For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the...For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the framework of the pro-posed scheme,a Parzen window(kernel density estimation,KDE)method on sliding window technology is applied for roughly esti-mating the sample probability density,a precise data probability density function(PDF)model is constructed with the least square method on K-fold cross validation,and the testing result based on evaluation method is obtained based on some data characteristic analyses of curve shape,abruptness and symmetry.Some com-parison simulations with classical methods and UAV flight exper-iment shows that the proposed scheme has higher recognition accuracy than classical methods for some kinds of Gaussian-like data,which provides better reference for the design of Kalman filter(KF)in complex water environment.展开更多
This study aimed to examine the performance of the Siegel-Tukey and Savage tests on data sets with heterogeneous variances. The analysis, considering Normal, Platykurtic, and Skewed distributions and a standard deviat...This study aimed to examine the performance of the Siegel-Tukey and Savage tests on data sets with heterogeneous variances. The analysis, considering Normal, Platykurtic, and Skewed distributions and a standard deviation ratio of 1, was conducted for both small and large sample sizes. For small sample sizes, two main categories were established: equal and different sample sizes. Analyses were performed using Monte Carlo simulations with 20,000 repetitions for each scenario, and the simulations were evaluated using SAS software. For small sample sizes, the I. type error rate of the Siegel-Tukey test generally ranged from 0.045 to 0.055, while the I. type error rate of the Savage test was observed to range from 0.016 to 0.041. Similar trends were observed for Platykurtic and Skewed distributions. In scenarios with different sample sizes, the Savage test generally exhibited lower I. type error rates. For large sample sizes, two main categories were established: equal and different sample sizes. For large sample sizes, the I. type error rate of the Siegel-Tukey test ranged from 0.047 to 0.052, while the I. type error rate of the Savage test ranged from 0.043 to 0.051. In cases of equal sample sizes, both tests generally had lower error rates, with the Savage test providing more consistent results for large sample sizes. In conclusion, it was determined that the Savage test provides lower I. type error rates for small sample sizes and that both tests have similar error rates for large sample sizes. These findings suggest that the Savage test could be a more reliable option when analyzing variance differences.展开更多
Coastal sediment type map has been widely used in marine economic and engineering activities, but the traditional mapping methods had some limitations due to their intrinsic assumption or subjectivity. In this paper, ...Coastal sediment type map has been widely used in marine economic and engineering activities, but the traditional mapping methods had some limitations due to their intrinsic assumption or subjectivity. In this paper, a non-parametric indicator Kriging method has been proposed for generating coastal sediment map. The method can effectively avoid mapping subjectivity, has no special requirements for the sample data to meet second-order stationary or normal distribution, and can also provide useful information on the quantitative evaluation of mapping uncertainty. The application of the method in the southern sea area of Lianyungang showed that much more convincing mapping results could be obtained compared with the traditional methods such as IDW, Kriging and Voronoi diagram under the same condition, so the proposed method was applicable with great utilization value.展开更多
Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting...Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting method based on a three-layer K-nearest neighbor non-parametric regression algorithm is proposed. Specifically, two screening layers based on shape similarity were introduced in K-nearest neighbor non-parametric regression method, and the forecasting results were output using the weighted averaging on the reciprocal values of the shape similarity distances and the most-similar-point distance adjustment method. According to the experimental results, the proposed algorithm has improved the predictive ability of the traditional K-nearest neighbor non-parametric regression method, and greatly enhanced the accuracy and real-time performance of short-term traffic flow forecasting.展开更多
Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary...Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary and involves certain dynamic changes.In this paper,according to the basic steps of the background subtraction method,a novel non-parametric moving object detection method is proposed based on an improved ant colony algorithm by using the Markov random field.Concretely,the contributions are as follows:1)A new nonparametric strategy is utilized to model the background,based on an improved kernel density estimation;this approach uses an adaptive bandwidth,and the fused features combine the colours,gradients and positions.2)A Markov random field method based on this adaptive background model via the constraint of the spatial context is proposed to extract objects.3)The posterior function is maximized efficiently by using an improved ant colony system algorithm.Extensive experiments show that the proposed method demonstrates a better performance than many existing state-of-the-art methods.展开更多
