期刊文献+
共找到367篇文章
< 1 2 19 >
每页显示 20 50 100
Khler Manifolds with Almost Non-negative Ricci Curvature
1
作者 Yuguang ZHANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2007年第4期421-428,共8页
Compact Kǎhler manifolds with semi-positive Ricci curvature have been inves-tigated by various authors. From Peternell's work, if M is a compact Kǎhler n-manifold with semi-positive Ricci curvature and finite funda... Compact Kǎhler manifolds with semi-positive Ricci curvature have been inves-tigated by various authors. From Peternell's work, if M is a compact Kǎhler n-manifold with semi-positive Ricci curvature and finite fundamental group, then the universal cover has a decomposition M≌X1 χ …x Xm, where Xj is a Calabi-Yau manifold, or a hy-perKǎhler manifold, or Xj satisfies H^0(Xj,Ωp) = 0. The purpose of this paper is to generalize this theorem to almost non-negative Ricci curvature Kǎhler manifolds by us-ing the Gromov-Hansdorff convergence. Let M be a compact complex n-manifold with non-vanishing Euler number. If for any ε〉0, there exists a Kǎhler structure (Jε,gε) on M such that the volume Volgε(M) 〈 V, the sectional curvature |K(gε)|〈 A^2, and the Ricci-tensor Ric(gε)〉-εgε, where V and A are two constants independent of ε. Then the fundamental group of M is finite, and M is diffeomorphic to a complex manifold X such that the universal covering of X has a decomposition, X≌X1 x … x Xs, where Xi is a Calabi-Yau manifold, or a hyperKǎhler manifold, or Xi satisfies H^0(Xi, Ωp)={0}, p 〉 0. 展开更多
关键词 Gromov-Hausdorff ricci curvature Kahler metric
原文传递
ON A NEW DEFINITION OF RICCI CURVATURE ON ALEXANDROV SPACES 被引量:3
2
作者 张会春 朱熹平 《Acta Mathematica Scientia》 SCIE CSCD 2010年第6期1949-1974,共26页
Recently, in [49], a new definition for lower Ricci curvature bounds on Alexandrov spaces was introduced by the authors. In this article, we extend our research to summarize the geometric and analytic results under th... Recently, in [49], a new definition for lower Ricci curvature bounds on Alexandrov spaces was introduced by the authors. In this article, we extend our research to summarize the geometric and analytic results under this Ricci condition. In particular, two new results, the rigidity result of Bishop-Gromov volume comparison and Lipschitz continuity of heat kernel, are obtained. 展开更多
关键词 Alexandrov spaces ricci curvature volume comparison heat kernel
下载PDF
ON SHRINKING GRADIENT RICCI SOLITONS WITH POSITIVE RICCI CURVATURE AND SMALL WEYL TENSOR 被引量:1
3
作者 Zhuhong ZHANG Chih-Wei CHEN 《Acta Mathematica Scientia》 SCIE CSCD 2019年第5期1235-1239,共5页
We show that closed shrinking gradient Ricci solitons with positive Ricci curvature and sufficiently pinched Weyl tensor are Einstein. When Weyl tensor vanishes, this has been proved before but our proof here is much ... We show that closed shrinking gradient Ricci solitons with positive Ricci curvature and sufficiently pinched Weyl tensor are Einstein. When Weyl tensor vanishes, this has been proved before but our proof here is much simpler. 展开更多
关键词 SHRINKING GRADIENT ricci SOLITONS POSITIVE ricci curvature pinched WEYL tensor
下载PDF
Open Manifolds with Nonnegative Ricci Curvature and Large Volume Growth 被引量:2
4
作者 徐森林 杨芳云 王作勤 《Northeastern Mathematical Journal》 CSCD 2003年第2期155-160,共6页
In this paper, we prove that if M is an open manifold with nonnegativeRicci curvature and large volume growth, positive critical radius, then sup Cp = ∞.As an application, we give a theorem which supports strongly Pe... In this paper, we prove that if M is an open manifold with nonnegativeRicci curvature and large volume growth, positive critical radius, then sup Cp = ∞.As an application, we give a theorem which supports strongly Petersen's conjecture. 展开更多
关键词 open manifold nonnegative ricci curvature critical radius volume growth
下载PDF
Navigation Finsler metrics on a gradient Ricci soliton
5
作者 LI Ying MO Xiao-huan WANG Xiao-yang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第2期266-275,共10页
In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to b... In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality.Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type.As its application,we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton. 展开更多
关键词 gradient ricci soliton navigation Finsler metric isotropic S-curvature ricci curvature Gaussian shrinking soliton
下载PDF
A DIFFERENTIABLE SPHERE THEOREM WITH PINCHING INTEGRAL RICCI CURVATURE
6
作者 王培合 沈纯理 《Acta Mathematica Scientia》 SCIE CSCD 2011年第1期321-330,共10页
In this article, we introduce the Hausdorff convergence to derive a differentiable sphere theorem which shows an interesting rigidity phenomenon on some kind of manifolds.
