期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
Methanol Tolerant Non-noble Metal Co-C-N Catalyst for Oxygen Reduction Reaction Using Urea as Nitrogen Source 被引量:3
1
作者 司玉军 陈昌国 +1 位作者 尹伟 蔡慧 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第3期331-334,I0002,共5页
A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmo... A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmosphere. X-ray diffraction pattern indicates that a metallic β-Co is generated after the heat-treating process. The results from cyclic voltammograms show that the obtained Co-C-N(800) catalyst has good ORR catalytic activity in 0.5 mol/L H2SO4 solution. The catalyst is also good at methanol tolerance and stability in the acidic solution. 展开更多
关键词 Direct methanol fuel ceil Oxygen reduction reaction CATALYST non-noble metal Methanol resistance
下载PDF
Recent Advances on MOF Derivatives for Non-Noble Metal Oxygen Electrocatalysts in Zinc-Air Batteries 被引量:9
2
作者 Yuting Zhu Kaihang Yue +5 位作者 Chenfeng Xia Shahid Zaman Huan Yang Xianying Wang Ya Yan Bao Yu Xia 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第9期164-192,共29页
Oxygen electrocatalysts are of great importance for the air electrode in zinc-air batteries(ZABs).Owing to the high specific surface area,controllable pore size and unsaturated metal active sites,metal-organic framewo... Oxygen electrocatalysts are of great importance for the air electrode in zinc-air batteries(ZABs).Owing to the high specific surface area,controllable pore size and unsaturated metal active sites,metal-organic frameworks(MOFs)derivatives have been widely studied as oxygen electrocatalysts in ZABs.To date,many strategies have been developed to generate efficient oxygen electrocatalysts from MOFs for improving the performance of ZABs.In this review,the latest progress of the MOF-derived non-noble metal-oxygen electrocatalysts in ZABs is reviewed.The performance of these MOF-derived catalysts toward oxygen reduction,and oxygen evolution reactions is discussed based on the categories of metal-free carbon materials,single-atom catalysts,metal cluster/carbon composites and metal compound/carbon composites.Moreover,we provide a comprehensive overview on the design strategies of various MOF-derived non-noble metal-oxygen electrocatalysts and their structure-performance relationship.Finally,the challenges and perspectives are provided for further advancing the MOF-derived oxygen electrocatalysts in ZABs. 展开更多
关键词 metal-organic framework non-noble metal Oxygen electrocatalysts Air electrode Zinc-air batteries
下载PDF
Decorating non-noble metal plasmonic Al on a TiO2/Cu2O photoanode to boost performance in photoelectrochemical water splitting 被引量:4
3
作者 Shaoce Zhang Zhifeng Liu +2 位作者 Weiguo Yan Zhengang Guo Mengnan Ruan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第12期1884-1893,共10页
Designing low-cost and high-performance photoelectrodes with improved light harvesting and charge separation rates is significant in photoelectrochemical water splitting.Here,a novel TiO2/Cu2O/Al/Al2O3 photoelectrode ... Designing low-cost and high-performance photoelectrodes with improved light harvesting and charge separation rates is significant in photoelectrochemical water splitting.Here,a novel TiO2/Cu2O/Al/Al2O3 photoelectrode is manufactured by depositing plasmonic nanoparticles of the non-noble metal Al on the surface of a TiO2/Cu2O core/shell heterojunction for the first time.The Al nanoparticles,which exhibit a surface plasmon resonance(SPR)effect and are substantially less expensive than noble metals such as Au and Ag,generate hot electron-hole pairs and amplify the electromagnetic field at the interface under illumination.The as-prepared TiO2/Cu2O/Al/Al2O3 photoelectrodes have an extended absorption range and enhanced carrier separation and transfer.Their photocurrent density of 4.52 mA·cm^-2 at 1.23 V vs.RHE represents an 1.84-fold improvement over that of TiO2/Cu2O.Specifically,the ultrathin Al2O3 passivation layer spontaneously generated on the surface of Al in air could act as a protective layer to significantly increase its stability.In this work,the synergistic effect of the heterojunctions and the SPR effect of the non-noble metal Al significantly improve the photoelectrode performance,providing a novel concept for the design of electrodes with good properties and high practicability. 展开更多
关键词 TIO2 PHOTOANODE non-noble metal Al Surface plasmon resonance Photoelectrochemical water splitting
下载PDF
MXene based non-noble metal catalyst for overall water splitting in alkaline conditions 被引量:1
