The major challenge faced by the fifth generation(5G) mobile network is higher spectral efficiency and massive connectivity,i.e.,the target spectrum efficiency is 3 times over 4G,and the target connection density is o...The major challenge faced by the fifth generation(5G) mobile network is higher spectral efficiency and massive connectivity,i.e.,the target spectrum efficiency is 3 times over 4G,and the target connection density is one million devices per square kilometer.These requirements are difficult to be satisfied with orthogonal multiple access(OMA) schemes.Non-orthogonal multiple access(NOMA) has thus been proposed as a promising candidate to address some of the challenges for 5G.In this paper,a comprehensive survey of different candidate NOMA schemes for 5G is presented,where the usage scenarios of5 G and the application requirements for NOMA are firstly discussed.A general framework of NOMA scheme is established and the features of typical NOMA schemes are analyzed and compared.We focus on the recent progress and challenge of NOMA in standardization of international telecommunication union(ITU),and 3rd generation partnership project(3GPP).In addition,prototype development and future research directions are also provided respectively.展开更多
In this paper, we investigate the downlink performance of cell-free massive multi-input multi-output non-orthogonal multiple access(CF-m MIMO-NOMA) system with conjugate beamforming precoder and compare against the or...In this paper, we investigate the downlink performance of cell-free massive multi-input multi-output non-orthogonal multiple access(CF-m MIMO-NOMA) system with conjugate beamforming precoder and compare against the orthogonal multiple access(OMA) counterpart. A novel achievable closed-form spectral efficiency(SE) expression is derived, which characterizes the effects of the channel estimation error, pilot contamination, imperfect successive interference cancellation(SIC) operation, and power optimization technique. Then, motivated by the closedform result, a sum-SE maximization algorithm with the sequential convex approximation(SCA) is proposed, subject to each AP power constraint and SIC power constraint. Numerical experiments indicate that the proposed sum-SE maximization algorithms have a fast converge rate, within about five iterations. In addition, compared with the full power control(FPC) scheme, our algorithms can significantly improve the achievable sum-SE. Moreover, NOMA outperforms OMA in many respects in the presence of the proposed algorithms.展开更多
With rapid development of unmanned aerial vehicles(UAVs), more and more UAVs access satellite networks for data transmission. To improve the spectral efficiency, non-orthogonal multiple access(NOMA) is adopted to inte...With rapid development of unmanned aerial vehicles(UAVs), more and more UAVs access satellite networks for data transmission. To improve the spectral efficiency, non-orthogonal multiple access(NOMA) is adopted to integrate UAVs into the satellite network, where multiple satellites cooperatively serve the UAVs and mobile terminal using the Ku-band and above. Taking into account the rain fading and the fading correlation, the outage performance is first analytically obtained for fixed power allocation and then efficiently calculated by the proposed power allocation algorithm to guarantee the user fairness. Simulation results verify the outage performance analysis and show the performance improvement of the proposed power allocation scheme.展开更多
Recently,the increasing demand of radio spectrum for the next generation communication systems due to the explosive growth of applications appetite for bandwidths has led to the problem of spectrum scarcity.The potent...Recently,the increasing demand of radio spectrum for the next generation communication systems due to the explosive growth of applications appetite for bandwidths has led to the problem of spectrum scarcity.The potential approaches among the proposed solutions to resolve this issue are well explored cognitive radio(CR)technology and recently introduced non-orthogonal multiple access(NOMA)techniques.Both the techniques are employed for efficient spectrum utilization and assure the significant improvement in the spectral efficiency.Further,the significant improvement in spectral efficiency can be achieved by combining both the techniques.Since the CR is well-explored technique as compared to that of the NOMA in the field of communication,therefore it is worth and wise to implement this technique over the CR.In this article,we have presented the frameworks of NOMA implementation over CR as well as the feasibility of proposed frameworks.Further,the differences between proposed CR-NOMA and conventional CR frameworks are discussed.Finally,the potential issues regarding the implementation of CR-NOMA are explored.展开更多
Non-orthogonal multiple access(NOMA) is considered as one of promising radio access techniques for visible light communications(VLC) in next-generation wireless communications systems.In order to provide theoretical s...Non-orthogonal multiple access(NOMA) is considered as one of promising radio access techniques for visible light communications(VLC) in next-generation wireless communications systems.In order to provide theoretical support for designing VLC-NOMA,we derive its analytic expressions for the symbol error rate(SER).Specifically,NOMA is first incorporated with appropriate VLC to establish a VLC-NOMA framework.Afterwards,mathematical expressions of the SER for the VLC-NOMA are developed.Moreover,numerical results are provided carefully to demonstrate that the proposed VLC-NOMA scheme outperforms than state-of-the-art orthogonal frequency division multiple access(OFDMA) one in terms of SER performance.Finally,relationships between the SER performance and the number of users,power allocation coefficient and semi-angle are well investigated,which can give us a scientific guide to devise the VLC-NOMA system for achieving better SER performance.展开更多
