As far as the vibration signal processing is concerned, composition ofvibration signal resulting from incipient localized faults in gearbox is too weak to be detected bytraditional detecting technology available now. ...As far as the vibration signal processing is concerned, composition ofvibration signal resulting from incipient localized faults in gearbox is too weak to be detected bytraditional detecting technology available now. The method, which includes two steps: vibrationsignal from gearbox is first processed by synchronous average sampling technique and then it isanalyzed by complex continuous wavelet transform to diagnose gear fault, is introduced. Twodifferent kinds of faults in the gearbox, i.e. shaft eccentricity and initial crack in tooth fillet,are detected and distinguished from each other successfully.展开更多
In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to d...In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to directly identify parameters of the observer-based residual generator based on a numerically reliable data equation obtained by filtering and sampling the input and output signals.展开更多
Fault diagnosis technology has been widely applied and is an important part of ensuring the safe operation of mechanical equipment.In response to the problem of frequent faults in rolling bearings,this paper designs a...Fault diagnosis technology has been widely applied and is an important part of ensuring the safe operation of mechanical equipment.In response to the problem of frequent faults in rolling bearings,this paper designs a rolling bearing fault diagnosis method based on convolutional capsule network(CCN).More specifically,the original vibration signal is converted into a two-dimensional time–frequency image using continuous wavelet transform(CWT),and the feature extraction is performed on the two-dimensional time–frequency image using the convolution layer at the front end of the network,and the extracted features are input into the capsule network.The capsule network converts the extracted features into vector neurons,and the dynamic routing algorithm is used to achieve feature transfer and output the results of fault diagnosis.Two different datasets are used to compare with other traditional deep learning models to verify the fault diagnosis capability of the method.The results show that the CCN has good diagnostic capability under different working conditions,even in the presence of noise and insufficient samples,compared to other models.This method contributes to the safe and reliable operation of mechanical equipment and is suitable for other rotating scenarios.展开更多
基金Provicial Natural Science Foundation of Shanxi,China(No.991051)Provincial Foundation for Homecoming Personnel from Study Abroad of Shanxi,China(No.194-101005)
文摘As far as the vibration signal processing is concerned, composition ofvibration signal resulting from incipient localized faults in gearbox is too weak to be detected bytraditional detecting technology available now. The method, which includes two steps: vibrationsignal from gearbox is first processed by synchronous average sampling technique and then it isanalyzed by complex continuous wavelet transform to diagnose gear fault, is introduced. Twodifferent kinds of faults in the gearbox, i.e. shaft eccentricity and initial crack in tooth fillet,are detected and distinguished from each other successfully.
基金This work was supported was supported in part by the European Union under grant NeCST.
文摘In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to directly identify parameters of the observer-based residual generator based on a numerically reliable data equation obtained by filtering and sampling the input and output signals.
基金Science and Technology Planning Project of Inner Mongolia of China under contract number 2021GG0346.
文摘Fault diagnosis technology has been widely applied and is an important part of ensuring the safe operation of mechanical equipment.In response to the problem of frequent faults in rolling bearings,this paper designs a rolling bearing fault diagnosis method based on convolutional capsule network(CCN).More specifically,the original vibration signal is converted into a two-dimensional time–frequency image using continuous wavelet transform(CWT),and the feature extraction is performed on the two-dimensional time–frequency image using the convolution layer at the front end of the network,and the extracted features are input into the capsule network.The capsule network converts the extracted features into vector neurons,and the dynamic routing algorithm is used to achieve feature transfer and output the results of fault diagnosis.Two different datasets are used to compare with other traditional deep learning models to verify the fault diagnosis capability of the method.The results show that the CCN has good diagnostic capability under different working conditions,even in the presence of noise and insufficient samples,compared to other models.This method contributes to the safe and reliable operation of mechanical equipment and is suitable for other rotating scenarios.