4
作者 Dezheng Guo Qiwen Pan +2 位作者 Thomas Vietor Weijun Lu Yuan Gao 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期518-539,I0014,共23页
MXene,the two-dimensional transition metal carbide or nitride material,was first discovered in 2011.They possess superior characteristics such as stability,electric conductivity,and electrochemical properties,that mak... MXene,the two-dimensional transition metal carbide or nitride material,was first discovered in 2011.They possess superior characteristics such as stability,electric conductivity,and electrochemical properties,that make them attract the attention of the energy engineering field.Overall water splitting which generates hydrogen and oxygen,not only serves as a clean energy supply technology but also demonstrates the capacity for redistribution and integration of renewable energy.MXene based non-noble metal has demonstrated significant potential in terms of cost-effectiveness.Therefore,the current focus is implementing targeted regulation at the micro level to render it effective comparable to the precious metals.In this context,the mechanisms of the hydrogen evolution reaction(HER) and the oxygen evolution reaction(OER) under the influence of MXene can be elucidated in terms of electron and ion transfer processes,hydrogen coverage,and regulation of terminal groups.Certainly,the composition,structure,synthesis,and stability strategies of MXene are the subjects of comprehensive investigation from both theoretical calculations using density functional theory(DFT) and experimental perspectives.In addition,this review provides a comprehensive summary of MXene based non-noble metal and various modification methods.These methods encompass doping,vacancy engineering,hybrid structures,heterojunction formation,multi-scale engineering,surface engineering,and phase engineering.The review also presents suggestions for designing high-performance MXene based on non-noble metals.It offers guidance on employing construction strategies for electrocatalysts.By leveraging the unique properties and tunability of MXene and implementing these modification methods,researchers can enhance the catalytic activity,stability,selectivity,and efficiency of MXene based non-noble metal catalysts. 展开更多
关键词 MXene Overall water splitting non-noble metal
下载PDF
A novel synthesis of highly active and highly stable non-noble-nickel-modified persulfated Al_(2)O_(3)@ZrO_(2) core-shell catalysts for n-pentane isomerization
5
作者 Tian-Han Zhu Mei Zhang +2 位作者 Sheng-Nan Li Feng Li Hua Song 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2545-2553,共9页
The non-noble metal modified sulfated zirconia was found easy to deactivate.Herein,highly active and highly stable non-noble core-shell Ni-S_(2)O_(8)^(2−)/Al_(2)O_(3)@ZrO_(2) catalysts(Ni-SA@Z-x,x=Al content in wt%)ha... The non-noble metal modified sulfated zirconia was found easy to deactivate.Herein,highly active and highly stable non-noble core-shell Ni-S_(2)O_(8)^(2−)/Al_(2)O_(3)@ZrO_(2) catalysts(Ni-SA@Z-x,x=Al content in wt%)have been successfully prepared and investigated for n-pentane isomerization.The results showed that the core-shell Ni-SA@Z-30 provided a sustained high isopentane yield(63.1%)with little or no deactivation within 5000 min at a mild reaction pressure of 2.0 MPa,which can be attributed to the following factors:(i)carbon deposition was greatly suppressed by the large pore size and huge pore volume;(ii)the loss of sulfur entities was suppressed because the small and highly dispersed tetragonal ZrO_(2) particles can bond with the S species strongly;(iii)strong Brønsted acidity can be maintained well after the isomerization.The pore structures and acid nature of the core-shell Ni-SA@Z-x are entirely different from those of the normal structure Ni-S_(2)O_(8)^(2−)/ZrO_(2)-Al_(2)O_(3),even though the Al content and the compositions of the individual components are the same.The Al_(2)O_(3)cores endow the catalysts with high internal surface area and high mechanical strength.Meanwhile,the ZrO_(2) shell,which consists of more and smaller tetragonal ZrO_(2) particles because of the large surface area of the Al_(2)O_(3)core,promotes the formation of more stable sulfur species and stronger binding sites. 展开更多
关键词 CORE-SHELL Large pore size Solid superacid non-noble metal Ni ISOMERIZATION
下载PDF
Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media 被引量:6
6
作者 Samarjeet Singh Siwal Wenqiang Yang Qibo Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期113-133,共21页