Non-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cel-lular communication networks. In this paper, we first discuss a simple NOMA model with t...Non-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cel-lular communication networks. In this paper, we first discuss a simple NOMA model with two users served by a single-carrier si-multaneously to illustrate its basic principles. Then, a more general model with multicarrier serving an arbitrary number of users on each subcarrier is also discussed. An overview of existing works on performance analysis, resource allocation, and multiple-in-put multiple-output NOMA are summarized and discussed. Furthermore, we discuss the key features of NOMA and its potential re-search challenges.展开更多
Multiple access scheme is one of the key techniques in wireless communication systems. Each generation of wireless communica-tion is featured by a new multiple access scheme from 1G to 4G. In this article we review se...Multiple access scheme is one of the key techniques in wireless communication systems. Each generation of wireless communica-tion is featured by a new multiple access scheme from 1G to 4G. In this article we review several non-orthogonal multiple access schemes for 5G. Their principles, advantages and disadvantages are discussed, and followed by a comprehensive comparison of these solutions from the perspective of user overload, receiver type, receiver complexity and so on. We also discuss the applica-tion challenges of non-orthogonal multiple access schemes in 5G.展开更多
Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5...Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.展开更多
Non-orthogonal multiple access(NOMA)is deemed to have a superior spectral efficiency and polar codes have became the channel coding scheme for control channel of enhanced mobile broadband(eMBB)in the fifth generation(...Non-orthogonal multiple access(NOMA)is deemed to have a superior spectral efficiency and polar codes have became the channel coding scheme for control channel of enhanced mobile broadband(eMBB)in the fifth generation(5G)communication systems.In this paper,NOMA combined with polar codes is used to achieve secure transmission.Both degraded wiretap channel and non-degraded wiretap channel are considered,where an eavesdropper intercepts the communication between base station(BS)and users.For the degraded wiretap channel scenario,a secure polar encoding scheme is proposed in NOMA systems with power allocation to achieve the maximum secrecy capacity.With regard to the nondegraded wiretap channel,a polar encoding scheme with multiple-input-single-output(MISO)system is proposed,where artificial noise is generated at BS to confuse the eavesdropper’s channel via transmit beamforming.The security and the secure rate are employed respectively in order to measure the secrecy performance.We prove that the proposed schemes for each scenario can achieve the secure rate and can transmit the signal securely and reliably.The simulation results show that the eavesdropper hardly decoding the secure signal when the legitimate receiver can decode the signal with very low block error rate(BLER).展开更多
The traditional orthogonal multiple access(OMA)is unable to satisfy the needs of large number of smart devices.To increase the transmission rate in the limited spectrum resource,implementation of both non-orthogonal m...The traditional orthogonal multiple access(OMA)is unable to satisfy the needs of large number of smart devices.To increase the transmission rate in the limited spectrum resource,implementation of both non-orthogonal multiple access(NOMA)and successive interference cancelation(SIC)is essential.In this paper,an optimal resource allocation algorithm in NOMA is proposed to maximize the total system rate in a multi-sector multi-subcarrier relay-assisted communication network.Since the original problem is a non-convex problem with mixed integer programming which is non-deterministic polynomial-time(NP)-hard,a three-step solution is proposed to solve the primal problem.Firstly,we determine the optimal power allocation of the outer users by using the approach of monotonic discrimination,and then the optimal user pairing is determined.Secondly,the successive convex approximation(SCA)method is introduced to transform the non-convex problem involving central users into convex one,and the Lagrangian dual method is used to determine the optimal solution.Finally,the standard Hungarian algorithm is utilized to determine the optimal subcarrier matching.The simulation results show that resource allocation algorithm is able to meet the user performance requirements with NOMA,and the total system rate is improved compared to the existing algorithms.展开更多
Both high-dense wireless connectivity and ultra-huge network capacity are main challenges of next generation broadband networks.As one of its key promising technologies,non-orthogonal multi-ple access(NOMA)scheme can ...Both high-dense wireless connectivity and ultra-huge network capacity are main challenges of next generation broadband networks.As one of its key promising technologies,non-orthogonal multi-ple access(NOMA)scheme can solve those challenges and meet those needs to some extent,in the way that different user equipments(UEs)multiplex on the same resource.Researchers around the world have presented numerous NOMA solutions.Among those,sparse code multiple access(SC-MA)technology is a typical NOMA solution.It supports scheduled access and random access which can be called granted access and grant-free access respectively.But resources allocated to granted UEs and grant-free UEs are strictly separated.In order to improve resource utilization,a hybrid non-orthogonal multiple access scheme is proposed.It allows granted UEs and grant-free UEs sharing the same resource unit in terms of fine-grained integration.On the basis,a resource allocation method is further brought forward based on genetic algorithm.It optimizes resource allocation of all UEs by mapping resource distribution issue to an optimization problem.Comparing throughputs of four meth-ods,simulation results demonstrate the proposed genetic algorithm has better throughput gain.展开更多
