Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying som...Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.展开更多
This paper investigates the problem of collecting multidimensional data throughout time(i.e.,longitudinal studies)for the fundamental task of frequency estimation under Local Differential Privacy(LDP)guarantees.Contra...This paper investigates the problem of collecting multidimensional data throughout time(i.e.,longitudinal studies)for the fundamental task of frequency estimation under Local Differential Privacy(LDP)guarantees.Contrary to frequency estimation of a single attribute,the multidimensional aspect demands particular attention to the privacy budget.Besides,when collecting user statistics longitudinally,privacy progressively degrades.Indeed,the“multiple”settings in combination(i.e.,many attributes and several collections throughout time)impose several challenges,for which this paper proposes the first solution for frequency estimates under LDP.To tackle these issues,we extend the analysis of three state-of-the-art LDP protocols(Generalized Randomized Response–GRR,Optimized Unary Encoding–OUE,and Symmetric Unary Encoding–SUE)for both longitudinal and multidimensional data collections.While the known literature uses OUE and SUE for two rounds of sanitization(a.k.a.memoization),i.e.,L-OUE and L-SUE,respectively,we analytically and experimentally show that starting with OUE and then with SUE provides higher data utility(i.e.,L-OSUE).Also,for attributes with small domain sizes,we propose Longitudinal GRR(L-GRR),which provides higher utility than the other protocols based on unary encoding.Last,we also propose a new solution named Adaptive LDP for LOngitudinal and Multidimensional FREquency Estimates(ALLOMFREE),which randomly samples a single attribute to be sent with the whole privacy budget and adaptively selects the optimal protocol,i.e.,either L-GRR or L-OSUE.As shown in the results,ALLOMFREE consistently and considerably outperforms the state-of-the-art L-SUE and L-OUE protocols in the quality of the frequency estimates.展开更多
This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in...This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in a split block design with three maize varieties (IWCD2, 2009EVDT, and DMR-ESR-Yellow) and seven nitrogen (0, 30, 60, 90, 120, 150 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup>) rates. Findings showed that cob diameter and anthesis silking time (ASI) had intermediate heritability, ASI had high genetic advance, ASI and grain yield had high genotypic coefficient of variation (GCV), while traits with high phenotypic coefficient of variation (PCV) were plant height, ASI, grain yield, number of kernel per cob, number of kernel rows, ear length, and ear height. The PCV values were higher than GCV, indicating the influence of the environment in the studied traits. Nitrogen rates and variety significantly (p < 0.05) influenced grain yield production. Mean grain yields and economic parameter estimates increased with increasing nitrogen rates, with the 30 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup> plots exhibiting the lowest and highest grain yields of 1238 kg∙ha<sup>−</sup><sup>1</sup> and 2098 kg∙ha<sup>−</sup><sup>1</sup>, respectively. Variety and nitrogen effects on partial factor productivity (PFP<sub>N</sub>), agronomic efficiency (AEN), net returns (NR), value cost ratio (VCR) and marginal return (MR) indicated that these parameters were significantly affected (p < 0.05) by these factors. The highest PFP<sub>N</sub> (41.3 kg grain kg<sup>−</sup><sup>1</sup>∙N) and AEN (29.4 kg grain kg<sup>−</sup><sup>1</sup>∙N) were obtained in the 30 kg∙N∙ha<sup>−</sup><sup>1</sup> plots, while the highest VCR (2.8) and MR (SLL 1.8 SLL<sup>−</sup><sup>1</sup> spent on N) were obtained in the 180 kg∙N∙ha<sup>−</sup><sup>1</sup>. The significant influence of variety and nitrogen on traits suggests that increasing yields and maximizing profits require use of appropriate nitrogen fertilization and improved farming practices that could be exploited for increased productivity of maize.展开更多
We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to de...We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.展开更多
Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are d...Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.展开更多
Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating a...Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region,which can even improve the performance of hydrological modelling.This study evaluated the applicability of widely used five satellite-based precipitation products(Climate Hazards Group InfraRed Precipitation with Station(CHIRPS),China Meteorological Forcing Dataset(CMFD),Climate Prediction Center morphing method(CMORPH),Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR),and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis(TMPA))and a reanalysis precipitation dataset(ECMWF Reanalysis v5-Land Dataset(ERA5-Land))in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations.Based on this assessment,we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging(DBMA)approach,the expectation-maximization method,and the ordinary Kriging interpolation method.The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability,with an outstanding performance,as indicated by low root mean square error(RMSE=1.40 mm/d)and high Person's correlation coefficient(CC=0.67).Compared with the traditional simple model averaging(SMA)and individual product data,although the DBMA-fused precipitation data were slightly lower than the best precipitation product(CMFD),the overall performance of DBMA was more robust.The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final(IMERG-F)precipitation product,as well as hydrological simulations in the Ebinur Lake Basin,further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region.The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas,and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions.展开更多
