Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection f...Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.展开更多
To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a...To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.展开更多
Based on literature research in combination with the practice of CO_(2)flooding and storage in Jilin Oilfield,this study assesses the key problems in CO_(2)flooding and storage,proposing the corresponding countermeasu...Based on literature research in combination with the practice of CO_(2)flooding and storage in Jilin Oilfield,this study assesses the key problems in CO_(2)flooding and storage,proposing the corresponding countermeasures from five aspects of CO_(2)gas source condition,namely geological condition evaluation,scheme design incoordination with other production methods,economic and effectiveness evaluation,together with dynamic monitoring and safety evaluation.The results show that CO_(2)flooding is the most economic and effective CO_(2)storage method.In eastern China,inorganic origin CO_(2)gas reservoirs are widely developed and are especially the most enriched in the Paleozoic carbonate rock strata and the Cenozoic Paleogene–Neogene system,which provide a rich resource base for CO_(2)flooding and storage.In the future,CO_(2)generated in the industrial field will become the main gas source of CO_(2)flooding and storage.The evaluation of geological conditions of oil and gas reservoirs is the basis for the potential evaluation,planning scheme design and implementation of CO_(2)flooding and storage.CO_(2)storage should be below the depth of 800 m,the CO_(2)flooding and storage effects in lowpermeability oil reservoirs being the best.CO_(2)geological storage mechanisms primarily consist of tectonic geological storage,bound gas storage,dissolution storage,mineralization storage,hydrodynamic storage and coalbed adsorption storage.The practice of CO_(2)flooding and storage in Jilin Oilfield demonstratesthat the oil increment by CO_(2)flooding is at least 24%higher than by conventional water flooding.The most critical factor determining the success or failure of CO_(2)flooding and storage is economic effectiveness,which needs to be explored from two aspects:the method and technology innovation along with the carbon peaking and carbon neutrality policy support.After CO_(2)is injected into the reservoir,it will react with the reservoir and fluid,the problem of CO_(2)recovery or overflow will occur,so the dynamic monitoring and safety evaluation of CO_(2)flooding and storage are very important.This study is of great significance to the expansion of the application scope of CO_(2)flooding and storage and future scientific planning and deployment.展开更多
A new method is proposed to produce gas from oceanic gas hydrate reservoir by combining the ocean surface warm water flooding with depressurization which can efficiently utilize the synthetic effects of thermal, salt ...A new method is proposed to produce gas from oceanic gas hydrate reservoir by combining the ocean surface warm water flooding with depressurization which can efficiently utilize the synthetic effects of thermal, salt and depressurization on gas hydrate dissociation. The method has the advantage of high efficiency, low cost and enhanced safety. Based on the proposed conceptual method, the physical and mathematical models are established, in which the effects of the flow of multiphase fluid, the kinetic process of hydrate dissociation, the endothermic process of hydrate dissociation, ice-water phase equilibrium, salt inhibition, dispersion, convection and conduction on the hydrate disso- ciation and gas and water production are considered. The gas and water rates, formation pressure for the combination method are compared with that of the single depressurization, which is referred to the method in which only depres- surization is used. The results show that the combination method can remedy the deficiency of individual producing methods. It has the advantage of longer stable period of high gas rate than the single depressurization. It can also reduce the geologic hazard caused by the formation defor- mation due to the maintaining of the formation pressure by injected ocean warm water.展开更多
A novel type curve is presented for oil recovery factor prediction suitable for gas flooding by innovatively introducing the equivalent water-gas cut to replace the water cut,comprehensively considering the impact of ...A novel type curve is presented for oil recovery factor prediction suitable for gas flooding by innovatively introducing the equivalent water-gas cut to replace the water cut,comprehensively considering the impact of three-phase flow(oil,gas,water),and deriving the theoretical equations of gas flooding type curve based on Tong’s type curve.The equivalent water-gas cut is the ratio of the cumulative underground volume of gas and water production to the total underground volume of produced fluids.Field production data and the numerical simulation results are used to demonstrate the feasibility of the new type curve and verify the accuracy of the prediction results with field cases.The new type curve is suitable for oil recovery factor prediction of both water flooding and gas flooding.When a reservoir has no gas injected or produced,the gas phase can be ignored and only the oil and water phases need to be considered,in this case,this gas flooding type curve returns to the Tong’s type curve,which can evaluate the oil recovery factor of water flooding.For reservoirs with equivalent water-gas cuts of 60%-80%,the regression method of the new type curve works well in predicting the oil recovery factor.For reservoirs with equivalent water-gas cuts higher than 80%,both the regression and assignment methods of the new type curve can accurately predict the oil recovery factor of gas flooding.展开更多