The spectral efficiency(SE)and energy efficiency(EE)tradeoff while ensuring rate fairness among users in non-orthogonal multiple access(NOMA)systems is investigated.In order to characterize the SE-EE tradeoff with rat...The spectral efficiency(SE)and energy efficiency(EE)tradeoff while ensuring rate fairness among users in non-orthogonal multiple access(NOMA)systems is investigated.In order to characterize the SE-EE tradeoff with rate fairness,a multi-objective optimization(MOO)problem is first formulated,where the rate fairness is represented with theα-fair utility function.Then,the MOO problem is converted into a single-objective optimization(SOO)problem by the weighted sum method.To solve the converted non-convex SOO problem,we apply sequential convex programming,which helps to propose a general power allocation algorithm to realize the SE-EE tradeoff with rate fairness.We prove the convergence of the proposed algorithm and the convergent solution satisfies the KKT conditions.Simulation results demonstrate the proposed power allocation algorithm can achieve various levels of rate fairness,and higher fairness results in degraded performance of SE-EE tradeoff.A pivotal conclusion is reached that NOMA systems significantly outperform orthogonal multiple access systems in terms of SE-EE tradeoff with the same level of rate fairness.展开更多
This paper investigates a unmanned aerial vehicle(UAV)deployment problem in a non-orthogonal multiple access(NOMA)system,where the UAV is deployed as an aerial mobile base station to transmit data to two ground users....This paper investigates a unmanned aerial vehicle(UAV)deployment problem in a non-orthogonal multiple access(NOMA)system,where the UAV is deployed as an aerial mobile base station to transmit data to two ground users.An optimization problem is formulated by deploying the UAV for maximizing the sum rate of the two users.In order to solve the optimization problem,the feasible solution region is first reduced to a line segment between two users.Then,the optimization problem is simplified to a univariate problem,which can be solved by derivation under a certain situation,and the corresponding analytical solution is also provided.Moreover,a generalized algorithm,which considers 2 situations,is proposed to further determine the optimal UAV’s location.Specifically,four cases are discussed in the first situation.Extensive simulations are depicted to demonstrate effectiveness of the proposed algorithm and its superiority over the benchmarks in maximizing the two users’sum rate.展开更多
One key advantage of 4G OFDM system is the relatively simple receiver implementation due to the orthogonal resource allocation.However,from sum-capacity and spectral efficiency points of view,orthogonal systems are ne...One key advantage of 4G OFDM system is the relatively simple receiver implementation due to the orthogonal resource allocation.However,from sum-capacity and spectral efficiency points of view,orthogonal systems are never the achieving schemes.With the rapid development of mobile communication systems,a novel concept of non-orthogonal transmission for 5G mobile communications has attracted researches all around the world.In this trend,many new multiple access schemes and waveform modulation technologies were proposed.In this paper,some promising ones of them were discussed which include Non-orthogonal Multiple Access(NOMA),Sparse Code Multiple Access(SCMA),Multi-user Shared Access(MUSA),Pattern Division Multiple Access(PDMA)and some main new waveforms including Filter-bank based Multicarrier(FBMC),Universal Filtered Multi-Carrier(UFMC),Generalized Frequency Division Multiplexing(GFDM).By analyzing and comparing features of these technologies,a research direction of guiding on future 5G multiple access and waveform are given.展开更多
A new non-orthogonal space-time-frequency code (STFC) was proposed. In conjunction with orthogonal frequency-division multiplexing (OFDM), it is appropriate for the application on frequency-selective fading channels. ...A new non-orthogonal space-time-frequency code (STFC) was proposed. In conjunction with orthogonal frequency-division multiplexing (OFDM), it is appropriate for the application on frequency-selective fading channels. On the basis of the existing non-orthogonal STC, frequency diversity is studied and a new non-orthogonal STFC is further designed. Monte-Carlo simulations show that the non-orthogonal STFC-OFDM has the advantage of large diversity order, high bandwidth efficiency and better BER performance when compared with the orthogonal STC/STFC-OFDM and non-orthogonal STC-OFDM systems.展开更多
A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM...A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM technology to guarantee the security, while the upstream traffics pass through the same optical fiber by the common time division multiple access (TDMA) technology to decrease the cost. This schemes are denoted as OCDM/TDMA-PON, which can be applied to an optical access network (OAN) with full services on demand, such as Internet protocol, video on demand, tele-presence and high quality audio. The proposed OCDM/TDMA-PON scheme combines advantages of PON, TDMA, and OCDM technology. Simulation results indicate that the designed scheme improves the OAN performance, and enhances flexibility and scalability of the system.展开更多
There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The re...There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The regular random access(RA)protocols may generate large amounts of collisions,which degrade the system throughout severally.The near-far effect and power control technologies are not applicable in capture effect to obtain power difference,resulting in the collisions that cannot be separated.In fact,the optimal design at the receiving end can also realize the condition of packet power domain separation,but there are few relevant researches.In this paper,an auxiliary beamforming scheme is proposed for power domain signal separation.It adds an auxiliary reception beam based on the conventional beam,utilizing the correlation of packets in time-frequency domain between the main and auxiliary beam to complete signal separation.The roll-off belt of auxiliary beam is used to create the carrier-to-noise ratio(CNR)difference.This paper uses the genetic algorithm to optimize the auxiliary beam direction.Simulation results show that the proposed scheme outperforms slotted ALOHA(SA)in terms of system throughput per-formance and without bringing terminals additional control burden.展开更多