We primarily provide several estimates for the heat kernel defined on the 2-dimensional simple random walk. Additionally, we offer an estimate for the heat kernel on high-dimensional random walks, demonstrating that t...We primarily provide several estimates for the heat kernel defined on the 2-dimensional simple random walk. Additionally, we offer an estimate for the heat kernel on high-dimensional random walks, demonstrating that the heat kernel in higher dimensions converges rapidly. We also compute the constants involved in the estimate for the 1-dimensional heat kernel. Furthermore, we discuss the general case of on-diagonal estimates for the heat kernel.展开更多
In this article,we first establish an asymptotically sharp result on the higher order Fréchet derivatives for bounded holomorphic mappings f(x)=f(0)+∞∑s=1Dskf(0)(x^(sk))/(sk)!:B_(X)→B_(Y),where B_X is the unit...In this article,we first establish an asymptotically sharp result on the higher order Fréchet derivatives for bounded holomorphic mappings f(x)=f(0)+∞∑s=1Dskf(0)(x^(sk))/(sk)!:B_(X)→B_(Y),where B_X is the unit ball of X.We next give a sharp result on the first order Fréchet derivative for bounded holomorphic mappings F(X)=F(0+)∞∑s=KD^(s)f(0)(x^(8)/s!):B_(X)→B_(Y),where B_(X)is the unit ball of X.The results that we derive include some results in several complex variables,and extend the classical result in one complex variable to several complex variables.展开更多
Background:Establishing an appropriate prognostic model for PCa is essential for its effective treatment.Glycolysis is a vital energy-harvesting mechanism for tumors.Developing a prognostic model for PCa based on glyc...Background:Establishing an appropriate prognostic model for PCa is essential for its effective treatment.Glycolysis is a vital energy-harvesting mechanism for tumors.Developing a prognostic model for PCa based on glycolysis-related genes is novel and has great potential.Methods:First,gene expression and clinical data of PCa patients were downloaded from The Cancer Genome Atlas(TCGA)and Gene Expression Omnibus(GEO),and glycolysis-related genes were obtained from the Molecular Signatures Database(MSigDB).Gene enrichment analysis was performed to verify that glycolysis functions were enriched in the genes we obtained,which were used in nonnegative matrix factorization(NMF)to identify clusters.The correlation between clusters and clinical features was discussed,and the differentially expressed genes(DEGs)between the two clusters were investigated.Based on the DEGs,we investigated the biological differences between clusters,including immune cell infiltration,mutation,tumor immune dysfunction and exclusion,immune function,and checkpoint genes.To establish the prognostic model,the genes were filtered based on univariable Cox regression,LASSO,and multivariable Cox regression.Kaplan–Meier analysis and receiver operating characteristic analysis validated the prognostic value of the model.A nomogram of the risk score calculated by the prognostic model and clinical characteristics was constructed to quantitatively estimate the survival probability for PCa patients in the clinical setting.Result:The genes obtained from MSigDB were enriched in glycolysis functions.Two clusters were identified by NMF analysis based on 272 glycolysis-related genes,and a prognostic model based on DEGs between the two clusters was finally established.The prognostic model consisted of LAMPS,SPRN,ATOH1,TANC1,ETV1,TDRD1,KLK14,MESP2,POSTN,CRIP2,NAT1,AKR7A3,PODXL,CARTPT,and PCDHGB2.All sample,training,and test cohorts from The Cancer Genome Atlas(TCGA)and the external validation cohort from GEO showed significant differences between the high-risk and low-risk groups.The area under the ROC curve showed great performance of this prognostic model.Conclusion:A prognostic model based on glycolysis-related genes was established,with great performance and potential significance to the clinical application.展开更多
In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators...In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method.展开更多
The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,th...The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.展开更多
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar...With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.展开更多
Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life s...Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life scenesseverely undermines the reliability of supervised learning methods in image stitching. Furthermore, existing deeplearning architectures designed for image stitching are often too bulky to be deployed on mobile and peripheralcomputing devices. To address these challenges, this study proposes a novel unsupervised image stitching methodbased on the YOLOv8 (You Only Look Once version 8) framework that introduces deep homography networksand attentionmechanisms. Themethodology is partitioned into three distinct stages. The initial stage combines theattention mechanism with a pooling pyramid model to enhance the detection and recognition of compact objectsin images, the task of the deep homography networks module is to estimate the global homography of the inputimages consideringmultiple viewpoints. The second stage involves preliminary stitching of the masks generated inthe initial stage and further enhancement through weighted computation to eliminate common stitching artifacts.The final stage is characterized by adaptive reconstruction and careful refinement of the initial stitching results.Comprehensive experiments acrossmultiple datasets are executed tometiculously assess the proposed model. Ourmethod’s Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) improved by 10.6%and 6%. These experimental results confirm the efficacy and utility of the presented model in this paper.展开更多
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
Data is humongous today because of the extensive use of World WideWeb, Social Media and Intelligent Systems. This data can be very important anduseful if it is harnessed carefully and correctly. Useful information can...Data is humongous today because of the extensive use of World WideWeb, Social Media and Intelligent Systems. This data can be very important anduseful if it is harnessed carefully and correctly. Useful information can beextracted from this massive data using the Data Mining process. The informationextracted can be used to make vital decisions in various industries. Clustering is avery popular Data Mining method which divides the data points into differentgroups such that all similar data points form a part of the same group. Clusteringmethods are of various types. Many parameters and indexes exist for the evaluationand comparison of these methods. In this paper, we have compared partitioningbased methods K-Means, Fuzzy C-Means (FCM), Partitioning AroundMedoids (PAM) and Clustering Large Application (CLARA) on secure perturbeddata. Comparison and identification has been done for the method which performsbetter for analyzing the data perturbed using Extended NMF on the basis of thevalues of various indexes like Dunn Index, Silhouette Index, Xie-Beni Indexand Davies-Bouldin Index.展开更多
Let?denote a smooth,bounded domain in R^(N)(N≥2).Suppose that g is a nondecreasing C^(1)positive function and assume that b(x)is continuous and nonnegative inΩ,and that it may be singular on■Ω.In this paper,we pro...Let?denote a smooth,bounded domain in R^(N)(N≥2).Suppose that g is a nondecreasing C^(1)positive function and assume that b(x)is continuous and nonnegative inΩ,and that it may be singular on■Ω.In this paper,we provide sufficient and necessary conditions on the existence of boundary blow-up solutions to the p-Laplacian problem△_(p)u=b(x)g(u)for x∈Ω,u(x)→+∞as dist(x,■Ω)→0.The estimates of such solutions are also investigated.Moreover,when b has strong singularity,the nonexistence of boundary blow-up(radial)solutions and infinitely many radial solutions are also considered.展开更多
Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Dopple...Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.展开更多
We show an example of a bounded potential on the half-line obtained as the image of an Inverse Transformation Operator of the Bessel singular potential of the Reduced Radial Schrödinger Equation, and show us ...We show an example of a bounded potential on the half-line obtained as the image of an Inverse Transformation Operator of the Bessel singular potential of the Reduced Radial Schrödinger Equation, and show us the Estimates of the A(α) amplitude.展开更多
Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is pro...Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.展开更多
Cone penetration testing (CPT) is a cost effective and popular tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic penetrometer into penetrable soils and recording con...Cone penetration testing (CPT) is a cost effective and popular tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic penetrometer into penetrable soils and recording cone bearing (q<sub>c</sub>), sleeve friction (f<sub>c</sub>) and dynamic pore pressure (u) with depth. The measured q<sub>c</sub>, f<sub>s</sub> and u values are utilized to estimate soil type and associated soil properties. A popular method to estimate soil type from CPT measurements is the Soil Behavior Type (SBT) chart. The SBT plots cone resistance vs friction ratio, R<sub>f</sub> [where: R<sub>f</sub> = (f<sub>s</sub>/q<sub>c</sub>)100%]. There are distortions in the CPT measurements which can result in erroneous SBT plots. Cone bearing measurements at a specific depth are blurred or averaged due to q<sub>c</sub> values being strongly influenced by soils within 10 to 30 cone diameters from the cone tip. The q<sub>c</sub>HMM algorithm was developed to address the