Reservoir performance prediction is one of the main steps during a field development plan.Due to the complexity and time-consuming aspects of numerical simulators,it is helpful to develop analytical tools for a rapid ...Reservoir performance prediction is one of the main steps during a field development plan.Due to the complexity and time-consuming aspects of numerical simulators,it is helpful to develop analytical tools for a rapid primary analysis.The capacitance-resistance model(CRM)is a simple technique for reservoir management and optimization.This method is an advanced time-dependent material balance equation which is combined with a productivity equation.CRM uses production/injection data and bottom-hole pressure as inputs to build a reliable model,which is then combined with the oil-cut model and converted to a predictive tool.CRM has been studied thoroughly for water flooding projects.In this study,a modified model for gas flooding systems based on gas density and average reservoir pressure is developed.A detailed procedure is described in a synthetic reservoir model using a genetic algorithm.Then,a streamline simulation is implemented for validation of the results.The results show that the proposed model is able to calculate interwell connectivity parameters and oil production rates.Moreover,a sensitivity analysis is carried out to investigate effects of drawdown pressure and gas PVT properties on the new model.Finally,acceptable ranges of input data and limitations of the model are comprehensively discussed.展开更多
The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and hi...The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.展开更多
Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order t...Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields.展开更多
CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technol...CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technology. The sweep efficiency can be significantly reduced especially in the presence of "thief zones". Hence, gas channeling blocking and mobility control are important technical issues for the success of CO2 injection. Normally, crosslinked gels have the potential to block gas channels, but the gelation time control poses challenges to this method. In this study, a new method for selectively blocking CO2 channeling is proposed, which is based on a type of CO2-sensitive gel system (modified polyacry- lamide-methenamine-resorcinol gel system) to form gel in situ. A CO2-sensitive gel system is when gelation or solidification will be triggered by CO2 in the reservoir to block gas channels. The CO2-sensitivity of the gel system was demonstrated in parallel bottle tests of gel in N2 and CO2 atmospheres. Sand pack flow experiments were con- ducted to investigate the shutoff capacity of the gel system under different conditions. The injectivity of the gel system was studied via viscosity measurements. The results indi- cate that this gel system was sensitive to CO2 and had good performance of channeling blocking in porous media. Advantageous viscosity-temperature characteristics were achieved in this work. The effectiveness for EOR in heterogeneous formations based on this gel system was demonstrated using displacement tests conducted in double sand packs. The experimental results can provide guideli- nes for the deployment of theCO2-sensitive gel system for field applications.展开更多
Undesirable gas channeling always occurs along the high-permeability layers in heterogeneous oil reservoirs during water-alternating-CO_(2)(WAG)flooding,and conventional polymer gels used for blocking the“channeling...Undesirable gas channeling always occurs along the high-permeability layers in heterogeneous oil reservoirs during water-alternating-CO_(2)(WAG)flooding,and conventional polymer gels used for blocking the“channeling”paths usually suffer from either low injectivity or poor gelation control.Herein,we for the first time developed an in-situ high-pressure CO_(2)-triggered gel system based on a smart surfactant,N-erucamidopropyl-N,N-dimethylamine(UC22AMPM),which was introduced into the aqueous slugs to control gas channeling inWAG processes.The water-like,low-viscosity UC22AMPM brine solution can be thickened by high-pressure CO_(2) owing to the formation of wormlike micelles(WLMs),as well as their growth and shear-induced structure buildup under shear flow.The thickening power can be further potentiated by the generation of denser WLMs resulting from either surfactant concentration augmentation or a certain range of heating,and can be impaired via pressurization above the critical pressure of CO_(2) because of its soaring solvent power.Core flooding tests using heterogeneous cores demonstrated that gas channeling was alleviated by plugging of high-capacity channels due to the in-situ gelation of UC22AMPM slugs upon their reaction with the pre-or post-injected CO_(2) slugs under shear flow,thereupon driving chase fluids into unrecovered low-permeability areas and producing an 8.0% higher oil recovery factor than the conventional WAG mode.This smart surfactant enabled high injectivity and satisfactory gelation control,attributable to low initial viscosity and the combined properties of one component and CO_(2)-triggered gelation,respectively.This work could provide a guide towards designing gels for reducing CO_(2) spillover and reinforcing the CO_(2) sequestration effect during CO_(2) enhanced oil recovery processes.展开更多
This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the probl...This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.展开更多
Although significant amount of H_(2)S(sour gas)rich natural gas is estimated globally,but not much attention has been given to the application of H_(2)S in the oil recovery process.Recent studies on the use of H_(2)S ...Although significant amount of H_(2)S(sour gas)rich natural gas is estimated globally,but not much attention has been given to the application of H_(2)S in the oil recovery process.Recent studies on the use of H_(2)S in oil recovery processes showed that H_(2)S has the potential of improving the oil recovery,and it can be even more effective than using CO_(2) in some processes.H_(2)S can equally dissolve in the water,react with the reservoir rock to change its surface charge,porosity,and permeability.However,previous in-vestigations on H_(2)S oil recovery attributed the improved oil recoveries to the higher miscibility of H_(2)S in the oil,and the reduction in the oil viscosity.Therefore,there is limited understanding on the H_(2)S-oil-brine-rock geochemical interactions,and how they impact the oil recovery process.This study aims to investigate the interactions between H_(2)S,oil,and