Background and Objective: HIV, hepatitis B virus (HBV) and hepatitis C virus (HCV) are very widespread in the world, however, less than 20% of the people affected are diagnosed and treated. This study aimed to determi...Background and Objective: HIV, hepatitis B virus (HBV) and hepatitis C virus (HCV) are very widespread in the world, however, less than 20% of the people affected are diagnosed and treated. This study aimed to determine the prevalence of HIV, HCV and HBV co-infections in pregnant women at Bangui Community University Hospital and the cost of screening. Methods: A cross-sectional study involving consenting pregnant women who came for antenatal care was performed. HIV, HCV antibodies and HBV antigens were detected using Exacto Triplex<sup>?</sup> HIV/HCV/HBsAg rapid test, cross-validated by ELISA tests. Sociodemographic and professional data, the modes of transmission and prevention of HIV and both hepatitis viruses were collected in a standard sheet and analyzed using the Epi-Info software version 7. Results: Pregnant women aged 15 to 24 were the most affected (45.3%);high school girls (46.0%), and pregnant women living in cohabitation (65.3%) were the most represented. Twenty-five (16.7%) worked in the formal sector, 12.7% were unemployed housewives and the remainder in the informal sector. The prevalence of HIV, HBV, and HCV viruses was 11.8%, 21.9% and 22.2%, respectively. The prevalence of co-infections was 8.6% for HIV-HBV, 10.2% for HIV-HCV, 14.7% for HBV-HCV and 6.5% for HIV-HBV-HCV. All positive results and 10% of negative results by the rapid test were confirmed by ELISA tests. The serology of the three viruses costs 39,000 FCFA (60 Euros) by ELISA compared to 10,000 FCFA (15.00 Euros) with Exacto Triplex<sup>?</sup> HIV/HCV/AgHBs (BioSynex, Strasbourg, France). Conclusion: The low level of education and awareness of hepatitis are barriers to development and indicate the importance of improving the literacy rate of women in the Central African Republic (CAR). Likewise, the high prevalence of the three viruses shows the need for the urgent establishment of a national program to combat viral hepatitis in the CAR.展开更多
To solve the contradiction between limited spectrum resources and increasing communication demand,this paper proposes a wireless resource allocation scheme based on the Deep Q Network(DQN)to allocate radio resources i...To solve the contradiction between limited spectrum resources and increasing communication demand,this paper proposes a wireless resource allocation scheme based on the Deep Q Network(DQN)to allocate radio resources in a downlink multi-user cognitive radio(CR)network with slicing.Secondary users(SUs)are multiplexed using non-orthogonal multiple access(NOMA).The SUs use the hybrid spectrum access mode to improve the spectral efficiency(SE).Considering the demand for multiple services,the enhanced mobile broadband(eMBB)slice and ultrareliable low-latency communication(URLLC)slice were established.The proposed scheme can maximize the SE while ensuring Quality of Service(QoS)for the users.This study established a mapping relationship between resource allocation and the DQN algorithm in the CR-NOMA network.According to the signal-to-interference-plusnoise ratio(SINR)of the primary users(PUs),the proposed scheme can output the optimal channel selection and power allocation.The simulation results reveal that the proposed scheme can converge faster and obtain higher rewards compared with the Q-Learning scheme.Additionally,the proposed scheme has better SE than both the overlay and underlay only modes.展开更多
The Sixth-Generation(6G)standard for wireless communications is expected to realize ubiquitous coverage for massive Internet of Things(IoT)networks by 2030.Satellite-based communications are recognized as a highly pro...The Sixth-Generation(6G)standard for wireless communications is expected to realize ubiquitous coverage for massive Internet of Things(IoT)networks by 2030.Satellite-based communications are recognized as a highly promising technical enabler to satisfy IoT service requirements in the 6G era.This study analyzes multiple access technologies,which are essential for the effective deployment of satellite-based IoT.First,we thoroughly investigate the existing research related to massive access,including information-theory considerations as well as Non-Orthogonal Multiple Access(NOMA)and Random Access(RA)technologies.Then,we explore the influence of the satellite transmission environment on multiple access technologies.Based on this study,a Non-orthogonal Massive Grant-Free Access(NoMaGFA)scheme,which reaps the joint benefits of RA and NOMA,is proposed for asynchronous transmissions in satellite-based IoT to achieve improved system throughput and enhance the system robustness under varying traffics.Finally,we identify some important and interesting future developments for satellite-based IoT,including waveform design,transceiver design,resource allocation,and artificial intelligence-enhanced design.展开更多
基金supported by the National High Technology Research and Development Program of China (863 Program, No. 2015AA01A709)
文摘The major challenge faced by the fifth generation(5G) mobile network is higher spectral efficiency and massive connectivity,i.e.,the target spectrum efficiency is 3 times over 4G,and the target connection density is one million devices per square kilometer.These requirements are difficult to be satisfied with orthogonal multiple access(OMA) schemes.Non-orthogonal multiple access(NOMA) has thus been proposed as a promising candidate to address some of the challenges for 5G.In this paper,a comprehensive survey of different candidate NOMA schemes for 5G is presented,where the usage scenarios of5 G and the application requirements for NOMA are firstly discussed.A general framework of NOMA scheme is established and the features of typical NOMA schemes are analyzed and compared.We focus on the recent progress and challenge of NOMA in standardization of international telecommunication union(ITU),and 3rd generation partnership project(3GPP).In addition,prototype development and future research directions are also provided respectively.