关键词 k-th ricci curvature Hausdorff convergence differentiable sphere theorem harmonic coordinate integral ricci curvature
下载PDF
Ricci Curvature of Certain Submanifolds in Kenmotsu Space Forms
7
作者 Liu JIAN-YU LIu XI-MIN 《Communications in Mathematical Research》 CSCD 2009年第4期340-348,共9页
In this paper, we obtain some sharp inequalities between the Ricci cur- vature and the squared mean curvature for bi-slant and semi-slant submanifolds in Kenmotsu space forms. Estimates of the scalar curvature and the... In this paper, we obtain some sharp inequalities between the Ricci cur- vature and the squared mean curvature for bi-slant and semi-slant submanifolds in Kenmotsu space forms. Estimates of the scalar curvature and the k-Ricci curvature, in terms of the squared mean curvature, are also proved respectively. 展开更多
关键词 Kenmotsu space form ricci curvature k-ricci curvature bi-slant sub-manifold semi-slant submanifold
下载PDF
梯度Ricci-Yamabe孤立子的一些刚性结果
8
作者 李云超 刘建成 《吉林大学学报(理学版)》 CAS 北大核心 2024年第3期586-592,共7页
应用散度定理及一些Riemann流形上的重要不等式,并结合几何分析的方法研究紧致梯度Ricci-Yamabe孤立子的刚性问题,在适当的条件下得到非平凡紧致梯度Ricci-Yamabe孤立子与欧氏球面等距的刚性结果.此外,在数量曲率为正的假设下,证明满足L... 应用散度定理及一些Riemann流形上的重要不等式,并结合几何分析的方法研究紧致梯度Ricci-Yamabe孤立子的刚性问题,在适当的条件下得到非平凡紧致梯度Ricci-Yamabe孤立子与欧氏球面等距的刚性结果.此外,在数量曲率为正的假设下,证明满足L^(n/2)-积分拼挤条件的n(4≤n≤6)维紧致梯度收缩Ricci-Yamabe孤立子一定是Einstein流形. 展开更多
关键词 梯度ricci-Yamabe孤立子 刚性 积分拼挤条件 数量曲率
下载PDF
Complete Open Manifolds with Nonnegative Ricci Curvature
9
作者 徐森林 薛琼 《Northeastern Mathematical Journal》 CSCD 2006年第2期149-154,共6页
In this paper, we study complete open manifolds with nonnegative Ricci curvature and injectivity radius bounded from below. We find that this kind of manifolds are diffeomorphic to a Euclidean space when certain dista... In this paper, we study complete open manifolds with nonnegative Ricci curvature and injectivity radius bounded from below. We find that this kind of manifolds are diffeomorphic to a Euclidean space when certain distance functions satisfy a reasonable condition. 展开更多
关键词 open manifold nonnegative ricci curvature injectivity radius excess function diameter of ends Kth-ricci curvature
下载PDF
The Manifolds with Ricci Curvature Decay to Zero
10
作者 Huashui Zhan 《Advances in Pure Mathematics》 2012年第1期36-38,共3页
The paper quotes the concept of Ricci curvature decay to zero. Base on this new concept, by modifying the proof of the canonical Cheeger-Gromoll Splitting Theorem, the paper proves that for a complete non-compact Riem... The paper quotes the concept of Ricci curvature decay to zero. Base on this new concept, by modifying the proof of the canonical Cheeger-Gromoll Splitting Theorem, the paper proves that for a complete non-compact Riemannian manifold M with Ricci curvature decay to zero, if there is a line in M, then the isometrically splitting M = R × N is true. 展开更多
关键词 Cheeger-Gromoll Theorem Busemann Function Complete RIEMANNIAN MANIFOLD ricci curvature DECAY to ZERO
下载PDF
Small Excess and the Topology of Open Manifolds with Ricci Curvature Negatively Lower Bounded
11
作者 XU Sen-lin HU Zi-sheng 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第1期16-21,共6页