carbonate formations,and to assess how the combi-nation of H_(2)S and low salinity water can impact the wettability and porosity of the reservoirs.A triple layer surface complexation model was used to understand the influence of key parameters(e.g.,pressure,brine salinity,and composition)on the H_(2)S-brine-oil-rock interactions.Moreover,the effects of mineral content of the carbonate rock on H_(2)S interactions were studied.Thereafter,the results of the H_(2)S-oil-brine-rock interactions were compared with a study where CO_(2) was used as the injected gas.Results of the study showed that the seawater and its diluted forms yielded identicalζ-potential values of about 3.31 mV at a pH of 3.24.This indicates that at very low pH condition,pH controls the ζ-potential of the oil-brine interface regardless of the brine's ionic strength.The study further demonstrated that the presence of other minerals in the carbonate rock greatly reduced the calcite dissolution.For instance,the calcite dissolution was reduced by 4.5%when anhydrite mineral was present in the carbonate rock.Findings from the simulation also indicated that CO_(2) produced negative ζ-potential values for the car-bonate rocks,and these values were reduced by 18.4%-20% when H_(2)S was used as the gas phase.This implies that the H_(2)S shifted the carbonate rockζ-potentials towards positive.The outcomes of this study can be applied when designing CO_(2) flooding and CO_(2) storage where the gas stream contains H_(2)S gas since H_(2)S greatly influences the dissolution of the carbonate mineral.展开更多
A method is proposed to characterize the fast neutron scattering cross-section ( s f) quantitatively by the combina-tion of inelastic gamma rays and captured gamma rays, so as to realize the gas saturation evaluation ...A method is proposed to characterize the fast neutron scattering cross-section ( s f) quantitatively by the combina-tion of inelastic gamma rays and captured gamma rays, so as to realize the gas saturation evaluation of CO_(2)-injected heavy oilreservoirs based on the three-de tector pulsed neutron logging technology. Factors influencing of the evaluation effect of thismethod are analyzed and the effectiveness of this method is verified by a simulation example. By using the Monte Carlo simu-lation method and the physical model of bulk-volume rock, the relationship between s f and CO_(2) saturation is studied, and thesaturation interpretation model is established. The influences of formation temperature and pressure, heavy oil density, bore-hole fluid and reservoir methane content on the evaluation results of CO_(2) saturation are analyzed. The results show that thecharacterization of s f by the combination of secondary gamma information can eliminate the influence of formation lithology,borehole fluid and methane content are the main factors affecting the quantitative monitoring of CO_(2) saturation, and the ef-fects of formation temperature and pressure and heavy oil density are negligible. The simulation example verified the feasibilityof the method for evaluating the CO_(2) saturation of CO_(2)-injected heavy oil reservoirs.展开更多
In the flooded lead_acid batteries(FLAB),gas bubbles are initially formed on the surface of the electrodes,which are produced by electrochemical reactions,and then released into the electrolyte.In the present investig...In the flooded lead_acid batteries(FLAB),gas bubbles are initially formed on the surface of the electrodes,which are produced by electrochemical reactions,and then released into the electrolyte.In the present investigation,the effect of surface characterization of electrodes of FLAB on the gas bubble dynamic parameters in the electrolyte flow at different charging/discharging rates(C-rates)are studied utilizing particle image velocimetry(PIV)method.The results show that the capacity of FLAB have a linear behavior due to changes in each of the two parameters of the surface characterization of electrodes and the Crate.At all State of charges(SOCs)of FLAB cells in different tests,increasing average roughness(Ra)and average wavelength of the roughness(λa)in the electrode surfaces,results in an increase in average bubble diameter and bubble rising velocity.Nevertheless,a sharp decrease in the void fraction of bubbles within the electrolyte was observed due to the increment inλa and Ra.Also,the effect of the rising movement of gas bubbles within the electrolyte on the average electrolyte velocity pattern in the gap between the electrodes by changing the surface characterization of electrodes are investigated in detail.展开更多
Gas production from hydrate reservoir by the combination of warm water flooding and depressurization is proposed,which can overcome the deficiency of single production method.Based on the combination production method...Gas production from hydrate reservoir by the combination of warm water flooding and depressurization is proposed,which can overcome the deficiency of single production method.Based on the combination production method,the physical and mathematical models are developed to simulate the hydrate dissociation.The mathematical model can be used to analyze the effects of the flow of multiphase fluid,the kinetic process of hydrate dissociation,the endothermic process of hydrate dissociation,ice-water phase equilibrium,the convection and conduction on the hydrate dissociation and gas and water production.The mechanism of gas production by the combination of warm water flooding and depressurization is revealed by the numerical simulation.The evolutions of such physical variables as pressure,temperature,saturations and gas and water rates are analyzed.Numerical results show that under certain conditions the combination method has the advantage of longer stable period of high gas rate than the single producing method.展开更多
Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploi...Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.展开更多
