Based on the iterative bit-filling procedure, a computationally efficient bit and power allocation algorithm is presented. The algorithm improves the conventional bit-filling algorithms by maintaining only a subset of...Based on the iterative bit-filling procedure, a computationally efficient bit and power allocation algorithm is presented. The algorithm improves the conventional bit-filling algorithms by maintaining only a subset of subcarriers for computation in each iteration, which reduces the complexity without any performance degradation. Moreover, a modified algorithm with even lower complexity is developed, and equal power allocation is introduced as an initial allocation to accelerate its convergence. Simulation results show that the modified algorithm achieves a considerable complexity reduction while causing only a minor drop in performance.展开更多
An adaptive joint source channel bit allocation method for video communications over error-prone channel is proposed.To protect the bit-streams from the channel bit errors,the rate compatible punctured convolution(RCP...An adaptive joint source channel bit allocation method for video communications over error-prone channel is proposed.To protect the bit-streams from the channel bit errors,the rate compatible punctured convolution(RCPC)code is used to produce coding rates varying from 4/5 to 1/2 using the same encoder and the Viterbi decoder.An expected end-to-end distortion model was presented to estimate the distortion introduced in compressed source coding due to quantization and channel bit errors jointly.Based on the proposed end-to-end distortion model,an adaptive joint source-channel bit allocation method was proposed under time-varying error-prone channel conditions.Simulated results show that the proposed methods could utilize the available channel capacity more efficiently and achieve better video quality than the other fixed coding-based bit allocation methods when transmitting over error-prone channels.展开更多
Asymmetric stereoscopic video coding can take advantage of binocular suppression in human vision by representing one of the two views in lower quality.This paper proposes a bit allocation strategy for asymmetric stere...Asymmetric stereoscopic video coding can take advantage of binocular suppression in human vision by representing one of the two views in lower quality.This paper proposes a bit allocation strategy for asymmetric stereoscopic video coding.In order to improve the accuracy of bit allocation and rate control in the left view,a proportionalintegral-derivative controller is adopted.Meanwhile,to control the quality fluctuation between consecutive frames of the left view,a quality controller is adopted.Besides,a fuzzy controller is proposed to control the variation in quality between the left and right views by comparing the PSNR disparity of two views with a fixed threshold,which is used to quantize the binocular psycho-visual redundancy and adjust the quantization parameter (QP) of the right view correspondingly.The proposed algorithm has been implemented in H.264/AVC video codec,and the experimental results show its effectiveness in rate control while keeping a good quality for the left view,and fewer bits are allocated for the right view so that the overall bit rate is saved by 7.2% at most without the loss of subjective visual quality for stereoscopic video.展开更多
Current multi-view video coding (MVC) reference model in joint video team (JVT) does not provide efficient rate control schemes. This paper presents a rate control algorithm for MVC by improving the quadratic rate...Current multi-view video coding (MVC) reference model in joint video team (JVT) does not provide efficient rate control schemes. This paper presents a rate control algorithm for MVC by improving the quadratic rate-distortion (R-D) model. We reasonably allocate bit-rate among views based on the correlation analysisl The proposed algorithm consists of three levels to control the rate bits more accurately, of which the frame layer allocates bits according to the frame complexity and the temporal activity. Extensive experiments show that the proposed algorithm can control the bit rate efficiently.展开更多
For two-way video communications over wireless channels using the automatic repeat request (ARQ) retransmission scheme, TMN8 rate control scheme is not effective in minimizing the number of frames skipped and cannot g...For two-way video communications over wireless channels using the automatic repeat request (ARQ) retransmission scheme, TMN8 rate control scheme is not effective in minimizing the number of frames skipped and cannot guarantee video quality during the retransmissions of error packets. This paper presents a joint source channel bit allocation scheme that allocates target bits according to encoder buffer fullness and estimation of channel condition by retransmission information. The results obtained from implementing our scheme in H.263+coder over wireless channel model show that our proposed scheme encodes the video sequences with lower and steadier buffer delay, fewer frames skipped and higher average PSNR compared to TMN8.展开更多
