Finite difference methods have been widely employed in solving the eikonal equation so as to calculate traveltime of seismic phase. Most previous studies used regular orthogonal grid. However, much denser grid is requ...Finite difference methods have been widely employed in solving the eikonal equation so as to calculate traveltime of seismic phase. Most previous studies used regular orthogonal grid. However, much denser grid is required to sample the interfaces that are undulating in depth direction, such as the Moho and the 660 km discontinuity.Here we propose a new finite difference algorithm to solve the eikonal equation on non-orthogonal grid(irregular grid).To demonstrate its efficiency and accuracy, a test was conducted with a two-layer model. The test result suggests that the similar accuracy of a regular grid with ten times grids could achieve with our new algorithm, but the time cost is only about 0.1 times. A spherical earth model with an undulant660 km discontinuity was constructed to demonstrate the potential application of our new method. In that case, the traveltime curve fluctuation corresponds to topography. Our new algorithm is efficient in solving the first arrival times of waves associated with undulant interfaces.展开更多
This paper seeks to develop an efficient multigrid algorithm for solving the Burgers problem with the use of non-orthogonal structured curvilinear grids in L-shaped geometry.For this,the differential equations were di...This paper seeks to develop an efficient multigrid algorithm for solving the Burgers problem with the use of non-orthogonal structured curvilinear grids in L-shaped geometry.For this,the differential equations were discretized by Finite Volume Method(FVM)with second-order approximation scheme and deferred correction.Moreover,the algebraic method and the differential method were used to generate the non-orthogonal structured curvilinear grids.Furthermore,the influence of some parameters of geometric multigrid method,as well as lexicographical Gauss–Seidel(Lex-GS),η-line Gauss–Seidel(η-line-GS),Modified Strongly Implicit(MSI)and modified incomplete LU decomposition(MILU)solvers on the Central Processing Unit(CPU)time was investigated.Therefore,several parameters of multigrid method and solvers were tested for the problem,with the use of nonorthogonal structured curvilinear grids and multigrid method,resulting in an algorithm with the combination that achieved the best results and CPU time.The geometric multigrid method with Full Approximation Scheme(FAS),V-cycle and standard coarsening ratio for this problem were utilized.This article shows how to calculate the coordinates transformation metrics in the coarser grids.Results show that the MSI and MILU solvers are the most efficient.Moreover,theMSI solver is faster thanMILU for both grids generators;and the solutions are more accurate for the Burgers problem with grids generated using elliptic equations.展开更多
To achieve a maximum compression of system matrix in positron emission tomography (PET) image reconstruction, we proposed a polygonal image pixel division strategy in accordance with rotationally symmetric PET geometr...To achieve a maximum compression of system matrix in positron emission tomography (PET) image reconstruction, we proposed a polygonal image pixel division strategy in accordance with rotationally symmetric PET geometry. Geometrical definition and indexing rule for polygonal pixels were established. Image conversion from polygonal pixel structure to conventional rectangular pixel structure was implemented using a conversion matrix. A set of test images were analytically defined in polygonal pixel structure, converted to conventional rectangular pixel based images, and correctly displayed which verified the correctness of the image definition, conversion description and conversion of polygonal pixel structure. A compressed system matrix for PET image recon was generated by tap model and tested by forward-projecting three different distributions of radioactive sources to the sinogram domain and comparing them with theoretical predictions. On a practical small animal PET scanner, a compress ratio of 12.6:1 of the system matrix size was achieved with the polygonal pixel structure, comparing with the conventional rectangular pixel based tap-mode one. OS-EM iterative image reconstruction algorithms with the polygonal and conventional Cartesian pixel grid were developed. A hot rod phantom was detected and reconstructed based on these two grids with reasonable time cost. Image resolution of reconstructed images was both 1.35 mm. We conclude that it is feasible to reconstruct and display images in a polygonal image pixel structure based on a compressed system matrix in PET image reconstruction.展开更多