Based on theoretical analysis, similarity simulation tests, numerical simulation analysis and field observations, we analyzed rock collapse and rules of fraction evolution of overlying rocks and studied the rules in c...Based on theoretical analysis, similarity simulation tests, numerical simulation analysis and field observations, we analyzed rock collapse and rules of fraction evolution of overlying rocks and studied the rules in controlling the effect of an extremely thick igneous rock, found above a main mining coal seam in an area prone to coal mine disasters in the Haizi Coal Mine. The results show that this igneous rock, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close. The presence of igneous rock plays an important role in rock bursts, mine floods, gas outburst and surface subsidence in coal mines. By analyzing the rules in controlling the effect of this igneous rock, we provide useful references for safety and high efficiency mining in coal mines under special geological conditions.展开更多
Carbonate reservoirs in China have the characteristics of diversified accumulation pattern, complex structure and varying reservoir conditions. Concerning these characteristics, this article tracks the technical break...Carbonate reservoirs in China have the characteristics of diversified accumulation pattern, complex structure and varying reservoir conditions. Concerning these characteristics, this article tracks the technical breakthroughs and related practices since the 1950 s, summarizes the developed theory and technologies of carbonate reservoir development, analyzes their adaptability and problems, and proposes their development trend. The following theory and technologies have come into being:(1) carbonate reservoir formation mechanisms and compound flow mechanisms in complex medium;(2) reservoir identification and description technologies based on geophysics and discrete fracture-vuggy modeling method;(3) well testing analysis technology and numerical simulation method of coupling free flow and porous media flow;(4) enhanced oil recovery techniques for nitrogen single well huff and puff, and water flooding development techniques with well pattern design in spatial structure, changed intensity water injection, water plugging and channel blocking as the core;(5) drilling and completion techniques, acid fracturing techniques and its production increasing techniques. To realize the efficient development of carbonate oil and gas reservoirs, researches in four aspects need to be done:(1) complex reservoir description technology with higher accuracy;(2) various enhanced oil recovery techniques;(3) improving the drilling method and acid fracturing method for ultra-deep carbonate reservoir and significantly cutting engineering cost;(4) strengthening the technological integration of information, big data, cloud computation, and artificial intelligence in oilfield development to realize the smart development of oilfield.展开更多
A four-year(2008–2011) field study was implemented in a major rice-growing region of China to better understand the effect of urea and controlled release fertilier(CRF, thermoplastic resin-coated urea in this study) ...A four-year(2008–2011) field study was implemented in a major rice-growing region of China to better understand the effect of urea and controlled release fertilier(CRF, thermoplastic resin-coated urea in this study) on CH4 emission from paddy fields. Over the four years, the average CH4 emission during the rice growing seasons was 76.9, 65.8 and 64.9 kg CH4ha-1in treatments CK(zero N), U(urea) and C(CRF), respectively. Urea and CRF significantly reduced CH4 emission by 14.4% and 15.6%, and increased average rice grain yield by 25.8% and 19.7%(P < 0.05), respectively, compared with treatment CK. Flooding duration would affect CRF's effect on CH4 emission from paddy fields. Under normal aeration conditions, CH4 emission tended to be 3.9%–15.2% lower in treatment C than in treatment U from 2009 to 2011, while it tended to be 4.2% higher under delayed aeration conditions in 2008. The findings suggest that mid-season aeration(MSA) starting on D30(30 days after rice transplanting), just like the local practice, would optimize the CRF's effect on CH4 emission from rice fields in China. Over the four years, average rice yield did not differ between treatments U and C, and tended to be 5% lower in treatment C than in treatment U.展开更多
Application of enhanced oil recovery methods in Kazakhstan has been ongoing for decades alongside the continued discovery of new oil and gas fields in the Pre-Caspian Basin.The objective of this review is to provide a...Application of enhanced oil recovery methods in Kazakhstan has been ongoing for decades alongside the continued discovery of new oil and gas fields in the Pre-Caspian Basin.The objective of this review is to provide an overview of the hydrocarbon reserves and production,and the status of the petroleum industry in Kazakhstan,with a focus on the EOR methods and projects being applied to recover those reserves.A summary of the specific EOR methods in use was prepared,and existing enhanced recovery projects in Kazakhstan were reviewed and their successes and challenges were investigated.The performance of these projects in the context of EOR performance indicators such as capillary number and mobility ratio,as well as operational and environmental issues,were examined.Recommendations for current and potential applications of EOR in Kazakhstan were also discussed.The widespread application of thermal EOR methods,in use for decades in Kazakhstan’s older fields,was found to be successful,with very favorable impacts on mobility ratio from the addition of thermal energy to the reservoirs.Miscible EOR methods in Kazakhstan have had more limited success,with some significant challenges due to high concentration of hydrogen sulfide in the injected gas.Polymer injection started in the late 1960s,achieving good results.A recent polymer injection pilot project has shown some promise,with a favorable impact on mobility ratio and oil production,although the project has not yet been expanded beyond two polymer injectors.These results indicate the huge potential of existing and future EOR projects.This review is the first compilation of Kazakhstan’s existing oil and gas reserves,production,and EOR project performance,and should be seen as a guide to the existing applications of EOR methods in Kazakhstan.展开更多
基金supported by the Forward Looking Basic Major Scientific and Technological Projects of CNPC (Grant No.2021DJ2202).
文摘Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.