An efficient bit rate allocation algorithm for video sequence transmission in motion JPEG2000 is presented. In many cases,the moving portions of video are often the interested regions. Based on tile encoding of JPEG20...An efficient bit rate allocation algorithm for video sequence transmission in motion JPEG2000 is presented. In many cases,the moving portions of video are often the interested regions. Based on tile encoding of JPEG2000,the important regions are discerned by two parameters. One is the complexity of a tile;the other is the motion activity of a tile. Thus an adaptive rate-allocation is re-alized in a lower complexity and the perceptive quality of a frame is improved. Experimental results show the effectiveness of this algorithm.展开更多
In this paper, we propose optimum and sub-optimum resource allocation and opportunistic scheduling solutions for orthogonal frequency division multiple access (OFDMA)-based multicellular systems. The applicability, ...In this paper, we propose optimum and sub-optimum resource allocation and opportunistic scheduling solutions for orthogonal frequency division multiple access (OFDMA)-based multicellular systems. The applicability, complexity, and performance of the proposed algorithms are analyzed and numerically evaluated. In the initial setup, the fractional frequency reuse (FFR) technique for inter-cell interference cancellation is applied to classify the users into two groups, namely interior and exterior users. Adaptive modulation is then employed according to the channel state information (CSI) of each user to meet the symbol error rate (SER) requirement. There then, we develop subcarrier-and-bit allocation method, which maximizes the total system throughput subject to the constraints that each user has a minimum data rate requirement. The algorithm to achieve the optimum solution requires high computational complexity which hinders it from practicability. Toward this suboptimum method with the reduced to the order of O(NIO, the total number of subcarriers end, we complexity propose a extensively where N and K denote and users, respectively. Numerical results show that the proposed algorithm approaches the optimum solution, yet it enjoys the features of simplicity, dynamic cell configuration, adaptive subearrier-and-bit allocation, and spectral efficiency.展开更多
In this paper, we propose a parameter allocation scheme in a parallel array bistable stochastic resonance-based communication system(P-BSR-CS) to improve the performance of weak binary pulse amplitude modulated(BPAM) ...In this paper, we propose a parameter allocation scheme in a parallel array bistable stochastic resonance-based communication system(P-BSR-CS) to improve the performance of weak binary pulse amplitude modulated(BPAM) signal transmissions. The optimal parameter allocation policy of the P-BSR-CS is provided to minimize the bit error rate(BER)and maximize the channel capacity(CC) under the adiabatic approximation condition. On this basis, we further derive the best parameter selection theorem in realistic communication scenarios via variable transformation. Specifically, the P-BSR structure design not only brings the robustness of parameter selection optimization, where the optimal parameter pair is not fixed but variable in quite a wide range, but also produces outstanding system performance. Theoretical analysis and simulation results indicate that in the P-BSR-CS the proposed parameter allocation scheme yields considerable performance improvement, particularly in very low signal-to-noise ratio(SNR) environments.展开更多
To improve the error performance and the resource utilization of cooperative systems, the optimum resource allocation, i.e., power allocation and partner choice, for an adaptive decode-and-forward (DF) cooperative d...To improve the error performance and the resource utilization of cooperative systems, the optimum resource allocation, i.e., power allocation and partner choice, for an adaptive decode-and-forward (DF) cooperative diversity system based on quadrature modulation is investigated. The closed-form expression of the bit error rate (BER) system performance is derived and an optimal power allocation (OPA) algorithm is proposed to optimize the power allocation between the local and relayed signals under the minimum BER criterion. Based on the OPA algorithm, a partner choice strategy is proposed to determine the partner locations specified by various cooperation gains. Simulation results show that the proposed resource optimization algorithms are superior to the unoptimized algorithms by significantly reducing the BER and improving the cooperative gain, which is useful to simplify the practical partner choice process.展开更多
Two Inter-cell Interference (ICI) management algorithms: Primary Interference Balancing (PIB) algorithm and Interfering Bits Loading Avoidance (IBLA) algorithm are proposed for canceling the ICI effects which the exis...Two Inter-cell Interference (ICI) management algorithms: Primary Interference Balancing (PIB) algorithm and Interfering Bits Loading Avoidance (IBLA) algorithm are proposed for canceling the ICI effects which the existing efficient radio resource allocation algorithms do not consider. The efficient radio resource allocation algorithm, i.e., Pre-assignment and Reassignment (PR) algorithm, obtains the lowest complexity and achieves good throughput performance in single cell OFDMA system. However, in multi-cell multi-sector OFDMA networks, PR algorithm is not applicable because it does not take ICI into consideration. The proposed PIB algorithm balances the number of loading bits for the desired User Equipment (UE) and the major interfering UE, as well as optimizes the SINR performance; meanwhile, IBLA avoids loading certain number of interfering bits which would make SINR unqualified. Simulations confirm the ICI management effectiveness and feasibility of both the proposals.展开更多