In this paper, we study the relation between the excess of open manifolds and their topology by using the methods of comparison geometry. We prove that a complete open Riemmannian manifold with Ricci curvature negativ... In this paper, we study the relation between the excess of open manifolds and their topology by using the methods of comparison geometry. We prove that a complete open Riemmannian manifold with Ricci curvature negatively lower bounded is of finite topological type provided that the conjugate radius is bounded from below by a positive constant and its Excess is bounded by some function of its conjugate radius, which improves some results in [4]. 展开更多
关键词 open manifolds ricci curvature conjugate radius critical point Excess function triangle comparison theorems
下载PDF
Manifolds with Bakry-Emery Ricci Curvature Bounded Below
12
作者 Issa Allassane Kaboye Bazanfaré Mahaman 《Advances in Pure Mathematics》 2016年第11期754-764,共11页
In this paper we show that, under some conditions, if M is a manifold with Bakry-émery Ricci curvature bounded below and with bounded potential function then M is compact. We also establish a volume comparison th... In this paper we show that, under some conditions, if M is a manifold with Bakry-émery Ricci curvature bounded below and with bounded potential function then M is compact. We also establish a volume comparison theorem for manifolds with nonnegative Bakry-émery Ricci curvature which allows us to prove a topolological rigidity theorem for such manifolds. 展开更多
关键词 Bakry Émery ricci curvature Myers Theorem Volume Comparison Theorem Topological Rigidity Theorem
下载PDF
M-Eigenvalues of the Riemann Curvature Tensor of Conformally Flat Manifolds 被引量:1
13
作者 Yun Miao Liqun Qi Yimin Wei 《Communications in Mathematical Research》 CSCD 2020年第3期336-353,共18页
We investigate the M-eigenvalues of the Riemann curvature tensor in the higher dimensional conformally flat manifold.The expressions of Meigenvalues and M-eigenvectors are presented in this paper.As a special case,M-e... We investigate the M-eigenvalues of the Riemann curvature tensor in the higher dimensional conformally flat manifold.The expressions of Meigenvalues and M-eigenvectors are presented in this paper.As a special case,M-eigenvalues of conformal flat Einstein manifold have also been discussed,and the conformal the invariance of M-eigentriple has been found.We also reveal the relationship between M-eigenvalue and sectional curvature of a Riemannian manifold.We prove that the M-eigenvalue can determine the Riemann curvature tensor uniquely.We also give an example to compute the Meigentriple of de Sitter spacetime which is well-known in general relativity. 展开更多
关键词 M-eigenvalue Riemann curvature tensor ricci tensor conformal invariant canonical form
下载PDF
COMPLETE HYPERSURFACES WITH CONSTANT MEAN CURVATURE AND FINITE INDEX IN HYPERBOLIC SPACES 被引量:1
14
作者 邓勤涛 《Acta Mathematica Scientia》 SCIE CSCD 2011年第1期353-360,共8页