基金supported by the Major Science and Technology Project(Nos.CNOOC-KJ 135 ZDXM 38 ZJ 01 ZJ,KJGG2021-0505) of CNOOC Co.,Ltd.of Chinathe National Natural Science Foundation of China(No.42002171)+2 种基金China Postdoctoral Science Foundation(Nos.2020TQ0299,2020M682520)Postdoctoral Innovation Science Foundation of Hubei Province of ChinaScientific Research Project of Zhanjiang Branch of CNOOC(No.ZYKY-2022-ZJ-02)。
文摘To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.
基金the financial support provided by the Magnitude Project of the Ministry of Science and Technology of China(Grant No.2011ZX05016-006)the Fine Reservoir Description Tracking Project in 2021 from the Petrochina Exploration and Development Company(Grant No.2021-40217-000046)。
文摘Based on literature research in combination with the practice of CO_(2)flooding and storage in Jilin Oilfield,this study assesses the key problems in CO_(2)flooding and storage,proposing the corresponding countermeasures from five aspects of CO_(2)gas source condition,namely geological condition evaluation,scheme design incoordination with other production methods,economic and effectiveness evaluation,together with dynamic monitoring and safety evaluation.The results show that CO_(2)flooding is the most economic and effective CO_(2)storage method.In eastern China,inorganic origin CO_(2)gas reservoirs are widely developed and are especially the most enriched in the Paleozoic carbonate rock strata and the Cenozoic Paleogene–Neogene system,which provide a rich resource base for CO_(2)flooding and storage.In the future,CO_(2)generated in the industrial field will become the main gas source of CO_(2)flooding and storage.The evaluation of geological conditions of oil and gas reservoirs is the basis for the potential evaluation,planning scheme design and implementation of CO_(2)flooding and storage.CO_(2)storage should be below the depth of 800 m,the CO_(2)flooding and storage effects in lowpermeability oil reservoirs being the best.CO_(2)geological storage mechanisms primarily consist of tectonic geological storage,bound gas storage,dissolution storage,mineralization storage,hydrodynamic storage and coalbed adsorption storage.The practice of CO_(2)flooding and storage in Jilin Oilfield demonstratesthat the oil increment by CO_(2)flooding is at least 24%higher than by conventional water flooding.The most critical factor determining the success or failure of CO_(2)flooding and storage is economic effectiveness,which needs to be explored from two aspects:the method and technology innovation along with the carbon peaking and carbon neutrality policy support.After CO_(2)is injected into the reservoir,it will react with the reservoir and fluid,the problem of CO_(2)recovery or overflow will occur,so the dynamic monitoring and safety evaluation of CO_(2)flooding and storage are very important.This study is of great significance to the expansion of the application scope of CO_(2)flooding and storage and future scientific planning and deployment.
文摘A new method is proposed to produce gas from oceanic gas hydrate reservoir by combining the ocean surface warm water flooding with depressurization which can efficiently utilize the synthetic effects of thermal, salt and depressurization on gas hydrate dissociation. The method has the advantage of high efficiency, low cost and enhanced safety. Based on the proposed conceptual method, the physical and mathematical models are established, in which the effects of the flow of multiphase fluid, the kinetic process of hydrate dissociation, the endothermic process of hydrate dissociation, ice-water phase equilibrium, salt inhibition, dispersion, convection and conduction on the hydrate disso- ciation and gas and water production are considered. The gas and water rates, formation pressure for the combination method are compared with that of the single depressurization, which is referred to the method in which only depres- surization is used. The results show that the combination method can remedy the deficiency of individual producing methods. It has the advantage of longer stable period of high gas rate than the single depressurization. It can also reduce the geologic hazard caused by the formation defor- mation due to the maintaining of the formation pressure by injected ocean warm water.
基金Supported by the National Natural Science Foundation of China(51974268)the Sichuan Province Science and Technology Program(2019YJ0423)。
文摘A novel type curve is presented for oil recovery factor prediction suitable for gas flooding by innovatively introducing the equivalent water-gas cut to replace the water cut,comprehensively considering the impact of three-phase flow(oil,gas,water),and deriving the theoretical equations of gas flooding type curve based on Tong’s type curve.The equivalent water-gas cut is the ratio of the cumulative underground volume of gas and water production to the total underground volume of produced fluids.Field production data and the numerical simulation results are used to demonstrate the feasibility of the new type curve and verify the accuracy of the prediction results with field cases.The new type curve is suitable for oil recovery factor prediction of both water flooding and gas flooding.When a reservoir has no gas injected or produced,the gas phase can be ignored and only the oil and water phases need to be considered,in this case,this gas flooding type curve returns to the Tong’s type curve,which can evaluate the oil recovery factor of water flooding.For reservoirs with equivalent water-gas cuts of 60%-80%,the regression method of the new type curve works well in predicting the oil recovery factor.For reservoirs with equivalent water-gas cuts higher than 80%,both the regression and assignment methods of the new type curve can accurately predict the oil recovery factor of gas flooding.