q<sub>c</sub> blurring/averaging limitation. This paper describes the distortions which occur when obtaining sleeve friction measurements which can in association with q<sub>c</sub> blurring result in significant errors in the calculated R<sub>f</sub> values. This paper outlines a novel and highly effective algorithm for obtaining accurate sleeve friction and friction ratio estimates. The f<sub>c</sub> optimal filter estimation technique is referred to as the OSFE-IFM algorithm. The mathematical details of the OSFE-IFM algorithm are outlined in this paper along with the results from a challenging test bed simulation. The test bed simulation demonstrates that the OSFE-IFM algorithm derives accurate estimates of sleeve friction from measured values. Optimal estimates of cone bearing and sleeve friction result in accurate R<sub>f</sub> values and subsequent accurate estimates of soil behavior type.展开更多
基金supported by the National Key Research and Development Program of China(2020YFA0712900)the National Natural Science Foundation of China(12371093,12071197,12122102 and 12071431)+2 种基金the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the Fundamental Research Funds for the Central Universities(2233300008 and lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.
基金supported by the Agence Nationale de la Recherche(ANR)(contract“ANR-17-EURE-0002”)by the Region of Bourgogne Franche-ComtéCADRAN Projectsupported by the European Research Council(ERC)project HYPATIA under the European Union's Horizon 2020 research and innovation programme.Grant agreement n.835294。
文摘This paper investigates the problem of collecting multidimensional data throughout time(i.e.,longitudinal studies)for the fundamental task of frequency estimation under Local Differential Privacy(LDP)guarantees.Contrary to frequency estimation of a single attribute,the multidimensional aspect demands particular attention to the privacy budget.Besides,when collecting user statistics longitudinally,privacy progressively degrades.Indeed,the“multiple”settings in combination(i.e.,many attributes and several collections throughout time)impose several challenges,for which this paper proposes the first solution for frequency estimates under LDP.To tackle these issues,we extend the analysis of three state-of-the-art LDP protocols(Generalized Randomized Response–GRR,Optimized Unary Encoding–OUE,and Symmetric Unary Encoding–SUE)for both longitudinal and multidimensional data collections.While the known literature uses OUE and SUE for two rounds of sanitization(a.k.a.memoization),i.e.,L-OUE and L-SUE,respectively,we analytically and experimentally show that starting with OUE and then with SUE provides higher data utility(i.e.,L-OSUE).Also,for attributes with small domain sizes,we propose Longitudinal GRR(L-GRR),which provides higher utility than the other protocols based on unary encoding.Last,we also propose a new solution named Adaptive LDP for LOngitudinal and Multidimensional FREquency Estimates(ALLOMFREE),which randomly samples a single attribute to be sent with the whole privacy budget and adaptively selects the optimal protocol,i.e.,either L-GRR or L-OSUE.As shown in the results,ALLOMFREE consistently and considerably outperforms the state-of-the-art L-SUE and L-OUE protocols in the quality of the frequency estimates.
文摘This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in a split block design with three maize varieties (IWCD2, 2009EVDT, and DMR-ESR-Yellow) and seven nitrogen (0, 30, 60, 90, 120, 150 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup>) rates. Findings showed that cob diameter and anthesis silking time (ASI) had intermediate heritability, ASI had high genetic advance, ASI and grain yield had high genotypic coefficient of variation (GCV), while traits with high phenotypic coefficient of variation (PCV) were plant height, ASI, grain yield, number of kernel per cob, number of kernel rows, ear length, and ear height. The PCV values were higher than GCV, indicating the influence of the environment in the studied traits. Nitrogen rates and variety significantly (p < 0.05) influenced grain yield production. Mean grain yields and economic parameter estimates increased with increasing nitrogen rates, with the 30 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup> plots exhibiting the lowest and highest grain yields of 1238 kg∙ha<sup>−</sup><sup>1</sup> and 2098 kg∙ha<sup>−</sup><sup>1</sup>, respectively. Variety and nitrogen effects on partial factor productivity (PFP<sub>N</sub>), agronomic efficiency (AEN), net returns (NR), value cost ratio (VCR) and marginal return (MR) indicated that these parameters were significantly affected (p < 0.05) by these factors. The highest PFP<sub>N</sub> (41.3 kg grain kg<sup>−</sup><sup>1</sup>∙N) and AEN (29.4 kg grain kg<sup>−</sup><sup>1</sup>∙N) were obtained in the 30 kg∙N∙ha<sup>−</sup><sup>1</sup> plots, while the highest VCR (2.8) and MR (SLL 1.8 SLL<sup>−</sup><sup>1</sup> spent on N) were obtained in the 180 kg∙N∙ha<sup>−</sup><sup>1</sup>. The significant influence of variety and nitrogen on traits suggests that increasing yields and maximizing profits require use of appropriate nitrogen fertilization and improved farming practices that could be exploited for increased productivity of maize.
