An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in...An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in which both the access point(AP)and the vehicle are equipped with large antenna arrays and employ hybrid analog and digital beamforming structures to compensate the path loss,meanwhile compromise between hardware complexity and system performance.Based on the sparse scattering nature of the mmWave channel,the received signal at the AP is organized to a four-order tensor by the introduced novel frame structure.A CANDECOMP/PARAFAC(CP)decomposition-based method is proposed for time-varying channel parameter extraction,including angles of departure/arrival(AoDs/AoAs),Doppler shift,time delay and path gain.Then leveraging the estimates of channel parameters,a nonlinear weighted least-square problem is proposed to recover the location accurately,heading and velocity of vehicles.Simulation results show that the proposed methods are effective and efficient in time-varying channel estimation and vehicle sensing in mmWave MIMOOFDM V2I systems.展开更多
Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. Based on the PARAFAC model, NMF was extended for three-dimension data decompos...Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. Based on the PARAFAC model, NMF was extended for three-dimension data decomposition. The three-dimension nonnegative matrix factorization (NMF3) algorithm, which was concise and easy to implement, was given in this paper. The NMF3 algorithm implementation was based on elements but not on vectors. It could decompose a data array directly without unfolding, which was not similar to that the traditional algorithms do, It has been applied to the simulated data array decomposition and obtained reasonable results. It showed that NMF3 could be introduced for curve resolution in chemometrics.展开更多
An improved algorithm for multi-polarization reconstruction from compact polarimetry (CP) is proposed. According to two fundamental assumptions in compact polarimetric reconstruction, two improvements are proposed. ...An improved algorithm for multi-polarization reconstruction from compact polarimetry (CP) is proposed. According to two fundamental assumptions in compact polarimetric reconstruction, two improvements are proposed. Firstly, the four-component model-based decomposition algorithm is modified with a new volume scattering model. The decomposed helix scattering component is then used to deal with the non-reflection symmetry condition in compact polarimetric measurements. Using the decomposed power and considering the scattering mechanism of each component, an average relationship between copolarized and crosspolarized channels is developed over the original polarization state extrapolation model. E-SAR polarimetric data acquired over the Oberpfaffenhofen area and JPL/AIRSAR polarimetric data acquired over San Francisco are used for verification, and good reconstruction results are obtained, demonstrating the effectiveness of the proposed algorithm.展开更多
With the high dimensionality of data, the method of tensor decomposition has attracted much attention in the field of data research and analysis. The tensor decomposition is well reflected in the study of high-dimensi...With the high dimensionality of data, the method of tensor decomposition has attracted much attention in the field of data research and analysis. The tensor decomposition is well reflected in the study of high-dimensional data. The existing research uses the results of tensor decomposition to conduct community discovery. Based on the existing research, this paper presents a method to study community evolution using the results of tensor decomposition. The feature matrix obtained by the tensor decomposition algorithm was analyzed, and the real-time activity of the community with the feature matrix with time slice direction was studied to obtain the event process of community evolution. Experimental results in real data sets show that this method can well analyze dynamic events in the dataset and community evolution events.展开更多
Non-negative Tucker decomposition(NTD) has been developed as a crucial method for non-negative tensor data representation.However, NTD is essentially an unsupervised method and cannot take advantage of label informati...Non-negative Tucker decomposition(NTD) has been developed as a crucial method for non-negative tensor data representation.However, NTD is essentially an unsupervised method and cannot take advantage of label information. In this paper, we claim that the low-dimensional representation extracted by NTD can be treated as the predicted soft-clustering coefficient matrix and can therefore be learned jointly with label propagation in a unified framework. The proposed method can extract the physicallymeaningful and parts-based representation of tensor data in their natural form while fully exploring the potential ability of the given labels with a nearest neighbors graph. In addition, an efficient accelerated proximal gradient(APG) algorithm is developed to solve the optimization problem. Finally, the experimental results on five benchmark image data sets for semi-supervised clustering and classification tasks demonstrate the superiority of this method over state-of-the-art methods.展开更多
文摘An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in which both the access point(AP)and the vehicle are equipped with large antenna arrays and employ hybrid analog and digital beamforming structures to compensate the path loss,meanwhile compromise between hardware complexity and system performance.Based on the sparse scattering nature of the mmWave channel,the received signal at the AP is organized to a four-order tensor by the introduced novel frame structure.A CANDECOMP/PARAFAC(CP)decomposition-based method is proposed for time-varying channel parameter extraction,including angles of departure/arrival(AoDs/AoAs),Doppler shift,time delay and path gain.Then leveraging the estimates of channel parameters,a nonlinear weighted least-square problem is proposed to recover the location accurately,heading and velocity of vehicles.Simulation results show that the proposed methods are effective and efficient in time-varying channel estimation and vehicle sensing in mmWave MIMOOFDM V2I systems.