文摘Reservoir performance prediction is one of the main steps during a field development plan.Due to the complexity and time-consuming aspects of numerical simulators,it is helpful to develop analytical tools for a rapid primary analysis.The capacitance-resistance model(CRM)is a simple technique for reservoir management and optimization.This method is an advanced time-dependent material balance equation which is combined with a productivity equation.CRM uses production/injection data and bottom-hole pressure as inputs to build a reliable model,which is then combined with the oil-cut model and converted to a predictive tool.CRM has been studied thoroughly for water flooding projects.In this study,a modified model for gas flooding systems based on gas density and average reservoir pressure is developed.A detailed procedure is described in a synthetic reservoir model using a genetic algorithm.Then,a streamline simulation is implemented for validation of the results.The results show that the proposed model is able to calculate interwell connectivity parameters and oil production rates.Moreover,a sensitivity analysis is carried out to investigate effects of drawdown pressure and gas PVT properties on the new model.Finally,acceptable ranges of input data and limitations of the model are comprehensively discussed.
基金Supported by the PetroChina Science and Technology Project(2023ZG18).
文摘The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.
基金Financial support for this work from National Sciencetechnology Support Plan Projects (No. 2012BAC26B00)the Science Foundation of China University of Petroleum, Beijing (No.2462012KYJJ23)
文摘Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields.
基金financial support from the National Basic Research Program of China(2015CB251201)the Fundamental Research Funds for the Central Universities(15CX06024A)the Program for Changjiang Scholars and Innovative Research Team in University(IRT1294 and IRT1086)
文摘CO2 flooding is regarded as an important method for enhanced oil recovery (EOR) and greenhouse gas control. However, the heterogeneity prevalently dis- tributed in reservoirs inhibits the performance of this technology. The sweep efficiency can be significantly reduced especially in the presence of "thief zones". Hence, gas channeling blocking and mobility control are important technical issues for the success of CO2 injection. Normally, crosslinked gels have the potential to block gas channels, but the gelation time control poses challenges to this method. In this study, a new method for selectively blocking CO2 channeling is proposed, which is based on a type of CO2-sensitive gel system (modified polyacry- lamide-methenamine-resorcinol gel system) to form gel in situ. A CO2-sensitive gel system is when gelation or solidification will be triggered by CO2 in the reservoir to block gas channels. The CO2-sensitivity of the gel system was demonstrated in parallel bottle tests of gel in N2 and CO2 atmospheres. Sand pack flow experiments were con- ducted to investigate the shutoff capacity of the gel system under different conditions. The injectivity of the gel system was studied via viscosity measurements. The results indi- cate that this gel system was sensitive to CO2 and had good performance of channeling blocking in porous media. Advantageous viscosity-temperature characteristics were achieved in this work. The effectiveness for EOR in heterogeneous formations based on this gel system was demonstrated using displacement tests conducted in double sand packs. The experimental results can provide guideli- nes for the deployment of theCO2-sensitive gel system for field applications.
基金Financial support from the Natural Science Foundation of Sichuan Province(2022NSFSC0030)National Natural Science Foundation of China(U1762218)is gratefully acknowledged.
文摘Undesirable gas channeling always occurs along the high-permeability layers in heterogeneous oil reservoirs during water-alternating-CO_(2)(WAG)flooding,and conventional polymer gels used for blocking the“channeling”paths usually suffer from either low injectivity or poor gelation control.Herein,we for the first time developed an in-situ high-pressure CO_(2)-triggered gel system based on a smart surfactant,N-erucamidopropyl-N,N-dimethylamine(UC22AMPM),which was introduced into the aqueous slugs to control gas channeling inWAG processes.The water-like,low-viscosity UC22AMPM brine solution can be thickened by high-pressure CO_(2) owing to the formation of wormlike micelles(WLMs),as well as their growth and shear-induced structure buildup under shear flow.The thickening power can be further potentiated by the generation of denser WLMs resulting from either surfactant concentration augmentation or a certain range of heating,and can be impaired via pressurization above the critical pressure of CO_(2) because of its soaring solvent power.Core flooding tests using heterogeneous cores demonstrated that gas channeling was alleviated by plugging of high-capacity channels due to the in-situ gelation of UC22AMPM slugs upon their reaction with the pre-or post-injected CO_(2) slugs under shear flow,thereupon driving chase fluids into unrecovered low-permeability areas and producing an 8.0% higher oil recovery factor than the conventional WAG mode.This smart surfactant enabled high injectivity and satisfactory gelation control,attributable to low initial viscosity and the combined properties of one component and CO_(2)-triggered gelation,respectively.This work could provide a guide towards designing gels for reducing CO_(2) spillover and reinforcing the CO_(2) sequestration effect during CO_(2) enhanced oil recovery processes.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ04,2023ZZ08)。
文摘This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.