文摘We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.
基金supported by the National Natural Science Foundation of China(No.42127807)Natural Science Foundation of Sichuan Province of China(Project No.2023NSFSC0008)+1 种基金Uranium Geology Program of China Nuclear Geology(No.202205-6)the Sichuan Science and Technology Program(No.2021JDTD0018)。
文摘Onlineγ-spectrometry systems for inland waters,most of which extract samples in situ and in real time,are able to produce reliable activity concentration measurements for waterborne radionuclides only when they are distributed relatively uniformly and enter into a steady-state diffusion regime in the measurement chamber.To protect residents’health and ensure the safety of the living environment,better timeliness is required for this measurement method.To address this issue,this study established a mathematical model of the online waterγ-spectrometry system so that rapid warning and activity estimates can be obtained for water under non-steady-state(NSS)conditions.In addition,the detection efficiency of the detector for radionuclides during the NSS diffusion process was determined by applying the computational fluid dynamics technique in conjunction with Monte Carlo simulations.On this basis,a method was developed that allowed the online waterγ-spectrometry system to provide rapid warning and activity concentration estimates for radionuclides in water.Subsequent analysis of the NSS-mode measurements of^(40)K radioactive solutions with different activity concentrations determined the optimum warning threshold and measurement time for producing accurate activity concentration estimates for radionuclides.The experimental results show that the proposed NSS measurement method is able to give warning and yield accurate activity concentration estimates for radionuclides 55.42 and 69.42 min after the entry of a 10 Bq/L^(40)K radioactive solution into the measurement chamber,respectively.These times are much shorter than the 90 min required by the conventional measurement method.Furthermore,the NSS measurement method allows the measurement system to give rapid(within approximately 15 min)warning when the activity concentrations of some radionuclides reach their respective limits stipulated in the Guidelines for Drinking-water Quality of the WHO,suggesting that this method considerably enhances the warning capacity of in situ online waterγ-spectrometry systems.
基金supported by The Technology Innovation Team(Tianshan Innovation Team),Innovative Team for Efficient Utilization of Water Resources in Arid Regions(2022TSYCTD0001)the National Natural Science Foundation of China(42171269)the Xinjiang Academician Workstation Cooperative Research Project(2020.B-001).
文摘Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region,which can even improve the performance of hydrological modelling.This study evaluated the applicability of widely used five satellite-based precipitation products(Climate Hazards Group InfraRed Precipitation with Station(CHIRPS),China Meteorological Forcing Dataset(CMFD),Climate Prediction Center morphing method(CMORPH),Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR),and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis(TMPA))and a reanalysis precipitation dataset(ECMWF Reanalysis v5-Land Dataset(ERA5-Land))in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations.Based on this assessment,we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging(DBMA)approach,the expectation-maximization method,and the ordinary Kriging interpolation method.The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability,with an outstanding performance,as indicated by low root mean square error(RMSE=1.40 mm/d)and high Person's correlation coefficient(CC=0.67).Compared with the traditional simple model averaging(SMA)and individual product data,although the DBMA-fused precipitation data were slightly lower than the best precipitation product(CMFD),the overall performance of DBMA was more robust.The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final(IMERG-F)precipitation product,as well as hydrological simulations in the Ebinur Lake Basin,further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region.The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas,and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions.