基金supported in part by the National Key Research and Development Program of China under Grant 2018YFC1314903the National Natural Science Foundation of China under Grants 61861039,61372124,and 61427801+1 种基金the Science and Technology Project Foundation of Gansu Province under Grant 18YF1GA060the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant SJKY19_0740 and KYCX20_0709。
文摘In this paper, we investigate the downlink performance of cell-free massive multi-input multi-output non-orthogonal multiple access(CF-m MIMO-NOMA) system with conjugate beamforming precoder and compare against the orthogonal multiple access(OMA) counterpart. A novel achievable closed-form spectral efficiency(SE) expression is derived, which characterizes the effects of the channel estimation error, pilot contamination, imperfect successive interference cancellation(SIC) operation, and power optimization technique. Then, motivated by the closedform result, a sum-SE maximization algorithm with the sequential convex approximation(SCA) is proposed, subject to each AP power constraint and SIC power constraint. Numerical experiments indicate that the proposed sum-SE maximization algorithms have a fast converge rate, within about five iterations. In addition, compared with the full power control(FPC) scheme, our algorithms can significantly improve the achievable sum-SE. Moreover, NOMA outperforms OMA in many respects in the presence of the proposed algorithms.
基金supported in part by the National Natural Science Foundation of China (No. 91638205, 91438206, 61771286, 61621091)
文摘With rapid development of unmanned aerial vehicles(UAVs), more and more UAVs access satellite networks for data transmission. To improve the spectral efficiency, non-orthogonal multiple access(NOMA) is adopted to integrate UAVs into the satellite network, where multiple satellites cooperatively serve the UAVs and mobile terminal using the Ku-band and above. Taking into account the rain fading and the fading correlation, the outage performance is first analytically obtained for fixed power allocation and then efficiently calculated by the proposed power allocation algorithm to guarantee the user fairness. Simulation results verify the outage performance analysis and show the performance improvement of the proposed power allocation scheme.
文摘Recently,the increasing demand of radio spectrum for the next generation communication systems due to the explosive growth of applications appetite for bandwidths has led to the problem of spectrum scarcity.The potential approaches among the proposed solutions to resolve this issue are well explored cognitive radio(CR)technology and recently introduced non-orthogonal multiple access(NOMA)techniques.Both the techniques are employed for efficient spectrum utilization and assure the significant improvement in the spectral efficiency.Further,the significant improvement in spectral efficiency can be achieved by combining both the techniques.Since the CR is well-explored technique as compared to that of the NOMA in the field of communication,therefore it is worth and wise to implement this technique over the CR.In this article,we have presented the frameworks of NOMA implementation over CR as well as the feasibility of proposed frameworks.Further,the differences between proposed CR-NOMA and conventional CR frameworks are discussed.Finally,the potential issues regarding the implementation of CR-NOMA are explored.
基金supported by National Natural Science Foundation of China grants(No.61401069,No.61271240,No.61501254)Jiangsu Specially Appointed Professor Grant(RK002STP16001)+2 种基金Innovation and Entrepreneurship of Jiangsu High-level Talent Grant(CZ0010617002)High-level talent startup grant of Nanjing University of Posts and Telecommunications(XK0010915026)“1311 Talent Plan” of Nanjing University of Posts and Telecommunications
文摘Non-orthogonal multiple access(NOMA) is considered as one of promising radio access techniques for visible light communications(VLC) in next-generation wireless communications systems.In order to provide theoretical support for designing VLC-NOMA,we derive its analytic expressions for the symbol error rate(SER).Specifically,NOMA is first incorporated with appropriate VLC to establish a VLC-NOMA framework.Afterwards,mathematical expressions of the SER for the VLC-NOMA are developed.Moreover,numerical results are provided carefully to demonstrate that the proposed VLC-NOMA scheme outperforms than state-of-the-art orthogonal frequency division multiple access(OFDMA) one in terms of SER performance.Finally,relationships between the SER performance and the number of users,power allocation coefficient and semi-angle are well investigated,which can give us a scientific guide to devise the VLC-NOMA system for achieving better SER performance.
