To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a deriv...To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.展开更多
In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong...In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong if the reliability value R is larger than 1 by using the existent method, in which case the formula is necessary to be revised. This is obviously inconvenient for programming. Combining reliability-based optimization theory, robust designing method and reliability based sensitivity analysis, a new method for reliability robust designing is proposed. Therefore the influence level of the designing parameters’ changing to the reliability of vehicle components can be obtained. The reliability sensitivity with respect to design parameters is viewed as a sub-objective function in the multi-objective optimization problem satisfying reliability constraints. Given the first four moments of basic random variables, a fourth-moment technique and the proposed optimization procedure can obtain reliability-based robust design of automobile components with non-normal distribution parameters accurately and quickly. By using the proposed method, the distribution style of the random parameters is relaxed. Therefore it is much closer to the actual reliability problems. The numerical examples indicate the following: (1) The reliability value obtained by the robust method proposed increases (】0.04%) comparing to the value obtained by the ordinary optimization algorithm; (2) The absolute value of reliability-based sensitivity decreases (】0.01%), and the robustness of the products’ quality is improved accordingly. Utilizing the reliability-based optimization and robust design method in the reliability designing procedure reduces the manufacture cost and provides the theoretical basis for the reliability and robust design of the vehicle components.展开更多
A new method for calculating the failure probabilityof structures with random parameters is proposed based onmultivariate power polynomial expansion, in which te uncertain quantities include material properties, struc...A new method for calculating the failure probabilityof structures with random parameters is proposed based onmultivariate power polynomial expansion, in which te uncertain quantities include material properties, structuralgeometric characteristics and static loads. The structuralresponse is first expressed as a multivariable power polynomialexpansion, of which the coefficients ae then determined by utilizing the higher-order perturbation technique and Galerkinprojection scheme. Then, the final performance function ofthe structure is determined. Due to the explicitness of theperformance function, a multifold integral of the structuralfailure probability can be calculated directly by the Monte Carlo simulation, which only requires a smal amount ofcomputation time. Two numerical examples ae presented toillustate te accuracy ad efficiency of te proposed metiod. It is shown that compaed with the widely used first-orderreliability method ( FORM) and second-order reliabilitymethod ( SORM), te results of the proposed method are closer to that of the direct Monte Carlo metiod,and it requires much less computational time.展开更多
In order to analyze the risky factors that affect vehicle-cyclist crash injury severity at the intersection area,especially the factors relating to the road users behaviors,an empirical study was conducted by collecti...In order to analyze the risky factors that affect vehicle-cyclist crash injury severity at the intersection area,especially the factors relating to the road users behaviors,an empirical study was conducted by collecting accident records from 2011 to 2015 from the General Estimates System.After preliminary screening,the variables were classified into 5 main categories including cyclists characteristic and behavior,drivers characteristic and behavior,vehicle characteristic,intersection condition,and time.The random parameter ordinal probit(RPOP)was used to study the significant influencing factors and corresponding heterogeneity.The results show that failing to obey traffic signals,failing to yield to right-of-way,dash and drinking before cycling can increase the injury severity for cyclists,and the corresponding fatal injury likelihoods increase by 53.2%,40.0%,86.3%,and 211.5%,respectively.Moreover,drivers inattention,speeding,going straight and left turning increase the risk of crashing for cyclists.The corresponding fatal injury likelihoods increase by 134.5%,186.5%,69.3%,and 22.7%,respectively.Other indicators such as age,gender,vehicle type,traffic signal and intersection type can also affect injury severity.展开更多
This paper introduces the principle of genetic algorithm and the basic method of solving Markov random field parameters.Focusing on the shortcomings in present methods,a new method based on genetic algorithms is propo...This paper introduces the principle of genetic algorithm and the basic method of solving Markov random field parameters.Focusing on the shortcomings in present methods,a new method based on genetic algorithms is proposed to solve the parameters in the Markov random field.The detailed procedure is discussed.On the basis of the parameters solved by genetic algorithms,some experiments on classification of aerial images are given.Experimental results show that the proposed method is effective and the classification results are satisfactory.展开更多
This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equiva...This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equivalent deterministic one in the sense of minimal residual error by the Chebyshev polynomial approximation method. Then, we explore the dynamical behaviour of the stochastic RSssler system through its equivalent deterministic system by numerical simulations. The numerical results show that some stochastic period-doubling bifurcation, akin to the conventional one in the deterministic case, may also appear in the stochastic Rossler system. In addition, we also examine the influence of the random parameter intensity on bifurcation phenomena in the stochastic Rossler system.展开更多
Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing sys...Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing system with a random parameter is reduced to its equivalent deterministic one, and then the responses of the stochastic system can be obtained by available effective numerical methods. Finally, numerical simulations show that the phase of the additional weak harmonic perturbation has great influence on the stochastic period-doubling bifurcation in the biharmonic driven Duffing system. It is emphasized that, different from the deterministic biharmonic driven Duffing system, the intensity of random parameter in the Duffing system can also be taken as a bifurcation parameter, which can lead to the stochastic period-doubling bifurcations.展开更多
(Co) variance components and genetic parameters were estimated for milk yield of Iranian Holstein cows. A total number of 68,945 milk test-day records of first, second and third lactations of 8515 animals from 100 sir...(Co) variance components and genetic parameters were estimated for milk yield of Iranian Holstein cows. A total number of 68,945 milk test-day records of first, second and third lactations of 8515 animals from 100 sires and 7743 dams originated from 34 herds collected during 2007 to 2009 by Iranian animal breeding center were used. The ASReml computer program was used to analyze the milk test-day records using the random regression procedure. Herd test date (HTD), milking times per day (milking frequency), number of lactations, year of birth, year of calving, age of animal at calving and days in milk (DIM) considered as fixed effects and additive genetic effects and animal permanent environmental effects were considered as the random effects. Additive genetic variance, animal permanent environment variance, residual variance, phenotypic variance, heritability and repeatability were estimated during different months of lactation between 5.7 - 19.6, 15.3 - 27.1, 31.4 - 17.2, 45.8 - 64.83, 0.1 - 0.32 and 0.4 - 0.6, respectively. Genetic correlation and phenotypic correlation were also estimated between months of lactation in range of -0.35 - 0.98 and 0.03 - 0.67, respectively. Genetic correlation and phenotypic correlation both showed the same changing pattern and they decreased as the interval between months of lactation increased.展开更多
Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
This paper proposes a method for determining the stabilizing parameter regions for general delay control systems based on randomized sampling. A delay control system is converted into a unified state-space form. The n...This paper proposes a method for determining the stabilizing parameter regions for general delay control systems based on randomized sampling. A delay control system is converted into a unified state-space form. The numerical stability condition is developed and checked for sample points in the parameter space. These points are separated into stable and unstable regions by the decision function obtained from some learning method. The proposed method is very general and applied to a much wider range of systems than the existing methods in the literature. The proposed method is illustrated with examples.展开更多
In this paper, we explore the properties of a positive-part Stein-like estimator which is a stochastically weighted convex combination of a fully correlated parameter model estimator and uncorrelated parameter model e...In this paper, we explore the properties of a positive-part Stein-like estimator which is a stochastically weighted convex combination of a fully correlated parameter model estimator and uncorrelated parameter model estimator in the Random Parameters Logit (RPL) model. The results of our Monte Carlo experiments show that the positive-part Stein-like estimator provides smaller MSE than the pretest estimator in the fully correlated RPL model. Both of them outperform the fully correlated RPL model estimator and provide more accurate information on the share of population putting a positive or negative value on the alternative attributes than the fully correlated RPL model estimates. The Monte Carlo mean estimates of direct elasticity with pretest and positive-part Stein-like estimators are closer to the true value and have smaller standard errors than those with fully correlated RPL model estimator.展开更多
When initializing cryptographic systems or running cryptographic protocols, the randomness of critical parameters, like keys or key components, is one of the most crucial aspects. But, randomly chosen parameters come ...When initializing cryptographic systems or running cryptographic protocols, the randomness of critical parameters, like keys or key components, is one of the most crucial aspects. But, randomly chosen parameters come with the intrinsic chance of duplicates, which finally may cause cryptographic systems including RSA, ElGamal and Zero-Knowledge proofs to become insecure. When concerning digital identifiers, we need uniqueness in order to correctly identify a specific action or object. Unfortunately we also need randomness here. Without randomness, actions become linkable to each other or to their initiator’s digital identity. So ideally the employed (cryptographic) parameters should fulfill two potentially conflicting requirements simultaneously: randomness and uniqueness. This article proposes an efficient mechanism to provide both attributes at the same time without highly constraining the first one and never violating the second one. After defining five requirements on random number generators and discussing related work, we will describe the core concept of the generation mechanism. Subsequently we will prove the postulated properties (security, randomness, uniqueness, efficiency and privacy protection) and present some application scenarios including system-wide unique parameters, cryptographic keys and components, identifiers and digital pseudonyms.展开更多