Cognitive radio (CR) is a promising technology deemed to improve the efficiency of spectrum utilization. This paper considers a spectrum underlay cognitive radio network, in which the cognitive users (CUs) are all...Cognitive radio (CR) is a promising technology deemed to improve the efficiency of spectrum utilization. This paper considers a spectrum underlay cognitive radio network, in which the cognitive users (CUs) are allowed to use the radio spectrum concurrently with the primary users (PUs) under the interference temperature constraint. We investigate the system performance by using the proposed joint channel and power allocation scheme under two transmit strategies to achieve higher data rates and performance diversity gain respectively. Simulation results show that the proposed scheme provides a significant improvement on the bit error rate (BER) performance and spectrum efficiency of a cognitive wireless network.展开更多
In order to minimize the transmitted power in the multi-user orthogonal frequency division multiplexing(OFDM) system, a scheme combining the improved particle swarm optimization(POS) algorithm with genetic algori...In order to minimize the transmitted power in the multi-user orthogonal frequency division multiplexing(OFDM) system, a scheme combining the improved particle swarm optimization(POS) algorithm with genetic algorithm(GA) is proposed to optimize the sub-carriers and bits allocation. In the algorithm, a random velocity between the maximum and minimum particle velocity is used as the updating velocity instead of maximum or minimum velocity when the updated particle velocity is higher than the maximum particle velocity or lower than the minimum particle velocity. Then, the convergence population is used as the initial population of the genetic algorithm to optimize the subcarriers and bits allocation further. Simulation results show that the transmitted power of the proposed algorithm is about 2 d B to 10 d B lower than that of the genetic algorithm, particle swarm optimization algorithm, and Zhang's algorithm.展开更多
The energy efficiency(EE) of distributed antenna system with quality of service(Qo S) requirement is investigated over composite Rayleigh fading channel,where the shadow fading,path loss and Rayleigh fading are all co...The energy efficiency(EE) of distributed antenna system with quality of service(Qo S) requirement is investigated over composite Rayleigh fading channel,where the shadow fading,path loss and Rayleigh fading are all considered. Our aim is to maximize the EE which is defined as the ratio of the transmission rate to the total consumed power subject to the maximum transmit power of each remote antenna constraint and Qo S(target BER) requirement. According to the definition of EE and using the upper bound of average EE,the optimized objective function is provided. Based on this,utilizing Karush-KuhnTucker conditions and numerical calculation,a suboptimal energy efficient power allocation(PA) scheme is developed,and the closedform expression of PA coefficients is derived. The scheme may obtain the EE performance close to the existing optimal scheme. Moreover,it has relatively lower complexity than the existing scheme because only the statistic channel information and less iteration are required. Simulation results show the presented scheme is valid and can meet the target BER requirement,and the EE can be increased as target BER requirement decreases.展开更多
An efficient adaptive group of pictures (GOP)-Ievel bit allocation algorithm was developed based on reverse dynamic programming (RDP). The algorithm gives the initial delay and sequence distortion curve with just ...An efficient adaptive group of pictures (GOP)-Ievel bit allocation algorithm was developed based on reverse dynamic programming (RDP). The algorithm gives the initial delay and sequence distortion curve with just one iteration of the algorithm. A simple GOP-level rate and distortion model was then developed for two-level constant quality rate control. The initial delay values and the corresponding optimal GOP-level bit allocation scheme can be obtained for video streaming along with the proper initial delay for various distortion tolerance levels. Simulations show that the algorithm provides an efficient solution for delay and buffer constrained GOP-level rate control for video streaming.展开更多
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2006AA01Z263)the National Natural Science Foundation of China (No60496311)
文摘Based on the iterative bit-filling procedure, a computationally efficient bit and power allocation algorithm is presented. The algorithm improves the conventional bit-filling algorithms by maintaining only a subset of subcarriers for computation in each iteration, which reduces the complexity without any performance degradation. Moreover, a modified algorithm with even lower complexity is developed, and equal power allocation is introduced as an initial allocation to accelerate its convergence. Simulation results show that the modified algorithm achieves a considerable complexity reduction while causing only a minor drop in performance.