SWISS整流器因其优越的性能被广泛应用于充电桩、分布式直流电源等场合。其首要的控制目标是维持稳定的直流侧输出电压、正弦且对称的交流侧三相电流以及网侧单位功率因数。然而,当电网出现幅值跌落时,基于传统的控制方法很难同时实现上...SWISS整流器因其优越的性能被广泛应用于充电桩、分布式直流电源等场合。其首要的控制目标是维持稳定的直流侧输出电压、正弦且对称的交流侧三相电流以及网侧单位功率因数。然而,当电网出现幅值跌落时,基于传统的控制方法很难同时实现上述3个控制目标。因此,该文分别提出适用于电网幅值跌落的输出电压恒定控制(constant output voltage control,COVC)方法和电流正弦对称控制(sinusoidal and symmetrical current control,SSCC)方法。前者可实现直流侧输出电压恒定无波动,但无法实现网侧电流的正弦且对称。后者可实现网侧电流正弦且对称,但无法实现直流侧电压输出恒定无波动。在此基础上,该文结合这2种控制方法的优势进一步提出一种改进的协调优化控制(improved coordination and optimization control,ICOC)方法,可实现网侧处于单位功率因数的同时,在直流侧输出电压恒定无波动和网侧电流正弦且对称之间进行协调优化,实验结果证明ICOC方法相较于COVC和SSCC具有显著的优势,与该文的理论分析一致。展开更多
The design of mixed finite element methods in linear elasticity with symmetric stress approximations has been a longstanding open problem until Arnold and Winther designed the first family of mixed finite elements whe...The design of mixed finite element methods in linear elasticity with symmetric stress approximations has been a longstanding open problem until Arnold and Winther designed the first family of mixed finite elements where the discrete stress space is the space of H(div,Ω;S)-Pk+1 tensors whose divergence is a Pk-1 polynomial on each triangle for k ≥ 2. Such a two dimensional family was extended, by Arnold, Awanou and Winther, to a three dimensional family of mixed elements where the discrete stress space is the space of H(div, Ω; S)-Pk+2 tensors, whose divergence is a Pk-1 polynomial on each tetrahedron for k ≥ 2. In this paper, we are able to construct, in a unified fashion, mixed finite element methods with symmetric stress approximations on an arbitrary simplex in R^n for any space dimension. On the contrary, the discrete stress space here is the space of H(div,Ω; S)-Pk tensors, and the discrete displacement space here is the space of L^2(Ω; R^n)-Pk+1 vectors for k ≥ n+ 1. These finite element spaces are defined with respect to an arbitrary simplicial triangulation of the domain, and can be regarded as extensions to any dimension of those in two and three dimensions by Hu and Zhang.展开更多
A family of stable mixed finite elements for the linear elasticity on tetrahedral grids are constructed,where the stress is approximated by symmetric H(div)-Pk polynomial tensors and the displacement is approximated b...A family of stable mixed finite elements for the linear elasticity on tetrahedral grids are constructed,where the stress is approximated by symmetric H(div)-Pk polynomial tensors and the displacement is approximated by C-1-Pk-1polynomial vectors,for all k 4.The main ingredients for the analysis are a new basis of the space of symmetric matrices,an intrinsic H(div)bubble function space on each element,and a new technique for establishing the discrete inf-sup condition.In particular,they enable us to prove that the divergence space of the H(div)bubble function space is identical to the orthogonal complement space of the rigid motion space with respect to the vector-valued Pk-1polynomial space on each tetrahedron.The optimal error estimate is proved,verified by numerical examples.展开更多
A power-transmission collection line is connected to each wind turbine of a wind farm and then connected to the incoming switchgear at the low-voltage side of the booster station at a certain distance.Therefore,the gr...A power-transmission collection line is connected to each wind turbine of a wind farm and then connected to the incoming switchgear at the low-voltage side of the booster station at a certain distance.Therefore,the grouping of the wind turbines in the wind farm determines the layout of the lines and affects the line impedance.The line structure and composition of the wind farm are analyzed,and the relationship between the impedance of the collection line and reactive power generated by the wind turbine at low-voltage ride through is derived.We conclude that the smaller the equivalent impedance of the wind farm collection line structure is,the greater the reactive power at the wind farm collection line point is.In addition,the economic aspect of the collection line needs to be considered in the design.The economic aspect and impedance values have contrasting characteristics.Therefore,according to the condition of minimum impedance and optimized economic aspect,an optimization model of a wind-farm collector-circuit structure is proposed.The optimal structure of the wind farm collector circuit is calculated using the Monte Carlo method,and the theoretical analysis is verified by simulation.展开更多
Symmetrical monopolar configuration is the prevailing scheme configuration for modular multilevel converter based high-voltage direct current(MMC-HVDC) links, in which severe DC overvoltage or overcurrent can be cause...Symmetrical monopolar configuration is the prevailing scheme configuration for modular multilevel converter based high-voltage direct current(MMC-HVDC) links, in which severe DC overvoltage or overcurrent can be caused by the DC faults. To deal with the possible asymmetry in the DC faults and the coupling effects of the DC lines, this paper analyzes the DC fault characteristics based on the phase-mode transformation. First, the DC grid is decomposed into the common-mode and the differential-mode networks. The equivalent models of the MMCs and DC lines in the two networks are derived, respectively. Then, based on the state matrices, a unified numerical calculation method for the fault voltages and currents at the DC side is proposed. Compared with the time-domain simulations performed on PSCAD/EMTDC, the accuracy of the proposed method is validated. Last, the system parameter analysis shows that the grounding parameters play an important role in reducing the severity of the pole-to-ground faults, whereas the coupling effects of the DC lines should be considered when calculating the DC fault currents associated with the pole-to-pole faults.展开更多