The realization of efficient oxygen evolution reaction(OER) is critical to the development of multiple sustainable energy conversion and storage technologies, especially hydrogen production via water electrolysis. To ... The realization of efficient oxygen evolution reaction(OER) is critical to the development of multiple sustainable energy conversion and storage technologies, especially hydrogen production via water electrolysis. To achieve the massive application of hydrogen energy and mass-scale hydrogen production from water splitting drives the pursuit of competent precious-metal-free electrocatalysts in acidic media, where the hydrogen evolution reaction(HER) is more facilitated. However, the development of high-efficient and acid-stable OER electrocatalysts, which are robust to function stably at high oxidation potentials in the acidic electrolyte, remains a great challenge. This article contributes a focused, perceptive review of the up-to-date approaches toward this emerging research field. The OER reaction mechanism and fundamental requirements for oxygen evolution electrocatalysts in acid are introduced. Then the progress and new discoveries of precious-metal-free active materials and design concepts with regard to the improvement of the intrinsic OER activity are discussed. Finally, the existing scientific challenges and the outlooks for future research directions to the fabrication of emerging, earth-abundant OER electrocatalysts in acid are pointed out. 展开更多
关键词 ELECTROCATALYSTS non-noble metals Hydrogen production Water oxidation Acidic media
下载PDF
Synthesis–structure correlations of manganese–cobalt mixed metal oxide nanoparticles
7
作者 Manuel Gliech Arno Bergmann +1 位作者 Camillo Spöri Peter Strasser 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期276-279,共4页
Mixed metal oxides in the nanoscale are of great interest for many aspects of energy related research topics as water splitting, fuel cells and battery technology. The development of scalable, cost-efficient and robus... Mixed metal oxides in the nanoscale are of great interest for many aspects of energy related research topics as water splitting, fuel cells and battery technology. The development of scalable, cost-efficient and robust synthetic routes toward well-defined solid state structures is a major objective in this field.While monometallic oxides have been studied in much detail, reliable synthetic recipes targeting specific crystal structures of mixed metal oxide nanoparticles are largely missing. Yet, in order to meet the requirements for a broad range of technical implementation it is necessary to tailor the properties of mixed metal oxides to the particular purpose. Here, we present a study on the impact of the nature of the gas environment on the resulting crystal structure during a post-synthesis thermal heat treatment of manganese–cobalt oxide nanoparticles. We monitor the evolution of the crystal phase structure as the gas atmosphere is altered from pure nitrogen to synthetic air and pure oxygen. The particle size and homogeneity of the resulting nanoparticles increase with oxygen content, while the crystal structure gradually changes from rocksalt-like to pure spinel. We find the composition of the particles to be independent of the gas atmosphere. The manganese–cobalt oxide nanoparticles exhibited promising electrocatalytic activity regarding oxygen evolution in alkaline electrolyte. These findings offer new synthesis pathways for the direct preparation of versatile utilizable mixed metal oxides. 展开更多
关键词 Oxygen evolution reaction(OER) ALKALINE Gas atmosphere influence CATALYSIS non-noble metal oxides
下载PDF
Recent advances in carbonized non-noble metal–organic frameworks for electrochemical catalyst of oxygen reduction reaction 被引量:9
8
作者 Chan Li Dao-Hui Zhao +1 位作者 Hua-Li Long Ming Li 《Rare Metals》 SCIE EI CAS CSCD 2021年第10期2657-2689,共33页
The non-noble metal oxygen reduction reaction(ORR) catalysts prepared by carbonization of metal–organic framework(MOF) have attracted more and more attentions in the fields of fuel cells and metal-air batteries due t... The non-noble metal oxygen reduction reaction(ORR) catalysts prepared by carbonization of metal–organic framework(MOF) have attracted more and more attentions in the fields of fuel cells and metal-air batteries due to their unique intrinsic advantages such as high catalytic activity, low price, simple synthesis and good adaptability. Different from the study of traditional high active noble metal catalysts, this review systematically summarizes recent developments on non-noble metal(Fe,Co, Cu, Ni, Mn and Mo) ORR catalysts prepared by various MOFs carbonization in different metal centers. The effects of synthesis strategies and pyrolysis conditions on the catalyst properties are discussed. Meanwhile, the key parameters of catalytic performances(including active sites, dispersed state and specific surface area) are discussed and the prospect is presented. It is expected that this review will provide effective guidance for future studies on carbonized non-noble MOFs for ORR electrochemical catalyst. 展开更多