文摘Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. Based on the PARAFAC model, NMF was extended for three-dimension data decomposition. The three-dimension nonnegative matrix factorization (NMF3) algorithm, which was concise and easy to implement, was given in this paper. The NMF3 algorithm implementation was based on elements but not on vectors. It could decompose a data array directly without unfolding, which was not similar to that the traditional algorithms do, It has been applied to the simulated data array decomposition and obtained reasonable results. It showed that NMF3 could be introduced for curve resolution in chemometrics.
基金supported by the National Natural Science Foundation of China(41171317)the State Key Program of the Natural Science Foundation of China(61132008)the Research Foundation of Tsinghua University
文摘An improved algorithm for multi-polarization reconstruction from compact polarimetry (CP) is proposed. According to two fundamental assumptions in compact polarimetric reconstruction, two improvements are proposed. Firstly, the four-component model-based decomposition algorithm is modified with a new volume scattering model. The decomposed helix scattering component is then used to deal with the non-reflection symmetry condition in compact polarimetric measurements. Using the decomposed power and considering the scattering mechanism of each component, an average relationship between copolarized and crosspolarized channels is developed over the original polarization state extrapolation model. E-SAR polarimetric data acquired over the Oberpfaffenhofen area and JPL/AIRSAR polarimetric data acquired over San Francisco are used for verification, and good reconstruction results are obtained, demonstrating the effectiveness of the proposed algorithm.
文摘With the high dimensionality of data, the method of tensor decomposition has attracted much attention in the field of data research and analysis. The tensor decomposition is well reflected in the study of high-dimensional data. The existing research uses the results of tensor decomposition to conduct community discovery. Based on the existing research, this paper presents a method to study community evolution using the results of tensor decomposition. The feature matrix obtained by the tensor decomposition algorithm was analyzed, and the real-time activity of the community with the feature matrix with time slice direction was studied to obtain the event process of community evolution. Experimental results in real data sets show that this method can well analyze dynamic events in the dataset and community evolution events.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.62073087,U191140003,6197309 and 61973090)the Key-Area Research and Development Program of Guangdong Province(Grant Nos.2019B010154002 and 2019B010118001)。
文摘Non-negative Tucker decomposition(NTD) has been developed as a crucial method for non-negative tensor data representation.However, NTD is essentially an unsupervised method and cannot take advantage of label information. In this paper, we claim that the low-dimensional representation extracted by NTD can be treated as the predicted soft-clustering coefficient matrix and can therefore be learned jointly with label propagation in a unified framework. The proposed method can extract the physicallymeaningful and parts-based representation of tensor data in their natural form while fully exploring the potential ability of the given labels with a nearest neighbors graph. In addition, an efficient accelerated proximal gradient(APG) algorithm is developed to solve the optimization problem. Finally, the experimental results on five benchmark image data sets for semi-supervised clustering and classification tasks demonstrate the superiority of this method over state-of-the-art methods.