In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters...In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity.展开更多
Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the dam...Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the damping ratio and damage.In this study,methods based on the Hilbert-Huang transform(HHT) are investigated for structural modal parameter identifi cation and damage diagnosis.First,mirror extension and prediction via a radial basis function(RBF) neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition(EMD),which is a crucial part of HHT.Then,the approaches based on HHT combined with other techniques,such as the random decrement technique(RDT),natural excitation technique(NExT) and stochastic subspace identifi cation(SSI),are proposed to identify modal parameters of structures.Furthermore,a damage diagnosis method based on the HHT is also proposed.Time-varying instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure.The relative amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure.Finally,acceleration records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the proposed approaches.The results show that the proposed approaches based on HHT for modal parameter identifi cation and damage diagnosis are reliable and practical.展开更多
Sliding mode control problem of a class of Ito^ type partial differential equations with delay is probed. The variable structure controller is designed. The existence of motion of sliding mode is shown. And the charac...Sliding mode control problem of a class of Ito^ type partial differential equations with delay is probed. The variable structure controller is designed. The existence of motion of sliding mode is shown. And the character of invariance of sliding control system about uncertainty on the sliding switching surface and stability are analyzed.展开更多
The meaning to research the potential of VLBI for geodetic applications is summarized. And the observation models and their related parameters of geodetic interest are investigated. Then, the principle and method of u...The meaning to research the potential of VLBI for geodetic applications is summarized. And the observation models and their related parameters of geodetic interest are investigated. Then, the principle and method of using the random model in VLBI data processing are investigated. With the world wide VLBI data from 2000-2004, the conditions to compute the parameters of geodetic interest are introduced, and so are the computing methods and processes. And the computed resuits of the parameters of geodetic interest are analyzed.展开更多
In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is ...In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is difficult.In this paper,multiple parameters are used to fully explore the underground formation information in the known seismic reflection and well log data.The spatial structure characteristics of complex underground reservoirs are described more comprehensively using multiple statistical characteristic parameters.We propose a prestack seismic stochastic inversion method based on prior information on statistical characteristic parameters.According to the random medium theory,this method obtains several statistical characteristic parameters from known seismic and logging data,constructs a prior information model that meets the spatial structure characteristics of the underground strata,and integrates multiparameter constraints into the likelihood function to construct the objective function.The very fast quantum annealing algorithm is used to optimize and update the objective function to obtain the fi nal inversion result.The model test shows that compared with the traditional prior information model construction method,the prior information model based on multiple parameters in this paper contains more detailed stratigraphic information,which can better describe complex underground reservoirs.A real data analysis shows that the stochastic inversion method proposed in this paper can effectively predict the geophysical characteristics of complex underground reservoirs and has a high resolution.展开更多
To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an impr...To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an improved artificial bee colony algorithm without derivative and the bootstrap method to estimate the parameters and evaluate the accuracy of MAM error model.The improved artificial bee colony algorithm can update individuals in multiple dimensions and improve the cooperation ability between individuals by constructing a new search equation based on the idea of quasi-affine transformation.The experimental results show that based on the weighted least squares criterion,the algorithm can get the results consistent with the weighted least squares method without multiple formula derivation.The parameter estimation and accuracy evaluation method based on the bootstrap method can get better parameter estimation and more reasonable accuracy information than existing methods,which provides a new idea for the theory of parameter estimation and accuracy evaluation of the MAM error model.展开更多
A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of hu...A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of human randomized searching, and the human searching behaviors. The algorithm's performance is studied using a challenging set of typically complex functions with comparison of differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms, and the simulation results show that SFS is competitive to solve most parts of the benchmark problems and will become a promising candidate of search algorithms especially when the existing algorithms have some difficulties in solving certain problems.展开更多
基金supported by the National Natural Science Foundation of China(No.42174011 and No.41874001).