关键词 non-noble metal MOF PYROLYSIS CATALYST ORR
原文传递
A review of non-noble metal-based electrocatalysts for CO_(2)electroreduction 被引量:17
9
作者 Jia-Jun Wang Xiao-Peng Li +6 位作者 Bing-Feng Cui Zhao Zhang Xiao-Fei Hu Jia Ding Yi-Da Deng Xiao-Peng Han Wen-Bin Hu 《Rare Metals》 SCIE EI CAS CSCD 2021年第11期3019-3037,共19页
The excessive emission of CO_(2) has caused many environmental issues and is severely threatening the eco-system.CO_(2) electroreduction reaction(CO_(2) RR) that driven by sustainable power is an ideal route for reali... The excessive emission of CO_(2) has caused many environmental issues and is severely threatening the eco-system.CO_(2) electroreduction reaction(CO_(2) RR) that driven by sustainable power is an ideal route for realizing the net reduction of CO_(2) and carbon recycle.Developing efficient electrocatalysts with low cost and high performance is critical for the wide applications of CO_(2) RR electrolysis.Among the various explored CO_(2) RR catalysts,non-noble metal(NNM)-based nanomaterials have drawn increasing attentions due to the remarkable performance and low cost.In this mini-review,the recent advances of NNM-based CO_(2) RR catalysts are summarized,and the catalysts are classified based on their corresponding reduction products.The preparation strategies for engineering the electrocatalysts are introduced,and the relevant CO_(2) RR mechanisms are discussed in detail.Finally,the current challenges in CO_(2) RR research are presented,and some perspectives are proposed for the future development of CO_(2) RR technology.This mini-review introduces the recent advances and frontiers of NNM-based CO_(2) RR catalysts,which should shed light on the further exploration of efficient CO_(2) RR electrocatalysts. 展开更多
关键词 CO_(2)electroreduction non-noble metals Reaction mechanism Heterogeneous catalysis Structural-function relationship
原文传递
Non-noble metal-based bifunctional electrocatalysts for hydrogen production 被引量:12
10
作者 Tong Wu Ming-Zi Sun Bo-Long Huang 《Rare Metals》 SCIE EI CAS CSCD 2022年第7期2169-2183,共15页
Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues.Electrochemical hydrogen production has been regarded as a viable and pro... Hydrogen is a promising candidate for clean and sustainable energy resources to substitute fossil fuels to mitigate global environmental issues.Electrochemical hydrogen production has been regarded as a viable and promising strategy.The overall water splitting is currently the predominant electrochemical hydrogen production method,which could be driven by renewable energy to achieve sustainable production.However,the current challenges are the intrinsically sluggish and energy-intensive oxygen evolution reduction(OER)at the anode and the expensive noble metal-based catalysts for overall water splitting,which limit the practical applications.Extensive efforts have been made to develop bifunctional non-noble metal-based electrocatalysts to boost hydrogen production efficiency and lower the cost.Meanwhile,alternative oxidation reactions with faster kinetics and less energy requirement than OER are being explored as the anodic reaction to couple with the hydrogen evolution reaction for energy-saving hydrogen production.In this review,the non-noble metal-based bifunctional electrocatalysts for overall water splitting,as well as other novel energy-saving hydrogen productions have been introduced and summarized.Current challenges and outlooks are commented on at the end of the article. 展开更多
关键词 Overall water splitting Hydrogen production Bifunctional electrocatalyst Energy-saving hydrogen production non-noble metal electrocatalysts
原文传递
Design and synthesis of porous non-noble metal oxides for catalytic removal of VOCs 被引量:5
11
作者 Wenxiang Tang Gang Liu +4 位作者 Dongyan Li Haidi Liu Xiaofeng Wu Ning Han Yunfa Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第9期1359-1366,共8页