基金supported in part by National Basic Research Program of China (No. 2014CB845900)Hubei Provincial Natural Science Foundation of China (No. 2014CFA005)
文摘Finite difference methods have been widely employed in solving the eikonal equation so as to calculate traveltime of seismic phase. Most previous studies used regular orthogonal grid. However, much denser grid is required to sample the interfaces that are undulating in depth direction, such as the Moho and the 660 km discontinuity.Here we propose a new finite difference algorithm to solve the eikonal equation on non-orthogonal grid(irregular grid).To demonstrate its efficiency and accuracy, a test was conducted with a two-layer model. The test result suggests that the similar accuracy of a regular grid with ten times grids could achieve with our new algorithm, but the time cost is only about 0.1 times. A spherical earth model with an undulant660 km discontinuity was constructed to demonstrate the potential application of our new method. In that case, the traveltime curve fluctuation corresponds to topography. Our new algorithm is efficient in solving the first arrival times of waves associated with undulant interfaces.
文摘This paper seeks to develop an efficient multigrid algorithm for solving the Burgers problem with the use of non-orthogonal structured curvilinear grids in L-shaped geometry.For this,the differential equations were discretized by Finite Volume Method(FVM)with second-order approximation scheme and deferred correction.Moreover,the algebraic method and the differential method were used to generate the non-orthogonal structured curvilinear grids.Furthermore,the influence of some parameters of geometric multigrid method,as well as lexicographical Gauss–Seidel(Lex-GS),η-line Gauss–Seidel(η-line-GS),Modified Strongly Implicit(MSI)and modified incomplete LU decomposition(MILU)solvers on the Central Processing Unit(CPU)time was investigated.Therefore,several parameters of multigrid method and solvers were tested for the problem,with the use of nonorthogonal structured curvilinear grids and multigrid method,resulting in an algorithm with the combination that achieved the best results and CPU time.The geometric multigrid method with Full Approximation Scheme(FAS),V-cycle and standard coarsening ratio for this problem were utilized.This article shows how to calculate the coordinates transformation metrics in the coarser grids.Results show that the MSI and MILU solvers are the most efficient.Moreover,theMSI solver is faster thanMILU for both grids generators;and the solutions are more accurate for the Burgers problem with grids generated using elliptic equations.
基金Supported by Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry and National Natural Science Foundation of China(No.10975086)
文摘To achieve a maximum compression of system matrix in positron emission tomography (PET) image reconstruction, we proposed a polygonal image pixel division strategy in accordance with rotationally symmetric PET geometry. Geometrical definition and indexing rule for polygonal pixels were established. Image conversion from polygonal pixel structure to conventional rectangular pixel structure was implemented using a conversion matrix. A set of test images were analytically defined in polygonal pixel structure, converted to conventional rectangular pixel based images, and correctly displayed which verified the correctness of the image definition, conversion description and conversion of polygonal pixel structure. A compressed system matrix for PET image recon was generated by tap model and tested by forward-projecting three different distributions of radioactive sources to the sinogram domain and comparing them with theoretical predictions. On a practical small animal PET scanner, a compress ratio of 12.6:1 of the system matrix size was achieved with the polygonal pixel structure, comparing with the conventional rectangular pixel based tap-mode one. OS-EM iterative image reconstruction algorithms with the polygonal and conventional Cartesian pixel grid were developed. A hot rod phantom was detected and reconstructed based on these two grids with reasonable time cost. Image resolution of reconstructed images was both 1.35 mm. We conclude that it is feasible to reconstruct and display images in a polygonal image pixel structure based on a compressed system matrix in PET image reconstruction.