文摘Although significant amount of H_(2)S(sour gas)rich natural gas is estimated globally,but not much attention has been given to the application of H_(2)S in the oil recovery process.Recent studies on the use of H_(2)S in oil recovery processes showed that H_(2)S has the potential of improving the oil recovery,and it can be even more effective than using CO_(2) in some processes.H_(2)S can equally dissolve in the water,react with the reservoir rock to change its surface charge,porosity,and permeability.However,previous in-vestigations on H_(2)S oil recovery attributed the improved oil recoveries to the higher miscibility of H_(2)S in the oil,and the reduction in the oil viscosity.Therefore,there is limited understanding on the H_(2)S-oil-brine-rock geochemical interactions,and how they impact the oil recovery process.This study aims to investigate the interactions between H_(2)S,oil,and carbonate formations,and to assess how the combi-nation of H_(2)S and low salinity water can impact the wettability and porosity of the reservoirs.A triple layer surface complexation model was used to understand the influence of key parameters(e.g.,pressure,brine salinity,and composition)on the H_(2)S-brine-oil-rock interactions.Moreover,the effects of mineral content of the carbonate rock on H_(2)S interactions were studied.Thereafter,the results of the H_(2)S-oil-brine-rock interactions were compared with a study where CO_(2) was used as the injected gas.Results of the study showed that the seawater and its diluted forms yielded identicalζ-potential values of about 3.31 mV at a pH of 3.24.This indicates that at very low pH condition,pH controls the ζ-potential of the oil-brine interface regardless of the brine's ionic strength.The study further demonstrated that the presence of other minerals in the carbonate rock greatly reduced the calcite dissolution.For instance,the calcite dissolution was reduced by 4.5%when anhydrite mineral was present in the carbonate rock.Findings from the simulation also indicated that CO_(2) produced negative ζ-potential values for the car-bonate rocks,and these values were reduced by 18.4%-20% when H_(2)S was used as the gas phase.This implies that the H_(2)S shifted the carbonate rockζ-potentials towards positive.The outcomes of this study can be applied when designing CO_(2) flooding and CO_(2) storage where the gas stream contains H_(2)S gas since H_(2)S greatly influences the dissolution of the carbonate mineral.
基金Supported by the National Natural Science Foundation of China(41974127,41974155)China University of Petroleum(East China)Graduate Student Innovation Project Funding Project(YCX2020008)。
文摘A method is proposed to characterize the fast neutron scattering cross-section ( s f) quantitatively by the combina-tion of inelastic gamma rays and captured gamma rays, so as to realize the gas saturation evaluation of CO_(2)-injected heavy oilreservoirs based on the three-de tector pulsed neutron logging technology. Factors influencing of the evaluation effect of thismethod are analyzed and the effectiveness of this method is verified by a simulation example. By using the Monte Carlo simu-lation method and the physical model of bulk-volume rock, the relationship between s f and CO_(2) saturation is studied, and thesaturation interpretation model is established. The influences of formation temperature and pressure, heavy oil density, bore-hole fluid and reservoir methane content on the evaluation results of CO_(2) saturation are analyzed. The results show that thecharacterization of s f by the combination of secondary gamma information can eliminate the influence of formation lithology,borehole fluid and methane content are the main factors affecting the quantitative monitoring of CO_(2) saturation, and the ef-fects of formation temperature and pressure and heavy oil density are negligible. The simulation example verified the feasibilityof the method for evaluating the CO_(2) saturation of CO_(2)-injected heavy oil reservoirs.
文摘In the flooded lead_acid batteries(FLAB),gas bubbles are initially formed on the surface of the electrodes,which are produced by electrochemical reactions,and then released into the electrolyte.In the present investigation,the effect of surface characterization of electrodes of FLAB on the gas bubble dynamic parameters in the electrolyte flow at different charging/discharging rates(C-rates)are studied utilizing particle image velocimetry(PIV)method.The results show that the capacity of FLAB have a linear behavior due to changes in each of the two parameters of the surface characterization of electrodes and the Crate.At all State of charges(SOCs)of FLAB cells in different tests,increasing average roughness(Ra)and average wavelength of the roughness(λa)in the electrode surfaces,results in an increase in average bubble diameter and bubble rising velocity.Nevertheless,a sharp decrease in the void fraction of bubbles within the electrolyte was observed due to the increment inλa and Ra.Also,the effect of the rising movement of gas bubbles within the electrolyte on the average electrolyte velocity pattern in the gap between the electrodes by changing the surface characterization of electrodes are investigated in detail.
基金financially supported by the National High Technology Research and Development Program of China (863 Program) (Grant No. 2006AA09A209)the National Basic Research Program of China (Grant No. 2009CB219507)
文摘Gas production from hydrate reservoir by the combination of warm water flooding and depressurization is proposed,which can overcome the deficiency of single production method.Based on the combination production method,the physical and mathematical models are developed to simulate the hydrate dissociation.The mathematical model can be used to analyze the effects of the flow of multiphase fluid,the kinetic process of hydrate dissociation,the endothermic process of hydrate dissociation,ice-water phase equilibrium,the convection and conduction on the hydrate dissociation and gas and water production.The mechanism of gas production by the combination of warm water flooding and depressurization is revealed by the numerical simulation.The evolutions of such physical variables as pressure,temperature,saturations and gas and water rates are analyzed.Numerical results show that under certain conditions the combination method has the advantage of longer stable period of high gas rate than the single producing method.
基金supported by Key Program of National Natural Science Foundation of China (No. 52130401)National Natural Science Foundation of China (No. 52104055)+1 种基金China National Postdoctoral Program for Innovative Talents (No. BX20200386)China Postdoctoral Science Foundation (No. 2021M703586)。
文摘Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.