The design and synthesis of highly active non-noble metal oxide catalysts, such as transition- and rare-earth-metal oxides, have attracted significant attention because of their high efficiency and low cost and the re... The design and synthesis of highly active non-noble metal oxide catalysts, such as transition- and rare-earth-metal oxides, have attracted significant attention because of their high efficiency and low cost and the resultant potential applications for the degradation of volatile organic compounds(VOCs). The structure-activity relationships have been well-studied and used to facilitate design of the structure and composition of highly active catalysts. Recently, non-noble metal oxides with porous structures have been used as catalysts for deep oxidation of VOCs, such as aromatic hydrocarbons, aliphatic compounds, aldehydes, and alcohols, with comparable activities to their noble metal counterparts. This review summarizes the growing literature regarding the use of porous metal oxides for the catalytic removal of VOCs, with emphasis on design of the composition and structure and typical synthetic technologies. 展开更多
关键词 VOCS catalytic oxidation non-noble metal oxides structure-activity relationships synthetic methods
原文传递
Non-noble metal single-atom catalysts with phosphotungstic acid(PTA)support:A theoretical study of ethylene epoxidation 被引量:5
12
作者 Shamraiz Hussain Talib Xiaohu Yu +2 位作者 Qi Yu Sambath Baskaran Jun Li 《Science China Materials》 SCIE EI CSCD 2020年第6期1003-1014,共12页
Geometric and electronic structures of phosphotungstic acid(PTA)supported single transition metal atom(Fe,Co,Ni,Ru,Rh,Pd,Os,Ir and Pt)catalysts have been systematically investigated by using the first-principles theor... Geometric and electronic structures of phosphotungstic acid(PTA)supported single transition metal atom(Fe,Co,Ni,Ru,Rh,Pd,Os,Ir and Pt)catalysts have been systematically investigated by using the first-principles theoretical methods.Possible reaction mechanism for ethylene epoxidation was explored.The most possible anchoring site for the single transition metal atom is the fourfold hollow site on PTA.As the non-noble metal Fe1-PTA system possesses considerable adsorption energies towards both O2 and C2H4,the strong bonding interaction between Fe1 and PTA cluster was analyzed.It is found that the electron transfers from Fe atom to PTA cluster and strong covalent metal-support interactions(CMSI)between the Fe 3 d orbitals and O 2 p orbitals of PTA lay the foundation of high stability.The proposed catalytic reaction mechanism for ethylene epoxidation on Fe1-PTA single-atom catalyst(SAC)includes three steps:the O2 adsorbs on Fe1-PTA via electron transfer;the first ethylene attacks the adsorbed O2 molecule on Fe1-PTA followed by the formation of C2H4O;finally,the O atom remained on Fe1-PTA reacts with a second ethylene to form the product and accomplish the catalytic cycle.The Fe1-PTA has high selectivity and catalytic activity for ethylene epoxidation via an Eley–Rideal mechanism with low energy barriers.A potentially competitive pathway for the formation of acetaldehyde is not kinetically favorable.These results provide insights for the development of highly efficient heterogeneous SACs for ethylene epoxidation with non-noble metals. 展开更多
关键词 single-atom catalyst non-noble metal phosphotungstic acid ethylene epoxidation computational modeling
原文传递
Comparative Studies of Non-noble Metal Modified Mesoporous M-Ni-CaO-ZrO2 (M=Fe, Co, Cu) Catalysts for Simulated Biogas Dry Reforming 被引量:5
13
作者 Changzhen Wang Yin Zhang +1 位作者 Yongzhao Wang Yongxiang Zhao 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2017年第1期113-120,共8页
The present work is aimed to improve the performance of Ni-based catalysts for biogas dry reforming by adding a second non-noble metal (Fe, Co, Cu) into a previously studied mesoporous Ni-CaO-ZrO2 nanocomposite. Bio... The present work is aimed to improve the performance of Ni-based catalysts for biogas dry reforming by adding a second non-noble metal (Fe, Co, Cu) into a previously studied mesoporous Ni-CaO-ZrO2 nanocomposite. Biogas was simulated with equivalent methane and carbon dioxide for the dry reforming reaction. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption, temperature-programmed reduction (TPR), thermogravi- metric analysis (TGA), and transmission electron microscopy (TEM) measurements were taken to characterize the structural and textual properties of the bimetallic catalysts as well as the accumulated carbon deposition. The addition of Fe leads to a less ordering growth of mesopores of Fe-Ni-CaO-ZrO2 sample, and the existence of Cu results in a relatively larger portion of free NiO in Cu-Ni-CaO-ZrO2. Compared with Fe and Cu, the presence of Co could efficiently form a beneficial dual metal effect and enhance the strong metal support interaction between Ni and CaO-ZrO2, thus enhancing the activity and stability of the catalyst in biogas dry reforming reaction. 展开更多
