This paper concerns large time behavior of a regular weak solution for non-Newtonian flow equations. It is shown that the decay of the solution is of exponential type when the force term is equal to zero and the domai...This paper concerns large time behavior of a regular weak solution for non-Newtonian flow equations. It is shown that the decay of the solution is of exponential type when the force term is equal to zero and the domain is bounded. Moreover, the ratio of the enstrophy over the energy has a limit as time tends to infinity, which is an eigenvaiue of the Stokes operator.展开更多
In the study of long time asymptotic behaviors of the solutions to a class system of the incompressible non-Newtonian fluid flows in R3, it is proved that the weak solutions decay in L2 norm at (1 + t)- 3/4 and the...In the study of long time asymptotic behaviors of the solutions to a class system of the incompressible non-Newtonian fluid flows in R3, it is proved that the weak solutions decay in L2 norm at (1 + t)- 3/4 and the error of difference between non-Newtonian fluid and linear equation is also investigated. The findings are mainly based on the classic Fourier splitting methods.展开更多
The free convective heat transfer to the power-law non-Newtonian flow from a vertical plate in a porous medium saturated with nanofluid under laminar conditions is investigated. It is considered that the non-Newtonian...The free convective heat transfer to the power-law non-Newtonian flow from a vertical plate in a porous medium saturated with nanofluid under laminar conditions is investigated. It is considered that the non-Newtonian nanofluid obeys the mathematical model of power-law. The model used for the nanofluid incorporates the effects of Brown- ian motion and thermophoresis. The partial differential system governing the problem is transformed into an ordinary system via a usual similarity transformation. The numer- ical solutions of the resulting ordinary system are obtained. These solutions depend on the power-law index n, Lewis number Le, buoyancy-ratio number Nr, Brownian motion number Nb, and thermophoresis number Nt. For various values of n and Le, the effects of the influence parameters on the fluid behavior as well as the reduced Nusselt number are presented and discussed.展开更多
A numerical analysis of Newtonian and non-Newtonian flow in an axi-symmetric tube with a local constriction simulating a stenosed artery under steady and pulsatile flow conditions war carried out. Bared on these resul...A numerical analysis of Newtonian and non-Newtonian flow in an axi-symmetric tube with a local constriction simulating a stenosed artery under steady and pulsatile flow conditions war carried out. Bared on these results, the concentration fields of LDL ( (low-density lipoprotein) and Albumin were discussed. According to the results, in great details the macromolecule transport influences of wall shear stress, non-Newtonian fluid character and the scale of the molecule etc are given. The results of Newtonian fluid flow and non-Newtonian fluid flow, steady flow and pulsatile flow are compared. These investigations can provide much valuable information about the correlation between the flow properties, the macromolecule transport and the development of atherosclerosis.展开更多
Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate o...Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.展开更多
Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat ...Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow.展开更多
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes...A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.展开更多
Measurement of bloodflow velocity is key to understanding physiology and pathology in vivo.While most measurements are performed at the middle of the blood vessel,little research has been done on characterizing the in...Measurement of bloodflow velocity is key to understanding physiology and pathology in vivo.While most measurements are performed at the middle of the blood vessel,little research has been done on characterizing the instantaneous bloodflow velocity distribution.This is mainly due to the lack of measurement technology with high spatial and temporal resolution.Here,we tackle this problem with our recently developed dual-wavelength line-scan third-harmonic generation(THG)imaging technology.Simultaneous acquisition of dual-wavelength THG line-scanning signals enables measurement of bloodflow velocities at two radially symmetric positions in both venules and arterioles in mouse brain in vivo.Our results clearly show that the instantaneous bloodflow velocity is not symmetric under general conditions.展开更多
The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a...The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a preliminary proppant settling test,from which a solid volume fraction of 0.575 is calibrated for the proppant pack in the fracture.In the established workflow to investigate proppant flowback,a displacement is applied to the fracture surfaces to compact the generated proppant pack as well as further mimicking proppant embedment under closure stress.When a pressure gradient is applied to drive the fluid-particle flow,a critical aperture-to-diameter ratio of 4 is observed,above which the proppant pack would collapse.The results also show that the volumetric proppant flowback rate increases quadratically with the fracture aperture,while a linear variation between the particle flux and the pressure gradient is exhibited for a fixed fracture aperture.The research outcome contributes towards an improved understanding of proppant flowback in hydraulic fractures,which also supports an optimised proppant size selection for hydraulic fracturing operations.展开更多
文摘This paper concerns large time behavior of a regular weak solution for non-Newtonian flow equations. It is shown that the decay of the solution is of exponential type when the force term is equal to zero and the domain is bounded. Moreover, the ratio of the enstrophy over the energy has a limit as time tends to infinity, which is an eigenvaiue of the Stokes operator.
文摘In the study of long time asymptotic behaviors of the solutions to a class system of the incompressible non-Newtonian fluid flows in R3, it is proved that the weak solutions decay in L2 norm at (1 + t)- 3/4 and the error of difference between non-Newtonian fluid and linear equation is also investigated. The findings are mainly based on the classic Fourier splitting methods.