文摘To estimate the parameters of the mixed additive and multiplicative(MAM)random error model using the weighted least squares iterative algorithm that requires derivation of the complex weight array,we introduce a derivative-free cat swarm optimization for parameter estimation.We embed the Powell method,which uses conjugate direction acceleration and does not need to derive the objective function,into the original cat swarm optimization to accelerate its convergence speed and search accuracy.We use the ordinary least squares,weighted least squares,original cat swarm optimization,particle swarm algorithm and improved cat swarm optimization to estimate the parameters of the straight-line fitting MAM model with lower nonlinearity and the DEM MAM model with higher nonlinearity,respectively.The experimental results show that the improved cat swarm optimization has faster convergence speed,higher search accuracy,and better stability than the original cat swarm optimization and the particle swarm algorithm.At the same time,the improved cat swarm optimization can obtain results consistent with the weighted least squares method based on the objective function only while avoiding multiple complex weight array derivations.The method in this paper provides a new idea for theoretical research on parameter estimation of MAM error models.
基金supported by National Natural Science Foundation of China (Grant Nos. 51135003, U1234208, 51205050)New Teachers' Fund for Doctor Stations of Ministry of Education of China (Grant No.20110042120020)+1 种基金Fundamental Research Funds for the Central Universities, China (Grant No. N110303003)China Postdoctoral Science Foundation (Grant No. 2011M500564)
文摘In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong if the reliability value R is larger than 1 by using the existent method, in which case the formula is necessary to be revised. This is obviously inconvenient for programming. Combining reliability-based optimization theory, robust designing method and reliability based sensitivity analysis, a new method for reliability robust designing is proposed. Therefore the influence level of the designing parameters’ changing to the reliability of vehicle components can be obtained. The reliability sensitivity with respect to design parameters is viewed as a sub-objective function in the multi-objective optimization problem satisfying reliability constraints. Given the first four moments of basic random variables, a fourth-moment technique and the proposed optimization procedure can obtain reliability-based robust design of automobile components with non-normal distribution parameters accurately and quickly. By using the proposed method, the distribution style of the random parameters is relaxed. Therefore it is much closer to the actual reliability problems. The numerical examples indicate the following: (1) The reliability value obtained by the robust method proposed increases (】0.04%) comparing to the value obtained by the ordinary optimization algorithm; (2) The absolute value of reliability-based sensitivity decreases (】0.01%), and the robustness of the products’ quality is improved accordingly. Utilizing the reliability-based optimization and robust design method in the reliability designing procedure reduces the manufacture cost and provides the theoretical basis for the reliability and robust design of the vehicle components.
基金The National Natural Science Foundation of China(No.51378407,51578431)
文摘A new method for calculating the failure probabilityof structures with random parameters is proposed based onmultivariate power polynomial expansion, in which te uncertain quantities include material properties, structuralgeometric characteristics and static loads. The structuralresponse is first expressed as a multivariable power polynomialexpansion, of which the coefficients ae then determined by utilizing the higher-order perturbation technique and Galerkinprojection scheme. Then, the final performance function ofthe structure is determined. Due to the explicitness of theperformance function, a multifold integral of the structuralfailure probability can be calculated directly by the Monte Carlo simulation, which only requires a smal amount ofcomputation time. Two numerical examples ae presented toillustate te accuracy ad efficiency of te proposed metiod. It is shown that compaed with the widely used first-orderreliability method ( FORM) and second-order reliabilitymethod ( SORM), te results of the proposed method are closer to that of the direct Monte Carlo metiod,and it requires much less computational time.
基金The National Key Research and Development Program of China(No.2017YFC0803902).
文摘In order to analyze the risky factors that affect vehicle-cyclist crash injury severity at the intersection area,especially the factors relating to the road users behaviors,an empirical study was conducted by collecting accident records from 2011 to 2015 from the General Estimates System.After preliminary screening,the variables were classified into 5 main categories including cyclists characteristic and behavior,drivers characteristic and behavior,vehicle characteristic,intersection condition,and time.The random parameter ordinal probit(RPOP)was used to study the significant influencing factors and corresponding heterogeneity.The results show that failing to obey traffic signals,failing to yield to right-of-way,dash and drinking before cycling can increase the injury severity for cyclists,and the corresponding fatal injury likelihoods increase by 53.2%,40.0%,86.3%,and 211.5%,respectively.Moreover,drivers inattention,speeding,going straight and left turning increase the risk of crashing for cyclists.The corresponding fatal injury likelihoods increase by 134.5%,186.5%,69.3%,and 22.7%,respectively.Other indicators such as age,gender,vehicle type,traffic signal and intersection type can also affect injury severity.