基金the National Basic Research Program of China (No.2005CB221503)the National Natural Science Foundation of China (Nos.70533050 and 50674089)+1 种基金the National Foundation for the Youth of China (No.50904068)the Research Fund for the Youth of China University of Mining & Technology (No.OY091223)
文摘Based on theoretical analysis, similarity simulation tests, numerical simulation analysis and field observations, we analyzed rock collapse and rules of fraction evolution of overlying rocks and studied the rules in controlling the effect of an extremely thick igneous rock, found above a main mining coal seam in an area prone to coal mine disasters in the Haizi Coal Mine. The results show that this igneous rock, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close. The presence of igneous rock plays an important role in rock bursts, mine floods, gas outburst and surface subsidence in coal mines. By analyzing the rules in controlling the effect of this igneous rock, we provide useful references for safety and high efficiency mining in coal mines under special geological conditions.
基金Supported by the China National Science and Technology Major Project(2016ZX05014)
文摘Carbonate reservoirs in China have the characteristics of diversified accumulation pattern, complex structure and varying reservoir conditions. Concerning these characteristics, this article tracks the technical breakthroughs and related practices since the 1950 s, summarizes the developed theory and technologies of carbonate reservoir development, analyzes their adaptability and problems, and proposes their development trend. The following theory and technologies have come into being:(1) carbonate reservoir formation mechanisms and compound flow mechanisms in complex medium;(2) reservoir identification and description technologies based on geophysics and discrete fracture-vuggy modeling method;(3) well testing analysis technology and numerical simulation method of coupling free flow and porous media flow;(4) enhanced oil recovery techniques for nitrogen single well huff and puff, and water flooding development techniques with well pattern design in spatial structure, changed intensity water injection, water plugging and channel blocking as the core;(5) drilling and completion techniques, acid fracturing techniques and its production increasing techniques. To realize the efficient development of carbonate oil and gas reservoirs, researches in four aspects need to be done:(1) complex reservoir description technology with higher accuracy;(2) various enhanced oil recovery techniques;(3) improving the drilling method and acid fracturing method for ultra-deep carbonate reservoir and significantly cutting engineering cost;(4) strengthening the technological integration of information, big data, cloud computation, and artificial intelligence in oilfield development to realize the smart development of oilfield.
基金Supported by the Key Program for International S&T Cooperation Projects of China(No.2012DFG90290)the Non-Profit Research Foundation for Agriculture,China(No.201103039)+1 种基金the National Natural Science Foundation of China(Nos.41271259 and 412012433)the Research Fund of State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences(No.Y412201414)
文摘A four-year(2008–2011) field study was implemented in a major rice-growing region of China to better understand the effect of urea and controlled release fertilier(CRF, thermoplastic resin-coated urea in this study) on CH4 emission from paddy fields. Over the four years, the average CH4 emission during the rice growing seasons was 76.9, 65.8 and 64.9 kg CH4ha-1in treatments CK(zero N), U(urea) and C(CRF), respectively. Urea and CRF significantly reduced CH4 emission by 14.4% and 15.6%, and increased average rice grain yield by 25.8% and 19.7%(P < 0.05), respectively, compared with treatment CK. Flooding duration would affect CRF's effect on CH4 emission from paddy fields. Under normal aeration conditions, CH4 emission tended to be 3.9%–15.2% lower in treatment C than in treatment U from 2009 to 2011, while it tended to be 4.2% higher under delayed aeration conditions in 2008. The findings suggest that mid-season aeration(MSA) starting on D30(30 days after rice transplanting), just like the local practice, would optimize the CRF's effect on CH4 emission from rice fields in China. Over the four years, average rice yield did not differ between treatments U and C, and tended to be 5% lower in treatment C than in treatment U.
文摘Application of enhanced oil recovery methods in Kazakhstan has been ongoing for decades alongside the continued discovery of new oil and gas fields in the Pre-Caspian Basin.The objective of this review is to provide an overview of the hydrocarbon reserves and production,and the status of the petroleum industry in Kazakhstan,with a focus on the EOR methods and projects being applied to recover those reserves.A summary of the specific EOR methods in use was prepared,and existing enhanced recovery projects in Kazakhstan were reviewed and their successes and challenges were investigated.The performance of these projects in the context of EOR performance indicators such as capillary number and mobility ratio,as well as operational and environmental issues,were examined.Recommendations for current and potential applications of EOR in Kazakhstan were also discussed.The widespread application of thermal EOR methods,in use for decades in Kazakhstan’s older fields,was found to be successful,with very favorable impacts on mobility ratio from the addition of thermal energy to the reservoirs.Miscible EOR methods in Kazakhstan have had more limited success,with some significant challenges due to high concentration of hydrogen sulfide in the injected gas.Polymer injection started in the late 1960s,achieving good results.A recent polymer injection pilot project has shown some promise,with a favorable impact on mobility ratio and oil production,although the project has not yet been expanded beyond two polymer injectors.These results indicate the huge potential of existing and future EOR projects.This review is the first compilation of Kazakhstan’s existing oil and gas reserves,production,and EOR project performance,and should be seen as a guide to the existing applications of EOR methods in Kazakhstan.