基金National High-Tech Research and Development Plan of China(No.2003AA1Z2130)Science and Technology Project of Zhejiang Province,China(No.2006C11200)
文摘An adaptive joint source channel bit allocation method for video communications over error-prone channel is proposed.To protect the bit-streams from the channel bit errors,the rate compatible punctured convolution(RCPC)code is used to produce coding rates varying from 4/5 to 1/2 using the same encoder and the Viterbi decoder.An expected end-to-end distortion model was presented to estimate the distortion introduced in compressed source coding due to quantization and channel bit errors jointly.Based on the proposed end-to-end distortion model,an adaptive joint source-channel bit allocation method was proposed under time-varying error-prone channel conditions.Simulated results show that the proposed methods could utilize the available channel capacity more efficiently and achieve better video quality than the other fixed coding-based bit allocation methods when transmitting over error-prone channels.
基金Supported by National Natural Science Foundation of China(No.60972054)National High Technology Research and Development Program of China("863"Program,No.2009AA011507)
文摘Asymmetric stereoscopic video coding can take advantage of binocular suppression in human vision by representing one of the two views in lower quality.This paper proposes a bit allocation strategy for asymmetric stereoscopic video coding.In order to improve the accuracy of bit allocation and rate control in the left view,a proportionalintegral-derivative controller is adopted.Meanwhile,to control the quality fluctuation between consecutive frames of the left view,a quality controller is adopted.Besides,a fuzzy controller is proposed to control the variation in quality between the left and right views by comparing the PSNR disparity of two views with a fixed threshold,which is used to quantize the binocular psycho-visual redundancy and adjust the quantization parameter (QP) of the right view correspondingly.The proposed algorithm has been implemented in H.264/AVC video codec,and the experimental results show its effectiveness in rate control while keeping a good quality for the left view,and fewer bits are allocated for the right view so that the overall bit rate is saved by 7.2% at most without the loss of subjective visual quality for stereoscopic video.
基金supported by the National Natural Science Foundation of China (Grant Nos.60832003,60672052,60902085,60972137)the Key Project of Shanghai Municipal Education Commission (Grant No.09ZZ90)+2 种基金the Natural Science Foundation of Shanghai(Grant No.09ZR1412500)the Innovation Foundation of Shanghai University (Grants Nos.10YZ09,SHUCX091061)the Shuguang Plan of Shanghai Education Development Foundation (Grant No.06SG43)
文摘Current multi-view video coding (MVC) reference model in joint video team (JVT) does not provide efficient rate control schemes. This paper presents a rate control algorithm for MVC by improving the quadratic rate-distortion (R-D) model. We reasonably allocate bit-rate among views based on the correlation analysisl The proposed algorithm consists of three levels to control the rate bits more accurately, of which the frame layer allocates bits according to the frame complexity and the temporal activity. Extensive experiments show that the proposed algorithm can control the bit rate efficiently.
文摘For two-way video communications over wireless channels using the automatic repeat request (ARQ) retransmission scheme, TMN8 rate control scheme is not effective in minimizing the number of frames skipped and cannot guarantee video quality during the retransmissions of error packets. This paper presents a joint source channel bit allocation scheme that allocates target bits according to encoder buffer fullness and estimation of channel condition by retransmission information. The results obtained from implementing our scheme in H.263+coder over wireless channel model show that our proposed scheme encodes the video sequences with lower and steadier buffer delay, fewer frames skipped and higher average PSNR compared to TMN8.