关键词 nickel catalyst non-noble metal modified bimetallic catalyst biogas dry reforming carbon deposition
原文传递
Monodispersed Pt nanoparticles on reduced graphene oxide by a non-noble metal sacrificial approach for hydrolytic dehydrogenation of ammonia borane 被引量:2
14
作者 Yao Chen Xinchun Yang +1 位作者 Mitsunori Kitta Qiang Xu 《Nano Research》 SCIE EI CAS CSCD 2017年第11期3811-3816,共6页
Downsizing noble metal nanoparticles,such as Pt,is an essential goal for many catalytic reactions.A non-noble metal sacrificial approach was used to immobilize monodispersed Pt nanoparticles (NPs) with a mean size o... Downsizing noble metal nanoparticles,such as Pt,is an essential goal for many catalytic reactions.A non-noble metal sacrificial approach was used to immobilize monodispersed Pt nanoparticles (NPs) with a mean size of 1.2 nm on reduced graphene oxide (RGO).ZnO co-precipitated with Pt NPs and subsequently sacrificed by acid etching impedes the diffusion of Pt atoms onto the primary Pt particles and also their aggregation during the reduction of precursors.The resulting ultrafine Pt nanoparticles exhibit high activity (a turnover frequency of 284 min-1 at 298 K) in the hydrolytic dehydrogenation of ammonia borane.The non-noble metal sacrificial approach is demonstrated as a general approach to synthesize well-dispersed noble metal NPs for catalysis. 展开更多
关键词 CATALYSIS hydrogen generation reduced graphene oxide PLATINUM ammonia borane non-noble metal sacrificial approach
原文传递
Recent Progress in Carbon-based Materials of Non-Noble Metal Catalysts for ORR in Acidic Environment 被引量:1
15
作者 Jie Lian Jin-Yu Zhao Xiao-Min Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第7期885-899,共15页
Proton exchange membrane fuel cell(PEMFC)has important implications for the success of clean transportation in the future.One of the key factors affecting the cost and performance of PEMFC is the cathode electrocataly... Proton exchange membrane fuel cell(PEMFC)has important implications for the success of clean transportation in the future.One of the key factors affecting the cost and performance of PEMFC is the cathode electrocatalyst for the oxygen reduction reaction(ORR)to overcome sluggish kinetics and instability in an acidic environment.As an essential component of the electrocatalyst,the support material largely determines the activity,mass transfer,charge transfer,and durability of the electrocatalyst.Thereby,the support material plays a critical role in the overall performance of the electrocatalyst.Carbonbased materials are widely used as electrocatalyst supports because of their high porosity,conductivity,chemical stability,and tunable morphology.Recently,some new carbon-based materials with excellent structure have been introduced,such as carbon nanotubes,carbon nanowires,graphene,metal-organic framework(MOF)-derived carbon,and biomass-derived carbon materials.Combined with a variety of strategies,such as controllable construction of porous structures and surface defects,proper doping heteroatoms,the ingenious design of model electrocatalysts,and predictive theoretical calculation,a new reliable path was provided for further improving the performance of electrocatalysts and exploring the catalytic mechanism.Based on the topic of carbon-based materials for ORR in acidic medium,this review summarizes the up-to-date progress and breakthroughs,highlights the factors affecting the catalytic activity and stability of ORR electrocatalysts in acids,and discusses their future application and development. 展开更多
关键词 Carbon-based materials non-noble metal electrocatalysts Acidic environment Oxygen reduction reaction Proton exchange membrane fuel cell
原文传递
Non-noble-metal electrocatalysts for oxygen evolution reaction toward seawater splitting: A review 被引量:1
16
作者 Zhengguang Qin Wenxian Liu +4 位作者 Wenbin Que Jinxiu Feng Wenhui Shi Fangfang Wu Xiehong Cao 《ChemPhysMater》 2023年第3期185-196,共12页