文摘Non-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cel-lular communication networks. In this paper, we first discuss a simple NOMA model with two users served by a single-carrier si-multaneously to illustrate its basic principles. Then, a more general model with multicarrier serving an arbitrary number of users on each subcarrier is also discussed. An overview of existing works on performance analysis, resource allocation, and multiple-in-put multiple-output NOMA are summarized and discussed. Furthermore, we discuss the key features of NOMA and its potential re-search challenges.
文摘Multiple access scheme is one of the key techniques in wireless communication systems. Each generation of wireless communica-tion is featured by a new multiple access scheme from 1G to 4G. In this article we review several non-orthogonal multiple access schemes for 5G. Their principles, advantages and disadvantages are discussed, and followed by a comprehensive comparison of these solutions from the perspective of user overload, receiver type, receiver complexity and so on. We also discuss the applica-tion challenges of non-orthogonal multiple access schemes in 5G.
基金supported by Priority Research Centers Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2018R1A6A1A03024003)
文摘Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.
基金Science Foundation of China under Grant No.61871032in part by the Chinese Ministry of Education-China Mobile Communication Corporation Research Fund under Grant MCM20170101+1 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant 20KJB510036the Guangxi Key Laboratory of Multimedia Communications and Network Technology under Grant KLF-2020-03。
文摘Non-orthogonal multiple access(NOMA)is deemed to have a superior spectral efficiency and polar codes have became the channel coding scheme for control channel of enhanced mobile broadband(eMBB)in the fifth generation(5G)communication systems.In this paper,NOMA combined with polar codes is used to achieve secure transmission.Both degraded wiretap channel and non-degraded wiretap channel are considered,where an eavesdropper intercepts the communication between base station(BS)and users.For the degraded wiretap channel scenario,a secure polar encoding scheme is proposed in NOMA systems with power allocation to achieve the maximum secrecy capacity.With regard to the nondegraded wiretap channel,a polar encoding scheme with multiple-input-single-output(MISO)system is proposed,where artificial noise is generated at BS to confuse the eavesdropper’s channel via transmit beamforming.The security and the secure rate are employed respectively in order to measure the secrecy performance.We prove that the proposed schemes for each scenario can achieve the secure rate and can transmit the signal securely and reliably.The simulation results show that the eavesdropper hardly decoding the secure signal when the legitimate receiver can decode the signal with very low block error rate(BLER).
基金This work was partly supported by the Natural Science Foundation of Hebei Province(F2019203095)the National Natural Science Foundation of China(61873223,61803328)the National Key R&D Program of China(2018YFB1702100)。
文摘The traditional orthogonal multiple access(OMA)is unable to satisfy the needs of large number of smart devices.To increase the transmission rate in the limited spectrum resource,implementation of both non-orthogonal multiple access(NOMA)and successive interference cancelation(SIC)is essential.In this paper,an optimal resource allocation algorithm in NOMA is proposed to maximize the total system rate in a multi-sector multi-subcarrier relay-assisted communication network.Since the original problem is a non-convex problem with mixed integer programming which is non-deterministic polynomial-time(NP)-hard,a three-step solution is proposed to solve the primal problem.Firstly,we determine the optimal power allocation of the outer users by using the approach of monotonic discrimination,and then the optimal user pairing is determined.Secondly,the successive convex approximation(SCA)method is introduced to transform the non-convex problem involving central users into convex one,and the Lagrangian dual method is used to determine the optimal solution.Finally,the standard Hungarian algorithm is utilized to determine the optimal subcarrier matching.The simulation results show that resource allocation algorithm is able to meet the user performance requirements with NOMA,and the total system rate is improved compared to the existing algorithms.
基金Supported by the National Natural Science Foundation of China(No.61871322,61771392,61771390,61501373,61271279)the National Science and Technology Major Special Project(2016ZX03001018-004).
文摘Both high-dense wireless connectivity and ultra-huge network capacity are main challenges of next generation broadband networks.As one of its key promising technologies,non-orthogonal multi-ple access(NOMA)scheme can solve those challenges and meet those needs to some extent,in the way that different user equipments(UEs)multiplex on the same resource.Researchers around the world have presented numerous NOMA solutions.Among those,sparse code multiple access(SC-MA)technology is a typical NOMA solution.It supports scheduled access and random access which can be called granted access and grant-free access respectively.But resources allocated to granted UEs and grant-free UEs are strictly separated.In order to improve resource utilization,a hybrid non-orthogonal multiple access scheme is proposed.It allows granted UEs and grant-free UEs sharing the same resource unit in terms of fine-grained integration.On the basis,a resource allocation method is further brought forward based on genetic algorithm.It optimizes resource allocation of all UEs by mapping resource distribution issue to an optimization problem.Comparing throughputs of four meth-ods,simulation results demonstrate the proposed genetic algorithm has better throughput gain.