文摘This paper introduces the principle of genetic algorithm and the basic method of solving Markov random field parameters.Focusing on the shortcomings in present methods,a new method based on genetic algorithms is proposed to solve the parameters in the Markov random field.The detailed procedure is discussed.On the basis of the parameters solved by genetic algorithms,some experiments on classification of aerial images are given.Experimental results show that the proposed method is effective and the classification results are satisfactory.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10872165)
文摘This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equivalent deterministic one in the sense of minimal residual error by the Chebyshev polynomial approximation method. Then, we explore the dynamical behaviour of the stochastic RSssler system through its equivalent deterministic system by numerical simulations. The numerical results show that some stochastic period-doubling bifurcation, akin to the conventional one in the deterministic case, may also appear in the stochastic Rossler system. In addition, we also examine the influence of the random parameter intensity on bifurcation phenomena in the stochastic Rossler system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos10472091and10332030)
文摘Stochastic period-doubling bifurcation is explored in a forced Duffing system with a bounded random parameter as an additional weak harmonic perturbation added to the system. Firstly, the biharmonic driven Duffing system with a random parameter is reduced to its equivalent deterministic one, and then the responses of the stochastic system can be obtained by available effective numerical methods. Finally, numerical simulations show that the phase of the additional weak harmonic perturbation has great influence on the stochastic period-doubling bifurcation in the biharmonic driven Duffing system. It is emphasized that, different from the deterministic biharmonic driven Duffing system, the intensity of random parameter in the Duffing system can also be taken as a bifurcation parameter, which can lead to the stochastic period-doubling bifurcations.
文摘(Co) variance components and genetic parameters were estimated for milk yield of Iranian Holstein cows. A total number of 68,945 milk test-day records of first, second and third lactations of 8515 animals from 100 sires and 7743 dams originated from 34 herds collected during 2007 to 2009 by Iranian animal breeding center were used. The ASReml computer program was used to analyze the milk test-day records using the random regression procedure. Herd test date (HTD), milking times per day (milking frequency), number of lactations, year of birth, year of calving, age of animal at calving and days in milk (DIM) considered as fixed effects and additive genetic effects and animal permanent environmental effects were considered as the random effects. Additive genetic variance, animal permanent environment variance, residual variance, phenotypic variance, heritability and repeatability were estimated during different months of lactation between 5.7 - 19.6, 15.3 - 27.1, 31.4 - 17.2, 45.8 - 64.83, 0.1 - 0.32 and 0.4 - 0.6, respectively. Genetic correlation and phenotypic correlation were also estimated between months of lactation in range of -0.35 - 0.98 and 0.03 - 0.67, respectively. Genetic correlation and phenotypic correlation both showed the same changing pattern and they decreased as the interval between months of lactation increased.
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
文摘This paper proposes a method for determining the stabilizing parameter regions for general delay control systems based on randomized sampling. A delay control system is converted into a unified state-space form. The numerical stability condition is developed and checked for sample points in the parameter space. These points are separated into stable and unstable regions by the decision function obtained from some learning method. The proposed method is very general and applied to a much wider range of systems than the existing methods in the literature. The proposed method is illustrated with examples.
文摘In this paper, we explore the properties of a positive-part Stein-like estimator which is a stochastically weighted convex combination of a fully correlated parameter model estimator and uncorrelated parameter model estimator in the Random Parameters Logit (RPL) model. The results of our Monte Carlo experiments show that the positive-part Stein-like estimator provides smaller MSE than the pretest estimator in the fully correlated RPL model. Both of them outperform the fully correlated RPL model estimator and provide more accurate information on the share of population putting a positive or negative value on the alternative attributes than the fully correlated RPL model estimates. The Monte Carlo mean estimates of direct elasticity with pretest and positive-part Stein-like estimators are closer to the true value and have smaller standard errors than those with fully correlated RPL model estimator.
文摘When initializing cryptographic systems or running cryptographic protocols, the randomness of critical parameters, like keys or key components, is one of the most crucial aspects. But, randomly chosen parameters come with the intrinsic chance of duplicates, which finally may cause cryptographic systems including RSA, ElGamal and Zero-Knowledge proofs to become insecure. When concerning digital identifiers, we need uniqueness in order to correctly identify a specific action or object. Unfortunately we also need randomness here. Without randomness, actions become linkable to each other or to their initiator’s digital identity. So ideally the employed (cryptographic) parameters should fulfill two potentially conflicting requirements simultaneously: randomness and uniqueness. This article proposes an efficient mechanism to provide both attributes at the same time without highly constraining the first one and never violating the second one. After defining five requirements on random number generators and discussing related work, we will describe the core concept of the generation mechanism. Subsequently we will prove the postulated properties (security, randomness, uniqueness, efficiency and privacy protection) and present some application scenarios including system-wide unique parameters, cryptographic keys and components, identifiers and digital pseudonyms.