The direct electrolytic splitting of abundant seawater instead of scarce freshwater is an ideal strategy for producing clean and renewable hydrogen(H 2)fuels.The oxygen evolution reaction(OER)is a vital half-reaction ... The direct electrolytic splitting of abundant seawater instead of scarce freshwater is an ideal strategy for producing clean and renewable hydrogen(H 2)fuels.The oxygen evolution reaction(OER)is a vital half-reaction that occurs during electrochemical seawater splitting.However,OER suffers from sluggish four-electron transfer kinetics and competitive chlorine evolution reactions in seawater.Noble metal-based catalysts such as IrO_(2) and RuO_(2) are considered to have state-of-the-art OER electrocatalytic activity,but the low reserves and high prices of these noble metals significantly limit their large-scale application.Recently,efforts have been made to explore efficient,robust,and anti-chlorine-corrosion non-noble-metal OER electrocatalysts for seawater splitting such as oxides,hydroxides,phosphides,nitrides,chalcogenides,alloys,and composites.An in-depth understanding of the fundamentals of seawater electrolysis and the design principle of electrode materials is important for promoting seawater-splitting technology.In this review,we first introduce fundamental reactions in seawater electrolytes.Subsequently,construction strategies for OER electrocatalysts for seawater splitting are introduced.Finally,present challenges and perspectives regarding non-noble-metal OER electrocatalysts for commercial H 2 production by seawater splitting are discussed. 展开更多
关键词 non-noble metals OER electrocatalyst Seawater splitting Chlorine evolution reactions
原文传递
Nanoscale visualization of hot carrier generation and transfer at non-noble metal and oxide interface
17
作者 Ranveer Singh Qadeer Akbar Sial +3 位作者 Seung-ik Han Sanghee Nah Ji-Yong Park Hyungtak Seo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第3期151-159,共9页
The conversion efficiency of energy-harvesting devices can be increased by utilizing hot-carriers(HCs).However,due to ultrafast carrier-carrier scattering and the lack of carrier injection dynamics,HC-based devices ha... The conversion efficiency of energy-harvesting devices can be increased by utilizing hot-carriers(HCs).However,due to ultrafast carrier-carrier scattering and the lack of carrier injection dynamics,HC-based devices have low efficiencies.In the present work,we report the effective utilization of HCs at the nanoscale and their transfer dynamics from a non-noble metal to a metal oxide interface by means of real-space photocurrent mapping by using local probe techniques and conducting femtosecond transient absorption(TA)measurements.The photocurrent maps obtained under white light unambiguously show that the HCs are injected into the metal oxide layer from the TiN layer,as also confirmed by conductive atomic force microscopy.In addition,the increased photocurrent in the bilayer structure indicates the injection of HCs from both layers due to the broadband absorption efficiency of TiN layer,passivation of the surface states by the top TiN layer,and smaller barrier height of the interfaces.Furthermore,electrostatic force microscopy and Kelvin probe force microscopy provide direct evidence of charge injection from TiN to the MoO_(x)film at the nanoscale.The TA absorption spectra show a strong photo-bleaching signal over wide spectral range and ultrafast decaying behavior at the picosecond time scale,which indicate efficient electron transfer from TiN to MoO_(x).Thus,our simple and effective approach can facilitate HC collection under white light,thereby achieving high conversion efficiency for optoelectronic devices. 展开更多
关键词 non-noble metal Hot carrier Real-space photocurrent mapping Local-probe force microscopy
原文传递
Efficient Visible Light Hydrogen Evolution Catalyst Composed of Non-noble Metal Nitride (Ni_(3)N) Cocatalyst and Zn_(0.5)Cd_(0.5)S Solid Solution
18
作者 XU Zhonghang WU Yuanyu +2 位作者 TAO Ran JIN Zhanbin FANG Xuedong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2023年第6期928-932,共5页
In recent years,many effective photocatalysts have been developed to solve the problem of environmental pollution and clean energy shortage.In this paper,non-noble metal cocatalyst Ni_(3)N nanoparticles supported Zn_(... In recent years,many effective photocatalysts have been developed to solve the problem of environmental pollution and clean energy shortage.In this paper,non-noble metal cocatalyst Ni_(3)N nanoparticles supported Zn_(0.5)Cd_(0.5)S(ZCS)nanorods(Ni_(3)N/ZCS)composites were successfully synthesized by ultrasonic method.The hydrogen production efficiencies of the photocatalysts were tested under visible light,which was found that when the loading of Ni_(3)N was 2%of the mass of ZCS,and the Ni_(3)N/ZCS composite had the best hydrogen evolution performance,which could reach 70.3 mmol·h^(-1)·g^(-1).In addition,the quantum efficiency under 420 nm monochromatic light irradiation was 27.2%.Through different characterization analyses,such as X-ray diffraction(XRD),scanning electron microscopy(SEM),and UV-Vis diffuse reflectance spectra(DRS),a possible photocatalytic mechanism was proposed,providing some reference values for non-precious metals as cocatalysts. 展开更多