基金Supported by the Fundamental Research Funds for the Central Universities(2016RC055)
文摘The spectral efficiency(SE)and energy efficiency(EE)tradeoff while ensuring rate fairness among users in non-orthogonal multiple access(NOMA)systems is investigated.In order to characterize the SE-EE tradeoff with rate fairness,a multi-objective optimization(MOO)problem is first formulated,where the rate fairness is represented with theα-fair utility function.Then,the MOO problem is converted into a single-objective optimization(SOO)problem by the weighted sum method.To solve the converted non-convex SOO problem,we apply sequential convex programming,which helps to propose a general power allocation algorithm to realize the SE-EE tradeoff with rate fairness.We prove the convergence of the proposed algorithm and the convergent solution satisfies the KKT conditions.Simulation results demonstrate the proposed power allocation algorithm can achieve various levels of rate fairness,and higher fairness results in degraded performance of SE-EE tradeoff.A pivotal conclusion is reached that NOMA systems significantly outperform orthogonal multiple access systems in terms of SE-EE tradeoff with the same level of rate fairness.
基金the National Natural Science Foundation of China(No.61702258,61901211)the Natural Science Foundation of Jiangsu Province(No.BK20170766).
文摘This paper investigates a unmanned aerial vehicle(UAV)deployment problem in a non-orthogonal multiple access(NOMA)system,where the UAV is deployed as an aerial mobile base station to transmit data to two ground users.An optimization problem is formulated by deploying the UAV for maximizing the sum rate of the two users.In order to solve the optimization problem,the feasible solution region is first reduced to a line segment between two users.Then,the optimization problem is simplified to a univariate problem,which can be solved by derivation under a certain situation,and the corresponding analytical solution is also provided.Moreover,a generalized algorithm,which considers 2 situations,is proposed to further determine the optimal UAV’s location.Specifically,four cases are discussed in the first situation.Extensive simulations are depicted to demonstrate effectiveness of the proposed algorithm and its superiority over the benchmarks in maximizing the two users’sum rate.
基金supported in part by National Natural Science Funds for Creative Research Groups of China under Grant No. 61421061Huawei Innovation Research ProgramOpen Research Fund in Xi’an Jiaotong University under Grant No. sklms2015015
文摘One key advantage of 4G OFDM system is the relatively simple receiver implementation due to the orthogonal resource allocation.However,from sum-capacity and spectral efficiency points of view,orthogonal systems are never the achieving schemes.With the rapid development of mobile communication systems,a novel concept of non-orthogonal transmission for 5G mobile communications has attracted researches all around the world.In this trend,many new multiple access schemes and waveform modulation technologies were proposed.In this paper,some promising ones of them were discussed which include Non-orthogonal Multiple Access(NOMA),Sparse Code Multiple Access(SCMA),Multi-user Shared Access(MUSA),Pattern Division Multiple Access(PDMA)and some main new waveforms including Filter-bank based Multicarrier(FBMC),Universal Filtered Multi-Carrier(UFMC),Generalized Frequency Division Multiplexing(GFDM).By analyzing and comparing features of these technologies,a research direction of guiding on future 5G multiple access and waveform are given.
基金National Natural Science Foundation ofChina(No.60 3 72 0 76)
文摘A new non-orthogonal space-time-frequency code (STFC) was proposed. In conjunction with orthogonal frequency-division multiplexing (OFDM), it is appropriate for the application on frequency-selective fading channels. On the basis of the existing non-orthogonal STC, frequency diversity is studied and a new non-orthogonal STFC is further designed. Monte-Carlo simulations show that the non-orthogonal STFC-OFDM has the advantage of large diversity order, high bandwidth efficiency and better BER performance when compared with the orthogonal STC/STFC-OFDM and non-orthogonal STC-OFDM systems.
文摘A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM technology to guarantee the security, while the upstream traffics pass through the same optical fiber by the common time division multiple access (TDMA) technology to decrease the cost. This schemes are denoted as OCDM/TDMA-PON, which can be applied to an optical access network (OAN) with full services on demand, such as Internet protocol, video on demand, tele-presence and high quality audio. The proposed OCDM/TDMA-PON scheme combines advantages of PON, TDMA, and OCDM technology. Simulation results indicate that the designed scheme improves the OAN performance, and enhances flexibility and scalability of the system.
基金supported by the National Science Foundation of China(No.U21A20450)Natural Science Foundation of Jiangsu Province Major Project(No.BK20192002)+1 种基金National Natural Science Foundation of China(No.61971440)National Natural Science Foundation of China(No.62271266).