基金National Natural Science Foundation of China(60134010)
文摘In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity.
基金Gansu Science and Technology Key Project under Grant No.2GS057-A52-008
文摘Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the damping ratio and damage.In this study,methods based on the Hilbert-Huang transform(HHT) are investigated for structural modal parameter identifi cation and damage diagnosis.First,mirror extension and prediction via a radial basis function(RBF) neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition(EMD),which is a crucial part of HHT.Then,the approaches based on HHT combined with other techniques,such as the random decrement technique(RDT),natural excitation technique(NExT) and stochastic subspace identifi cation(SSI),are proposed to identify modal parameters of structures.Furthermore,a damage diagnosis method based on the HHT is also proposed.Time-varying instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure.The relative amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure.Finally,acceleration records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the proposed approaches.The results show that the proposed approaches based on HHT for modal parameter identifi cation and damage diagnosis are reliable and practical.
基金Supported by the national natural science foundation (60574042)
文摘Sliding mode control problem of a class of Ito^ type partial differential equations with delay is probed. The variable structure controller is designed. The existence of motion of sliding mode is shown. And the character of invariance of sliding control system about uncertainty on the sliding switching surface and stability are analyzed.
基金Funded by the National 973 Program of China (No.2006CB701301)the Project of University Education and Research of HubeiProvince (No.20053039).
文摘The meaning to research the potential of VLBI for geodetic applications is summarized. And the observation models and their related parameters of geodetic interest are investigated. Then, the principle and method of using the random model in VLBI data processing are investigated. With the world wide VLBI data from 2000-2004, the conditions to compute the parameters of geodetic interest are introduced, and so are the computing methods and processes. And the computed resuits of the parameters of geodetic interest are analyzed.
基金the National Science Foundation of China(No.42074136 and U19B2008)the Major National Science and Technology Projects(No.2016ZX05027004-001 and 2016ZX05002-005-009)+1 种基金the Fundamental Research Funds for the Central Universities(No.19CX02007A)China Postdoctoral Science Foundation(No.2020M672170).
文摘In the conventional stochastic inversion method,the spatial structure information of underground strata is usually characterized by variograms.However,effectively characterizing the heterogeneity of complex strata is difficult.In this paper,multiple parameters are used to fully explore the underground formation information in the known seismic reflection and well log data.The spatial structure characteristics of complex underground reservoirs are described more comprehensively using multiple statistical characteristic parameters.We propose a prestack seismic stochastic inversion method based on prior information on statistical characteristic parameters.According to the random medium theory,this method obtains several statistical characteristic parameters from known seismic and logging data,constructs a prior information model that meets the spatial structure characteristics of the underground strata,and integrates multiparameter constraints into the likelihood function to construct the objective function.The very fast quantum annealing algorithm is used to optimize and update the objective function to obtain the fi nal inversion result.The model test shows that compared with the traditional prior information model construction method,the prior information model based on multiple parameters in this paper contains more detailed stratigraphic information,which can better describe complex underground reservoirs.A real data analysis shows that the stochastic inversion method proposed in this paper can effectively predict the geophysical characteristics of complex underground reservoirs and has a high resolution.
基金supported by the National Natural Science Foundation of China(No.42174011 and No.41874001).
文摘To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an improved artificial bee colony algorithm without derivative and the bootstrap method to estimate the parameters and evaluate the accuracy of MAM error model.The improved artificial bee colony algorithm can update individuals in multiple dimensions and improve the cooperation ability between individuals by constructing a new search equation based on the idea of quasi-affine transformation.The experimental results show that based on the weighted least squares criterion,the algorithm can get the results consistent with the weighted least squares method without multiple formula derivation.The parameter estimation and accuracy evaluation method based on the bootstrap method can get better parameter estimation and more reasonable accuracy information than existing methods,which provides a new idea for the theory of parameter estimation and accuracy evaluation of the MAM error model.
基金supported by the Doctor Students Innovation Foundation of Southwest Jiaotong University.
文摘A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of human randomized searching, and the human searching behaviors. The algorithm's performance is studied using a challenging set of typically complex functions with comparison of differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms, and the simulation results show that SFS is competitive to solve most parts of the benchmark problems and will become a promising candidate of search algorithms especially when the existing algorithms have some difficulties in solving certain problems.