关键词 Zn_(0.5)Cd_(0.5)S non-noble metal nitride Photocatalytic hydrogen evolution
原文传递
Recent developments in electrocatalysts and future prospects for oxygen reduction reaction in polymer electrolyte membrane fuel cells 被引量:8
19
作者 Maryam Kiani Jie Zhang +5 位作者 Yan Luo Chunping Jiang Jinlong Fan Gang Wang Jinwei Chen Ruilin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1124-1139,共16页
The main difficulty in the extensive commercial use of polymer electrolyte membrane fuel cells (PEMFCs) is the use of noble metals such as Pt-based electrocatalyst at the cathode, which is essential to ease the oxyg... The main difficulty in the extensive commercial use of polymer electrolyte membrane fuel cells (PEMFCs) is the use of noble metals such as Pt-based electrocatalyst at the cathode, which is essential to ease the oxygen reduction reaction (ORR) in fuel cells (FCs). To eliminate the high loading of Pt-based electrocatalysts to minimize the cost, extensive study has been carried out over the previous decades on the non-noble metal catalysts. Development in enhancing the ORR performance of FCs is mainly due to the doped carbon materials, Fe and Co-based electrocatalysts, these materials could be considered as probable substitutes for Pt-based catalysts. But the stability of these non-noble metal electrocatalysts is low and the durability of these metals remains unclear. The three basic reasons of instability are: (i) oxidative occurrence by H2O2, (ii) leakage of the metal site and (iii) protonation by probable anion adsorption of the active site. Whereas leakage of the metal site has been almost solved, more work is required to understand and avoid losses from oxidative attack and protonation. The ORR performance such as stability tests are usually run at low current densities and the lifetime is much shorter than desired need. Therefore, improvement in the ORR activity and stability afe the key issues of the non-noble metal electrocatalyst. Based on the consequences obtained in this area, numerous future research directions are projected and discussed in this paper. Hence, this review is focused on improvement of stability and durability of the non-noble metal electrocatalyst. 展开更多
关键词 non-noble metal electrocatalysts Polymer electrolyte membrane fuel cells(PEMFCs) Oxygen reduction reaction(ORR) ELECTROCATALYSIS Stability
下载PDF
Hierarchical structured CoP nanosheets/carbon nanofibers bifunctional eletrocatalyst for high-efficient overall water splitting 被引量:4
20
作者 Xiao-Qiao Xie Junpeng Liu +3 位作者 Chaonan Gu Jingjing Li Yan Zhao Chun-Sen Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期503-510,I0013,共9页
The design of efficient,stable,and economical electrocatalysts for oxygen and hydrogen evolution reaction(OER and HER)is a major challenge for overall water splitting.Herein,a hierarchical structured CoP/carbon nanofi... The design of efficient,stable,and economical electrocatalysts for oxygen and hydrogen evolution reaction(OER and HER)is a major challenge for overall water splitting.Herein,a hierarchical structured CoP/carbon nanofibers(CNFs)composite was successfully synthesized and its potential application as a high-efficiency bifunctional electrocatalyst for overall splitting water was evaluated.The synergetic effect of two-dimensional(2D)CoP nanosheets and on e-dimensi on al(1D)CNFs endowed the CoP/CNFs composites with abundant active sites and rapid electron and mass transport pathways,and thereby significantly improved the electrocatalytic performances.The optimized CoP/CNFs delivered a current density of 10 mA cm^(-2) at low overpotential of 325 mV for OER and 225 mV for HER.In the overall water splitting,CoP/CNFs achieved a low potential of 1.65 V at 10 mA cm^(-2).The facile strategy provided in the present work can facilitate the design and development of multifunctional non-noble metal catalysts for energy applications. 展开更多
关键词 Bifunctional electrocatalyst Overall splitting water Electrospun carbon nanofibers CoP nanosheets non-noble metal catalysts
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部