameworks(MOFs)and carbon-based MOF derivatives have attracted considerable attention as efficient catalysts due to their exceedingly tunable morphologies,structures,compositions,and functionalization.Here,we report two-dimensional(2D)MOF/MOF derivative coupled arrays on nickel foam as binder-free bifunctional ORR/OER catalysts with enhanced electrocatalytic activity and stability.Their remarkable electrochemical properties are primarily attributed to fully exposed active sites and facilitated charge-transfer kinetics.The coupled and hierarchical nanosheet arrays produced via our growth-pyrolysis-regrowth strategy offer promise in the development of highly active electrodes for energy-related electrochemical devices.
基金the National Natural Science Foundation of China(Nos.12072022 and 11872105)the Fundamental Research Funds for the Central Universities(Nos.FRF-TW-2018-005 and FRF-BR-18-008B)。
文摘A fractional-order thermo-elastic model taking into account the small-scale effects of the thermo-elastic coupled behavior is developed to study the free vibration of a higher-order shear microplate.The nonlocal strain gradient theory is modified with the introduction of the fractional-order derivatives and the nonlocal characteristic length.The Fourier heat conduction is replaced by the non-Fourier heat conduction with the introduction of the fractional order and the memory characteristic time.Numerical calculations are performed to analyze the effects of the nonlocal strain gradient parameters,the spatiotemporal fractional order,the nonlocal characteristic length,and the memory characteristic time on the natural frequencies,the vibration attenuation,and the phase shift between the temperature field and the displacement field.The numerical results show that the new thermo-elastic model with the spatiotemporal fractional order can provide more exquisite descriptions of the thermo-elastic behavior at a small scale.
文摘In this paper,we propose a hybrid metric Palatini approach in which the Palatini scalar curvature is non minimally coupled to the scalar field.We derive Einstein’s field equations,i.e.,the equations of motion of the scalar field.Furthermore,the background and perturbative parameters are obtained by means of Friedmann equations in the slow roll regime.The analysis of cosmological perturbations allowed us to obtain the main inflationary parameters,e.g.,the scalar spectral index and tensor to scalar ratio r.From this perspective,as an application of our analysis,we consider the Higgs field with quartic potential,which plays the inflaton role,and show that predictions of Higgs hybrid inflation are in good agreement with recent observational data[Astron.Astrophys.641,61(2020)].
文摘The first six Chebyshev polynomial coefficients (i.e., A00, A01, A10, A11, A02, A20) were derived from monthly mean geopotential height over East Asia for the period 1951-1983. Spectral analysis of these coefficients reveals relative maxima of power in the frequency bands of 200 months (- 16.7 years), 25 months (the quasi-biennial oscillation), 5-6 months, and 2-3 months. Cross-spectral characteristics between Chebyshev coefficients and the Southern Oscillation Index (SOI) were also explored. Coherence spectrum for the zonal and meridional circulation index (A01 and A 10) with the SOI was significant near 4 years, the QBO, and 2-3 months. Some physical explanations were offered for the spatial linkages (i.e., teleconnections) between the SO and atmospheric circulation anomalies overEast Asia.
基金supported by the National Natural Science Foundation of China (Grant No. 21404014)the Science & Technology Department of Jilin Province (No. 20170101177JC)
文摘An in situ coupling strategy to prepare Co_9S_8/S and N dual?doped graphene composite(Co_9S_8/NSG) has been proposed. The key point of this strategy is the function?oriented design of organic compounds. Herein, cobalt porphyrin derivatives with sulfo groups are employed as not only the coupling agents to form and anchor Co_9S_8 on the graphene in situ, but also the heteroatom?doped agent to generate S and N dual?doped graphene. The tight coupling of multiple active sites endows the composite materials with fast electrochemical kinetics and excellent stability for both oxygen reduction reaction(ORR) and oxygen evolution reaction(OER). The obtained electrocatalyst exhibits better activity parameter(ΔE = 0.82 V) and smaller Tafel slope(47.7 mV dec^(-1) for ORR and 69.2 mV dec^(-1) for OER) than commercially available Pt/C and RuO_2. Most importantly, as electrocatalyst for rechargeable Zn–air battery, Co_9S_8/NSG displays low charge–discharge voltage gap and outstanding long?term cycle stability over 138 h compared to Pt/C–RuO_2. To further broaden its application scope, a homemade all?solid?state Zn–air battery is also prepared, which displays good charge–discharge performance and cycle performance. The function?oriented design of N_4?metallomacrocycle derivatives might open new avenues to strategic construction of high?performance and long?life multifunctional electrocatalysts for wider electro?chemical energy applications.
基金supported in part by the National High Technology Research and Development Program of China(863 Program)(2015AA042307)Shandong Provincial Scientific and Technological Development Foundation(2014GGX103038)+3 种基金Shandong Provincial Independent Innovation and Achievement Transformation Special Foundation(2015ZDXX0101E01)National Natural Science Fundation of China(NSFC)Joint Fund of Shandong Province(U1706228)the Fundamental Research Funds of Shandong University(2015JC027)
文摘In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to implement of PD control, strong robustness of SMC with respect to external disturbances and uncertain system parameters, and adaptation for unknown system dynamics associated with the feedforward parts. In the proposed APD-SMC law, the PD control part is used to stabilize the controlled system, the SMC part is used to compensate the external disturbances and system uncertainties,and the adaptive control part is utilized to estimate the unknown system parameters. The coupling behavior between the trolley movement and the payload swing is enhanced and, therefore, the transient performance of the proposed controller is improved.The Lyapunov techniques and the La Salle's invariance theorem are employed in to support the theoretical derivations. Experimental results are provided to validate the superior performance of the proposed control law.
基金Beijing Natural Science Foundation(No.2093033)Scientific Research Project of Beijing Educational Committee(No.KM200910020012) for financial support.
文摘A series of linear and V-shaped oligo(phenylene ethynylene) derivatives 1-3 were synthesized through sequent Sonogashira coupling and propargyl alcohol deprotection reaction in high yields.The alkoxy chains(i.e.,n-hexyloxy groups) were introduced to assure good solubility of compounds 1-3 in common solvents.The photophysical properties of 1-3 in solution depend strongly on the geometries of these compounds.
基金supported by the National Natural Science Foundation of China(Grant Nos.11175270 and 11475065)the Program for New Century Excellent Talents in University(Grant No.NCET-12-0205)
文摘With the usual definitions for the entropy and the temperature associated with the apparent horizon, we discuss the first law of the thermodynamics on the apparent in the general scalar-tensor theory of gravity with the kinetic term of the scalar field nonminimally coupling to Einstein tensor. We show the equivalence between the first law of thermodynamics on the apparent horizon and Friedmann equation for the general models, by using a mass-like function which is equal to the Misner-Sharp mass on the apparent horizon. The results further support the universal relationship between the first law of thermodynamics and Friedmann equation.