文摘SWISS整流器因其优越的性能被广泛应用于充电桩、分布式直流电源等场合。其首要的控制目标是维持稳定的直流侧输出电压、正弦且对称的交流侧三相电流以及网侧单位功率因数。然而,当电网出现幅值跌落时,基于传统的控制方法很难同时实现上述3个控制目标。因此,该文分别提出适用于电网幅值跌落的输出电压恒定控制(constant output voltage control,COVC)方法和电流正弦对称控制(sinusoidal and symmetrical current control,SSCC)方法。前者可实现直流侧输出电压恒定无波动,但无法实现网侧电流的正弦且对称。后者可实现网侧电流正弦且对称,但无法实现直流侧电压输出恒定无波动。在此基础上,该文结合这2种控制方法的优势进一步提出一种改进的协调优化控制(improved coordination and optimization control,ICOC)方法,可实现网侧处于单位功率因数的同时,在直流侧输出电压恒定无波动和网侧电流正弦且对称之间进行协调优化,实验结果证明ICOC方法相较于COVC和SSCC具有显著的优势,与该文的理论分析一致。
文摘The design of mixed finite element methods in linear elasticity with symmetric stress approximations has been a longstanding open problem until Arnold and Winther designed the first family of mixed finite elements where the discrete stress space is the space of H(div,Ω;S)-Pk+1 tensors whose divergence is a Pk-1 polynomial on each triangle for k ≥ 2. Such a two dimensional family was extended, by Arnold, Awanou and Winther, to a three dimensional family of mixed elements where the discrete stress space is the space of H(div, Ω; S)-Pk+2 tensors, whose divergence is a Pk-1 polynomial on each tetrahedron for k ≥ 2. In this paper, we are able to construct, in a unified fashion, mixed finite element methods with symmetric stress approximations on an arbitrary simplex in R^n for any space dimension. On the contrary, the discrete stress space here is the space of H(div,Ω; S)-Pk tensors, and the discrete displacement space here is the space of L^2(Ω; R^n)-Pk+1 vectors for k ≥ n+ 1. These finite element spaces are defined with respect to an arbitrary simplicial triangulation of the domain, and can be regarded as extensions to any dimension of those in two and three dimensions by Hu and Zhang.
基金supported by National Natural Science Foundation of China(Grant Nos.11271035,91430213 and 11421101)
文摘A family of stable mixed finite elements for the linear elasticity on tetrahedral grids are constructed,where the stress is approximated by symmetric H(div)-Pk polynomial tensors and the displacement is approximated by C-1-Pk-1polynomial vectors,for all k 4.The main ingredients for the analysis are a new basis of the space of symmetric matrices,an intrinsic H(div)bubble function space on each element,and a new technique for establishing the discrete inf-sup condition.In particular,they enable us to prove that the divergence space of the H(div)bubble function space is identical to the orthogonal complement space of the rigid motion space with respect to the vector-valued Pk-1polynomial space on each tetrahedron.The optimal error estimate is proved,verified by numerical examples.
基金Supported by Natural Science Foundation of Hunan Province of China(2019JJ50119)Educational Commission of Hunan Province of China(18C0510)Zhuzhou City Science and Technology Plan(Zhu Ke Fa[2017]No.68)。
文摘A power-transmission collection line is connected to each wind turbine of a wind farm and then connected to the incoming switchgear at the low-voltage side of the booster station at a certain distance.Therefore,the grouping of the wind turbines in the wind farm determines the layout of the lines and affects the line impedance.The line structure and composition of the wind farm are analyzed,and the relationship between the impedance of the collection line and reactive power generated by the wind turbine at low-voltage ride through is derived.We conclude that the smaller the equivalent impedance of the wind farm collection line structure is,the greater the reactive power at the wind farm collection line point is.In addition,the economic aspect of the collection line needs to be considered in the design.The economic aspect and impedance values have contrasting characteristics.Therefore,according to the condition of minimum impedance and optimized economic aspect,an optimization model of a wind-farm collector-circuit structure is proposed.The optimal structure of the wind farm collector circuit is calculated using the Monte Carlo method,and the theoretical analysis is verified by simulation.
文摘Symmetrical monopolar configuration is the prevailing scheme configuration for modular multilevel converter based high-voltage direct current(MMC-HVDC) links, in which severe DC overvoltage or overcurrent can be caused by the DC faults. To deal with the possible asymmetry in the DC faults and the coupling effects of the DC lines, this paper analyzes the DC fault characteristics based on the phase-mode transformation. First, the DC grid is decomposed into the common-mode and the differential-mode networks. The equivalent models of the MMCs and DC lines in the two networks are derived, respectively. Then, based on the state matrices, a unified numerical calculation method for the fault voltages and currents at the DC side is proposed. Compared with the time-domain simulations performed on PSCAD/EMTDC, the accuracy of the proposed method is validated. Last, the system parameter analysis shows that the grounding parameters play an important role in reducing the severity of the pole-to-ground faults, whereas the coupling effects of the DC lines should be considered when calculating the DC fault currents associated with the pole-to-pole faults.