In this article, we prove that any complete finite index hypersurface in the hyperbolic space H4(-1)(H5(-1)) with constant mean curvature H satisfying H2 6634 (H2 114785 respectively) must be compact. Speciall... In this article, we prove that any complete finite index hypersurface in the hyperbolic space H4(-1)(H5(-1)) with constant mean curvature H satisfying H2 6634 (H2 114785 respectively) must be compact. Specially, we verify that any complete and stable hypersurface in the hyperbolic space H4(-1) (resp. H5(-1)) with constant mean curvature H satisfying H2 6643 (resp. H2 114785 ) must be compact. It shows that there is no manifold satisfying the conditions of some theorems in [7, 9]. 展开更多
关键词 k-weighted bi-ricci curvature finite index constant mean curvature
下载PDF
Quasi-con form ally Flat Manifolds with Constant Scalar Curvature
15
作者 宋鸿藻 吴报强 贺慧霞 《Chinese Quarterly Journal of Mathematics》 CSCD 1998年第4期1-6, ,共6页
Goldberg and Wu studied a conformally flat manifold M with constant scalar curvature. When the Ricci curvature of M is of bounded below or positive,the conditions of M becoming a constant curvature manifold are obtain... Goldberg and Wu studied a conformally flat manifold M with constant scalar curvature. When the Ricci curvature of M is of bounded below or positive,the conditions of M becoming a constant curvature manifold are obtained. In this paper,we consider conharmonically flat manifolds and quasi conformally flat manifolds with constant saclar curvature. The corresponding results are generalized. 展开更多
关键词 quasi conformally flat conharmonically flat scalar curvature ricci curvature
下载PDF
射影Ricci曲率及其射影不变性 被引量:3
16
作者 程新跃 马小玉 沈玉玲 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第8期92-96,共5页
研究了芬斯勒几何中一类新的几何量,即射影Ricci曲率.刻划了两个射影等价的芬斯勒度量的射影Ricci曲率的关系.特别地,在一个给定体积形式的流形上,如果两个芬斯勒度量F和F是射影等价的,那么它们的射影Ricci曲率是相等的,即此时的射影Ri... 研究了芬斯勒几何中一类新的几何量,即射影Ricci曲率.刻划了两个射影等价的芬斯勒度量的射影Ricci曲率的关系.特别地,在一个给定体积形式的流形上,如果两个芬斯勒度量F和F是射影等价的,那么它们的射影Ricci曲率是相等的,即此时的射影Ricci曲率是射影不变量. 展开更多
关键词 芬斯勒度量 ricci曲率 S-曲率 射影ricci曲率 射影不变量
下载PDF
射影Ricci平坦的Kropina度量 被引量:3
17
作者 程新跃 马小玉 沈玉玲 《数学杂志》 北大核心 2017年第4期705-713,共9页
本文研究和刻画了射影Ricci平坦的Kropina度量.利用Kropina度量的S-曲率和Ricci曲率的公式,得到了Kropina度量的射影Ricci曲率公式.在此基础上得到了Kropina度量是射影Ricci平坦度量的充分必要条件.进一步,作为自然的应用,本文研究和刻... 本文研究和刻画了射影Ricci平坦的Kropina度量.利用Kropina度量的S-曲率和Ricci曲率的公式,得到了Kropina度量的射影Ricci曲率公式.在此基础上得到了Kropina度量是射影Ricci平坦度量的充分必要条件.进一步,作为自然的应用,本文研究和刻画了由一个黎曼度量和一个具有常数长度的Killing 1-形式定义的射影Ricci平坦的Kropina度量,也刻画了具有迷向S-曲率的射影Ricci平坦的Kropina度量.在这种情形下,Kropina度量是Ricci平坦度量. 展开更多
关键词 芬斯勒度量 Kropina度量 ricci曲率 S-曲率 射影ricci曲率
下载PDF
一类椭圆方程的梯度估计
18
作者 朱秋阳 张伟 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期161-168,共8页
通过计算与推导,得到了n维完备黎曼流形上椭圆方程Δ_(g)u+au^(q)(ln u)^(p)+bu=0正解的梯度估计,其不依赖于解的界和距离函数的拉普拉斯(Laplace)算子;将文献[1]中对正调和函数的梯度估计推广到更一般的情形;将文献[10]中对一类椭圆方... 通过计算与推导,得到了n维完备黎曼流形上椭圆方程Δ_(g)u+au^(q)(ln u)^(p)+bu=0正解的梯度估计,其不依赖于解的界和距离函数的拉普拉斯(Laplace)算子;将文献[1]中对正调和函数的梯度估计推广到更一般的情形;将文献[10]中对一类椭圆方程正解的梯度估计进行了拓展,得到了更具一般性的结果. 展开更多
关键词 椭圆方程 梯度估计 HARNACK不等式 ricci曲率 极值原理
下载PDF
黎曼流形上度量的Ricci流的一个定理 被引量:1
19
作者 宣满友 刘继志 蔡开仁 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2001年第2期162-165,共4页
利用Huisken的热流方法 ,推广了Hamilton的 3维Ricci流的著名结果 .证明了一个球面定理 :如果黎曼曲率张量的模长和它的数量曲率分量U的模长的比接近于 1,则M容许一个正的常曲率的度量 .
关键词 热流 球面定理 ricci张量 黎曼流形 黎曼曲率 指标置换
下载PDF
具有非负Ricci曲率和次大体积增长的完备流形(英文) 被引量:2
20
作者 薛琼 肖小峰 《数学杂志》 CSCD 北大核心 2012年第4期629-636,共8页
本文研究了具有非负Ricci曲率和次大体积增长的完备黎曼流形的拓扑结构问题.利用Toponogov型比较定理及临界点理论,获得了流形具有有限拓扑型的结果,推广了H.Zhan和Z.Shen的定理,并且还证明了该流形的基本群是有限生成的.
关键词 黎曼流形 ricci曲率 次大体积增长 有限拓扑型
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部