文摘We primarily provide several estimates for the heat kernel defined on the 2-dimensional simple random walk. Additionally, we offer an estimate for the heat kernel on high-dimensional random walks, demonstrating that the heat kernel in higher dimensions converges rapidly. We also compute the constants involved in the estimate for the 1-dimensional heat kernel. Furthermore, we discuss the general case of on-diagonal estimates for the heat kernel.
基金supported by the NSFC(11871257,12071130)supported by the NSFC(11971165)。
文摘In this article,we first establish an asymptotically sharp result on the higher order Fréchet derivatives for bounded holomorphic mappings f(x)=f(0)+∞∑s=1Dskf(0)(x^(sk))/(sk)!:B_(X)→B_(Y),where B_X is the unit ball of X.We next give a sharp result on the first order Fréchet derivative for bounded holomorphic mappings F(X)=F(0+)∞∑s=KD^(s)f(0)(x^(8)/s!):B_(X)→B_(Y),where B_(X)is the unit ball of X.The results that we derive include some results in several complex variables,and extend the classical result in one complex variable to several complex variables.
基金supported by the Public Health Research Project in Futian District,Shenzhen(Grant Nos.FTWS2020026,FTWS2021073).
文摘Background:Establishing an appropriate prognostic model for PCa is essential for its effective treatment.Glycolysis is a vital energy-harvesting mechanism for tumors.Developing a prognostic model for PCa based on glycolysis-related genes is novel and has great potential.Methods:First,gene expression and clinical data of PCa patients were downloaded from The Cancer Genome Atlas(TCGA)and Gene Expression Omnibus(GEO),and glycolysis-related genes were obtained from the Molecular Signatures Database(MSigDB).Gene enrichment analysis was performed to verify that glycolysis functions were enriched in the genes we obtained,which were used in nonnegative matrix factorization(NMF)to identify clusters.The correlation between clusters and clinical features was discussed,and the differentially expressed genes(DEGs)between the two clusters were investigated.Based on the DEGs,we investigated the biological differences between clusters,including immune cell infiltration,mutation,tumor immune dysfunction and exclusion,immune function,and checkpoint genes.To establish the prognostic model,the genes were filtered based on univariable Cox regression,LASSO,and multivariable Cox regression.Kaplan–Meier analysis and receiver operating characteristic analysis validated the prognostic value of the model.A nomogram of the risk score calculated by the prognostic model and clinical characteristics was constructed to quantitatively estimate the survival probability for PCa patients in the clinical setting.Result:The genes obtained from MSigDB were enriched in glycolysis functions.Two clusters were identified by NMF analysis based on 272 glycolysis-related genes,and a prognostic model based on DEGs between the two clusters was finally established.The prognostic model consisted of LAMPS,SPRN,ATOH1,TANC1,ETV1,TDRD1,KLK14,MESP2,POSTN,CRIP2,NAT1,AKR7A3,PODXL,CARTPT,and PCDHGB2.All sample,training,and test cohorts from The Cancer Genome Atlas(TCGA)and the external validation cohort from GEO showed significant differences between the high-risk and low-risk groups.The area under the ROC curve showed great performance of this prognostic model.Conclusion:A prognostic model based on glycolysis-related genes was established,with great performance and potential significance to the clinical application.
基金the Vietnam National Foundation for Science and Technology Development(NAFOSTED)Vietnam under Grant No.(107.01-2019.311).
文摘In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grants 61941104,61921004the Key Research and Development Program of Shandong Province under Grant 2020CXGC010108+1 种基金the Southeast University-China Mobile Research Institute Joint Innovation Centersupported in part by the Scientific Research Foundation of Graduate School of Southeast University under Grant YBPY2118.
文摘The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors.
基金supported by the National Natural Science Foundation of China (52075420)the National Key Research and Development Program of China (2020YFB1708400)。
文摘With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.
基金Science and Technology Research Project of the Henan Province(222102240014).