文摘An efficient bit rate allocation algorithm for video sequence transmission in motion JPEG2000 is presented. In many cases,the moving portions of video are often the interested regions. Based on tile encoding of JPEG2000,the important regions are discerned by two parameters. One is the complexity of a tile;the other is the motion activity of a tile. Thus an adaptive rate-allocation is re-alized in a lower complexity and the perceptive quality of a frame is improved. Experimental results show the effectiveness of this algorithm.
文摘In this paper, we propose optimum and sub-optimum resource allocation and opportunistic scheduling solutions for orthogonal frequency division multiple access (OFDMA)-based multicellular systems. The applicability, complexity, and performance of the proposed algorithms are analyzed and numerically evaluated. In the initial setup, the fractional frequency reuse (FFR) technique for inter-cell interference cancellation is applied to classify the users into two groups, namely interior and exterior users. Adaptive modulation is then employed according to the channel state information (CSI) of each user to meet the symbol error rate (SER) requirement. There then, we develop subcarrier-and-bit allocation method, which maximizes the total system throughput subject to the constraints that each user has a minimum data rate requirement. The algorithm to achieve the optimum solution requires high computational complexity which hinders it from practicability. Toward this suboptimum method with the reduced to the order of O(NIO, the total number of subcarriers end, we complexity propose a extensively where N and K denote and users, respectively. Numerical results show that the proposed algorithm approaches the optimum solution, yet it enjoys the features of simplicity, dynamic cell configuration, adaptive subearrier-and-bit allocation, and spectral efficiency.
基金supported by the National Natural Science Foundation of China(Grant No.61179027)the Qinglan Project of Jiangsu Province of China(Grant No.QL06212006)the University Postgraduate Research and Innovation Project of Jiangsu Province(Grant Nos.KYLX15_0829,KYLX15_0831)
文摘In this paper, we propose a parameter allocation scheme in a parallel array bistable stochastic resonance-based communication system(P-BSR-CS) to improve the performance of weak binary pulse amplitude modulated(BPAM) signal transmissions. The optimal parameter allocation policy of the P-BSR-CS is provided to minimize the bit error rate(BER)and maximize the channel capacity(CC) under the adiabatic approximation condition. On this basis, we further derive the best parameter selection theorem in realistic communication scenarios via variable transformation. Specifically, the P-BSR structure design not only brings the robustness of parameter selection optimization, where the optimal parameter pair is not fixed but variable in quite a wide range, but also produces outstanding system performance. Theoretical analysis and simulation results indicate that in the P-BSR-CS the proposed parameter allocation scheme yields considerable performance improvement, particularly in very low signal-to-noise ratio(SNR) environments.
基金supported by the National High Technology Research and Development Program of China (863 program) (2006AA01Z270)the National Major Specialized Project of Science and Technology(2009ZX03003-003+4 种基金 2009ZX03003-004)the Fundamental Research Funds for the Central University (K50510010017)the Program for Changjiang Scholars and Innovative Research Team in University(IRT0852)the "111" Project (B08038)the Open Research Fund of State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University (RCS2008K003)
文摘To improve the error performance and the resource utilization of cooperative systems, the optimum resource allocation, i.e., power allocation and partner choice, for an adaptive decode-and-forward (DF) cooperative diversity system based on quadrature modulation is investigated. The closed-form expression of the bit error rate (BER) system performance is derived and an optimal power allocation (OPA) algorithm is proposed to optimize the power allocation between the local and relayed signals under the minimum BER criterion. Based on the OPA algorithm, a partner choice strategy is proposed to determine the partner locations specified by various cooperation gains. Simulation results show that the proposed resource optimization algorithms are superior to the unoptimized algorithms by significantly reducing the BER and improving the cooperative gain, which is useful to simplify the practical partner choice process.
基金supported by National Natural Science Foundation of China (NSFC) under Grant No. 60972075
文摘Two Inter-cell Interference (ICI) management algorithms: Primary Interference Balancing (PIB) algorithm and Interfering Bits Loading Avoidance (IBLA) algorithm are proposed for canceling the ICI effects which the existing efficient radio resource allocation algorithms do not consider. The efficient radio resource allocation algorithm, i.e., Pre-assignment and Reassignment (PR) algorithm, obtains the lowest complexity and achieves good throughput performance in single cell OFDMA system. However, in multi-cell multi-sector OFDMA networks, PR algorithm is not applicable because it does not take ICI into consideration. The proposed PIB algorithm balances the number of loading bits for the desired User Equipment (UE) and the major interfering UE, as well as optimizes the SINR performance; meanwhile, IBLA avoids loading certain number of interfering bits which would make SINR unqualified. Simulations confirm the ICI management effectiveness and feasibility of both the proposals.