文摘There are numerous terminals in the satellite Internet of Things(IoT).To save cost and reduce power consumption,the system needs terminals to catch the characteristics of low power consumption and light control.The regular random access(RA)protocols may generate large amounts of collisions,which degrade the system throughout severally.The near-far effect and power control technologies are not applicable in capture effect to obtain power difference,resulting in the collisions that cannot be separated.In fact,the optimal design at the receiving end can also realize the condition of packet power domain separation,but there are few relevant researches.In this paper,an auxiliary beamforming scheme is proposed for power domain signal separation.It adds an auxiliary reception beam based on the conventional beam,utilizing the correlation of packets in time-frequency domain between the main and auxiliary beam to complete signal separation.The roll-off belt of auxiliary beam is used to create the carrier-to-noise ratio(CNR)difference.This paper uses the genetic algorithm to optimize the auxiliary beam direction.Simulation results show that the proposed scheme outperforms slotted ALOHA(SA)in terms of system throughput per-formance and without bringing terminals additional control burden.
文摘Background and Objective: HIV, hepatitis B virus (HBV) and hepatitis C virus (HCV) are very widespread in the world, however, less than 20% of the people affected are diagnosed and treated. This study aimed to determine the prevalence of HIV, HCV and HBV co-infections in pregnant women at Bangui Community University Hospital and the cost of screening. Methods: A cross-sectional study involving consenting pregnant women who came for antenatal care was performed. HIV, HCV antibodies and HBV antigens were detected using Exacto Triplex<sup>?</sup> HIV/HCV/HBsAg rapid test, cross-validated by ELISA tests. Sociodemographic and professional data, the modes of transmission and prevention of HIV and both hepatitis viruses were collected in a standard sheet and analyzed using the Epi-Info software version 7. Results: Pregnant women aged 15 to 24 were the most affected (45.3%);high school girls (46.0%), and pregnant women living in cohabitation (65.3%) were the most represented. Twenty-five (16.7%) worked in the formal sector, 12.7% were unemployed housewives and the remainder in the informal sector. The prevalence of HIV, HBV, and HCV viruses was 11.8%, 21.9% and 22.2%, respectively. The prevalence of co-infections was 8.6% for HIV-HBV, 10.2% for HIV-HCV, 14.7% for HBV-HCV and 6.5% for HIV-HBV-HCV. All positive results and 10% of negative results by the rapid test were confirmed by ELISA tests. The serology of the three viruses costs 39,000 FCFA (60 Euros) by ELISA compared to 10,000 FCFA (15.00 Euros) with Exacto Triplex<sup>?</sup> HIV/HCV/AgHBs (BioSynex, Strasbourg, France). Conclusion: The low level of education and awareness of hepatitis are barriers to development and indicate the importance of improving the literacy rate of women in the Central African Republic (CAR). Likewise, the high prevalence of the three viruses shows the need for the urgent establishment of a national program to combat viral hepatitis in the CAR.
基金the National Natural Science Foundation of China(Grant No.61971057).
文摘To solve the contradiction between limited spectrum resources and increasing communication demand,this paper proposes a wireless resource allocation scheme based on the Deep Q Network(DQN)to allocate radio resources in a downlink multi-user cognitive radio(CR)network with slicing.Secondary users(SUs)are multiplexed using non-orthogonal multiple access(NOMA).The SUs use the hybrid spectrum access mode to improve the spectral efficiency(SE).Considering the demand for multiple services,the enhanced mobile broadband(eMBB)slice and ultrareliable low-latency communication(URLLC)slice were established.The proposed scheme can maximize the SE while ensuring Quality of Service(QoS)for the users.This study established a mapping relationship between resource allocation and the DQN algorithm in the CR-NOMA network.According to the signal-to-interference-plusnoise ratio(SINR)of the primary users(PUs),the proposed scheme can output the optimal channel selection and power allocation.The simulation results reveal that the proposed scheme can converge faster and obtain higher rewards compared with the Q-Learning scheme.Additionally,the proposed scheme has better SE than both the overlay and underlay only modes.
基金This work is supported in part by the NSF of China(no.61801064,no.92038302,no.62071038,no.61901035)Beijing Institute of Technology Research Fund Program for Young Scholars and Young Elite Scientist Sponsorship Program by CASTPart of the work of R.Zhang is also supported by Science and Technology Project of Beijing Municipal Education Commission(no.KM202010028005).
文摘The Sixth-Generation(6G)standard for wireless communications is expected to realize ubiquitous coverage for massive Internet of Things(IoT)networks by 2030.Satellite-based communications are recognized as a highly promising technical enabler to satisfy IoT service requirements in the 6G era.This study analyzes multiple access technologies,which are essential for the effective deployment of satellite-based IoT.First,we thoroughly investigate the existing research related to massive access,including information-theory considerations as well as Non-Orthogonal Multiple Access(NOMA)and Random Access(RA)technologies.Then,we explore the influence of the satellite transmission environment on multiple access technologies.Based on this study,a Non-orthogonal Massive Grant-Free Access(NoMaGFA)scheme,which reaps the joint benefits of RA and NOMA,is proposed for asynchronous transmissions in satellite-based IoT to achieve improved system throughput and enhance the system robustness under varying traffics.Finally,we identify some important and interesting future developments for satellite-based IoT,including waveform design,transceiver design,resource allocation,and artificial intelligence-enhanced design.