文摘Traditional feature-based image stitching techniques often encounter obstacles when dealing with images lackingunique attributes or suffering from quality degradation. The scarcity of annotated datasets in real-life scenesseverely undermines the reliability of supervised learning methods in image stitching. Furthermore, existing deeplearning architectures designed for image stitching are often too bulky to be deployed on mobile and peripheralcomputing devices. To address these challenges, this study proposes a novel unsupervised image stitching methodbased on the YOLOv8 (You Only Look Once version 8) framework that introduces deep homography networksand attentionmechanisms. Themethodology is partitioned into three distinct stages. The initial stage combines theattention mechanism with a pooling pyramid model to enhance the detection and recognition of compact objectsin images, the task of the deep homography networks module is to estimate the global homography of the inputimages consideringmultiple viewpoints. The second stage involves preliminary stitching of the masks generated inthe initial stage and further enhancement through weighted computation to eliminate common stitching artifacts.The final stage is characterized by adaptive reconstruction and careful refinement of the initial stitching results.Comprehensive experiments acrossmultiple datasets are executed tometiculously assess the proposed model. Ourmethod’s Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) improved by 10.6%and 6%. These experimental results confirm the efficacy and utility of the presented model in this paper.
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.
文摘Data is humongous today because of the extensive use of World WideWeb, Social Media and Intelligent Systems. This data can be very important anduseful if it is harnessed carefully and correctly. Useful information can beextracted from this massive data using the Data Mining process. The informationextracted can be used to make vital decisions in various industries. Clustering is avery popular Data Mining method which divides the data points into differentgroups such that all similar data points form a part of the same group. Clusteringmethods are of various types. Many parameters and indexes exist for the evaluationand comparison of these methods. In this paper, we have compared partitioningbased methods K-Means, Fuzzy C-Means (FCM), Partitioning AroundMedoids (PAM) and Clustering Large Application (CLARA) on secure perturbeddata. Comparison and identification has been done for the method which performsbetter for analyzing the data perturbed using Extended NMF on the basis of thevalues of various indexes like Dunn Index, Silhouette Index, Xie-Beni Indexand Davies-Bouldin Index.
基金supported by the Beijing Natural Science Foundation(1212003)。
文摘Let?denote a smooth,bounded domain in R^(N)(N≥2).Suppose that g is a nondecreasing C^(1)positive function and assume that b(x)is continuous and nonnegative inΩ,and that it may be singular on■Ω.In this paper,we provide sufficient and necessary conditions on the existence of boundary blow-up solutions to the p-Laplacian problem△_(p)u=b(x)g(u)for x∈Ω,u(x)→+∞as dist(x,■Ω)→0.The estimates of such solutions are also investigated.Moreover,when b has strong singularity,the nonexistence of boundary blow-up(radial)solutions and infinitely many radial solutions are also considered.
文摘Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.
文摘We show an example of a bounded potential on the half-line obtained as the image of an Inverse Transformation Operator of the Bessel singular potential of the Reduced Radial Schrödinger Equation, and show us the Estimates of the A(α) amplitude.
文摘Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.
文摘Cone penetration testing (CPT) is a cost effective and popular tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic penetrometer into penetrable soils and recording cone bearing (q<sub>c</sub>), sleeve friction (f<sub>c</sub>) and dynamic pore pressure (u) with depth. The measured q<sub>c</sub>, f<sub>s</sub> and u values are utilized to estimate soil type and associated soil properties. A popular method to estimate soil type from CPT measurements is the Soil Behavior Type (SBT) chart. The SBT plots cone resistance vs friction ratio, R<sub>f</sub> [where: R<sub>f</sub> = (f<sub>s</sub>/q<sub>c</sub>)100%]. There are distortions in the CPT measurements which can result in erroneous SBT plots. Cone bearing measurements at a specific depth are blurred or averaged due to q<sub>c</sub> values being strongly influenced by soils within 10 to 30 cone diameters from the cone tip. The q<sub>c</sub>HMM algorithm was developed to address the q<sub>c</sub> blurring/averaging limitation. This paper describes the distortions which occur when obtaining sleeve friction measurements which can in association with q<sub>c</sub> blurring result in significant errors in the calculated R<sub>f</sub> values. This paper outlines a novel and highly effective algorithm for obtaining accurate sleeve friction and friction ratio estimates. The f<sub>c</sub> optimal filter estimation technique is referred to as the OSFE-IFM algorithm. The mathematical details of the OSFE-IFM algorithm are outlined in this paper along with the results from a challenging test bed simulation. The test bed simulation demonstrates that the OSFE-IFM algorithm derives accurate estimates of sleeve friction from measured values. Optimal estimates of cone bearing and sleeve friction result in accurate R<sub>f</sub> values and subsequent accurate estimates of soil behavior type.