基金Project supported by the Shanghai Pujiang Program (Grant No.08PJ14057)the Science and Technology Commission of Shanghai Municipality (Grant No.08220510900)+1 种基金the Innovation Foundation of Shanghai University (Grant No.SHUCX102153)the Cognitive Communications Consortium of the Worldwide Universities' Network
文摘Cognitive radio (CR) is a promising technology deemed to improve the efficiency of spectrum utilization. This paper considers a spectrum underlay cognitive radio network, in which the cognitive users (CUs) are allowed to use the radio spectrum concurrently with the primary users (PUs) under the interference temperature constraint. We investigate the system performance by using the proposed joint channel and power allocation scheme under two transmit strategies to achieve higher data rates and performance diversity gain respectively. Simulation results show that the proposed scheme provides a significant improvement on the bit error rate (BER) performance and spectrum efficiency of a cognitive wireless network.
基金supported by the National Natural Science Foundation of China under Grant No.61371112
文摘In order to minimize the transmitted power in the multi-user orthogonal frequency division multiplexing(OFDM) system, a scheme combining the improved particle swarm optimization(POS) algorithm with genetic algorithm(GA) is proposed to optimize the sub-carriers and bits allocation. In the algorithm, a random velocity between the maximum and minimum particle velocity is used as the updating velocity instead of maximum or minimum velocity when the updated particle velocity is higher than the maximum particle velocity or lower than the minimum particle velocity. Then, the convergence population is used as the initial population of the genetic algorithm to optimize the subcarriers and bits allocation further. Simulation results show that the transmitted power of the proposed algorithm is about 2 d B to 10 d B lower than that of the genetic algorithm, particle swarm optimization algorithm, and Zhang's algorithm.
基金partially supported by National Natural Science Foundation of China (61571225)Research Founding of Graduate Innovation Center in NUAA (kfjj20150410)+4 种基金the Fundamental Research Funds for the Central Universities (NS2015046,NS2016044)Shenzhen Strategic Emerging Industry Development Funds (JSGG20150331160845693)Qing Lan Project of JiangsuSix Talent Peaks Project in Jiangsu (DZXX-007)Open Research Fund of National Mobile Communications Research Laboratory of Southeast University (2012D17)
文摘The energy efficiency(EE) of distributed antenna system with quality of service(Qo S) requirement is investigated over composite Rayleigh fading channel,where the shadow fading,path loss and Rayleigh fading are all considered. Our aim is to maximize the EE which is defined as the ratio of the transmission rate to the total consumed power subject to the maximum transmit power of each remote antenna constraint and Qo S(target BER) requirement. According to the definition of EE and using the upper bound of average EE,the optimized objective function is provided. Based on this,utilizing Karush-KuhnTucker conditions and numerical calculation,a suboptimal energy efficient power allocation(PA) scheme is developed,and the closedform expression of PA coefficients is derived. The scheme may obtain the EE performance close to the existing optimal scheme. Moreover,it has relatively lower complexity than the existing scheme because only the statistic channel information and less iteration are required. Simulation results show the presented scheme is valid and can meet the target BER requirement,and the EE can be increased as target BER requirement decreases.
基金Supported by the National Natural Science Foundation of China (No.60572081)
文摘An efficient adaptive group of pictures (GOP)-Ievel bit allocation algorithm was developed based on reverse dynamic programming (RDP). The algorithm gives the initial delay and sequence distortion curve with just one iteration of the algorithm. A simple GOP-level rate and distortion model was then developed for two-level constant quality rate control. The initial delay values and the corresponding optimal GOP-level bit allocation scheme can be obtained for video streaming along with the proper initial delay for various distortion tolerance levels. Simulations show that the algorithm provides an efficient solution for delay and buffer constrained GOP-level rate control for video streaming.