文摘The free convective heat transfer to the power-law non-Newtonian flow from a vertical plate in a porous medium saturated with nanofluid under laminar conditions is investigated. It is considered that the non-Newtonian nanofluid obeys the mathematical model of power-law. The model used for the nanofluid incorporates the effects of Brown- ian motion and thermophoresis. The partial differential system governing the problem is transformed into an ordinary system via a usual similarity transformation. The numer- ical solutions of the resulting ordinary system are obtained. These solutions depend on the power-law index n, Lewis number Le, buoyancy-ratio number Nr, Brownian motion number Nb, and thermophoresis number Nt. For various values of n and Le, the effects of the influence parameters on the fluid behavior as well as the reduced Nusselt number are presented and discussed.
文摘A numerical analysis of Newtonian and non-Newtonian flow in an axi-symmetric tube with a local constriction simulating a stenosed artery under steady and pulsatile flow conditions war carried out. Bared on these results, the concentration fields of LDL ( (low-density lipoprotein) and Albumin were discussed. According to the results, in great details the macromolecule transport influences of wall shear stress, non-Newtonian fluid character and the scale of the molecule etc are given. The results of Newtonian fluid flow and non-Newtonian fluid flow, steady flow and pulsatile flow are compared. These investigations can provide much valuable information about the correlation between the flow properties, the macromolecule transport and the development of atherosclerosis.
基金financial support of the National Natural Science Foundation of China(21776122).
文摘Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.
基金supported by the National Natural Science Foundation of China(52304067,62273213)the Natural Science Foundation of Shandong Province of China(ZR2021QE073)+1 种基金the Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)the China Postdoctoral Science Foundation(2023M732111)。
文摘Liquid hydrogen storage and transportation is an effective method for large-scale transportation and utilization of hydrogen energy. Revealing the flow mechanism of cryogenic working fluid is the key to optimize heat exchanger structure and hydrogen liquefaction process(LH2). The methods of cryogenic visualization experiment, theoretical analysis and numerical simulation are conducted to study the falling film flow characteristics with the effect of co-current gas flow in LH2spiral wound heat exchanger.The results show that the flow rate of mixed refrigerant has a great influence on liquid film spreading process, falling film flow pattern and heat transfer performance. The liquid film of LH2mixed refrigerant with column flow pattern can not uniformly and completely cover the tube wall surface. As liquid flow rate increases, the falling film flow pattern evolves into sheet-column flow and sheet flow, and liquid film completely covers the surface of tube wall. With the increase of shear effect of gas-phase mixed refrigerant in the same direction, the liquid film gradually becomes unstable, and the flow pattern eventually evolves into a mist flow.
基金This study was supported by the National Natural Science Foundation of China(U22B2075,52274056,51974356).
文摘A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.
基金funded by the National Natural Science Foundation of China(Grant/Award Numbers 62075135 and 61975126)the Science and Technology Innovation Commission of Shenzhen(Grant/Award Numbers JCYJ20190808174819083 and JCYJ20190808175201640)Shenzhen Science and Technology Planning Project(ZDSYS 20210623092006020).
文摘Measurement of bloodflow velocity is key to understanding physiology and pathology in vivo.While most measurements are performed at the middle of the blood vessel,little research has been done on characterizing the instantaneous bloodflow velocity distribution.This is mainly due to the lack of measurement technology with high spatial and temporal resolution.Here,we tackle this problem with our recently developed dual-wavelength line-scan third-harmonic generation(THG)imaging technology.Simultaneous acquisition of dual-wavelength THG line-scanning signals enables measurement of bloodflow velocities at two radially symmetric positions in both venules and arterioles in mouse brain in vivo.Our results clearly show that the instantaneous bloodflow velocity is not symmetric under general conditions.
基金Funding support from Heilongjiang"Open Competition"project(Grant No.DQYT2022-JS-758)is greatly acknowledgedFinancial support from the National Natural Science Foundation of China(Grant Nos.52304025 and 52174025)is acknowledged+1 种基金supports from Northeast Petroleum University and Guangdong Basic and Applied Basic Research Foundationsupport from the Heilongjiang Touyan Innovation Team Program.
文摘The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a preliminary proppant settling test,from which a solid volume fraction of 0.575 is calibrated for the proppant pack in the fracture.In the established workflow to investigate proppant flowback,a displacement is applied to the fracture surfaces to compact the generated proppant pack as well as further mimicking proppant embedment under closure stress.When a pressure gradient is applied to drive the fluid-particle flow,a critical aperture-to-diameter ratio of 4 is observed,above which the proppant pack would collapse.The results also show that the volumetric proppant flowback rate increases quadratically with the fracture aperture,while a linear variation between the particle flux and the pressure gradient is exhibited for a fixed fracture aperture.The research outcome contributes towards an improved understanding of proppant flowback in hydraulic fractures,which also supports an optimised proppant size selection for hydraulic fracturing operations.