The ability to build an imaging process is crucial to vision measurement.The non-parametric imaging model describes an imaging process as a pixel cluster,in which each pixel is related to a spatial ray originated from...The ability to build an imaging process is crucial to vision measurement.The non-parametric imaging model describes an imaging process as a pixel cluster,in which each pixel is related to a spatial ray originated from an object point.However,a non-parametric model requires a sophisticated calculation process or high-cost devices to obtain a massive quantity of parameters.These disadvantages limit the application of camera models.Therefore,we propose a novel camera model calibration method based on a single-axis rotational target.The rotational vision target offers 3D control points with no need for detailed information of poses of the rotational target.Radial basis function(RBF)network is introduced to map 3D coordinates to 2D image coordinates.We subsequently derive the optimization formulization of imaging model parameters and compute the parameter from the given control points.The model is extended to adapt the stereo camera that is widely used in vision measurement.Experiments have been done to evaluate the performance of the proposed camera calibration method.The results show that the proposed method has superiority in accuracy and effectiveness in comparison with the traditional methods.展开更多
This paper addresses the design of an exponential function-based learning law for artificial neural networks(ANNs)with continuous dynamics.The ANN structure is used to obtain a non-parametric model of systems with unc...This paper addresses the design of an exponential function-based learning law for artificial neural networks(ANNs)with continuous dynamics.The ANN structure is used to obtain a non-parametric model of systems with uncertainties,which are described by a set of nonlinear ordinary differential equations.Two novel adaptive algorithms with predefined exponential convergence rate adjust the weights of the ANN.The first algorithm includes an adaptive gain depending on the identification error which accelerated the convergence of the weights and promotes a faster convergence between the states of the uncertain system and the trajectories of the neural identifier.The second approach uses a time-dependent sigmoidal gain that forces the convergence of the identification error to an invariant set characterized by an ellipsoid.The generalized volume of this ellipsoid depends on the upper bounds of uncertainties,perturbations and modeling errors.The application of the invariant ellipsoid method yields to obtain an algorithm to reduce the volume of the convergence region for the identification error.Both adaptive algorithms are derived from the application of a non-standard exponential dependent function and an associated controlled Lyapunov function.Numerical examples demonstrate the improvements enforced by the algorithms introduced in this study by comparing the convergence settings concerning classical schemes with non-exponential continuous learning methods.The proposed identifiers overcome the results of the classical identifier achieving a faster convergence to an invariant set of smaller dimensions.展开更多
A quantitative study was used in the study of the tendency to change drought indicators in Vietnam through the Ninh Thuan province case study. The research data are temperature and precipitation data of 11 stations fr...A quantitative study was used in the study of the tendency to change drought indicators in Vietnam through the Ninh Thuan province case study. The research data are temperature and precipitation data of 11 stations from 1986 to 2016 inside and outside Ninh Thuan province. To do the research, the author uses a non-parametric analysis method and the drought index calculation method. Specifically, with the non-parametric method, the author uses the analysis, Mann-Kendall (MK) and Theil-Sen (Sen’s slope), and to analyze drought, the author uses the Standardized Precipitation Index (SPI) and the Moisture Index (MI). Two Softwares calculated in this study are ProUCL 5.1 and MAKENSEN 1.0 by the US Environmental Protection Agency and Finnish Meteorological Institute. The calculation results show that meteorological drought will decrease in the future with areas such as Phan Rang, Song Pha, Quan The, Ba Thap tend to increase very clearly, while Tam My and Nhi Ha tend to increase very clearly short. With the agricultural drought, the average MI results increased 0.013 per year, of which Song Pha station tended to increase the highest with 0.03 per year and lower with Nhi Ha with 0.001 per year. The forecast results also show that by the end of the 21st century, the SPI tends to decrease with SPI 1 being <span style="white-space:nowrap;">−</span>0.68, SPI 3 being <span style="white-space:nowrap;">−</span>0.40, SPI 6 being <span style="white-space:nowrap;">−</span>0.25, SPI 12 is 0.42. Along with that is the forecast that the MI index will increase 0.013 per year to 2035, the MI index is 0.93, in 2050 it is 1.13, in 2075 it will be 1.46, and by 2100 it is 1.79. Research results will be used in policymaking, environmental resources management agencies, and researchers to develop and study solutions to adapt and mitigate drought in the context of variable climate change.展开更多
The effect of treatment on patient’s outcome can easily be determined through the impact of the treatment on biological events. Observing the treatment for patients for a certain period of time can help in determinin...The effect of treatment on patient’s outcome can easily be determined through the impact of the treatment on biological events. Observing the treatment for patients for a certain period of time can help in determining whether there is any change in the biomarker of the patient. It is important to study how the biomarker changes due to treatment and whether for different individuals located in separate centers can be clustered together since they might have different distributions. The study is motivated by a Bayesian non-parametric mixture model, which is more flexible when compared to the Bayesian Parametric models and is capable of borrowing information across different centers allowing them to be grouped together. To this end, this research modeled Biological markers taking into consideration the Surrogate markers. The study employed the nested Dirichlet process prior, which is easily peaceable on different distributions for several centers, with centers from the same Dirichlet process component clustered automatically together. The study sampled from the posterior by use of Markov chain Monte carol algorithm. The model is illustrated using a simulation study to see how it performs on simulated data. Clearly, from the simulation study it was clear that, the model was capable of clustering data into different clusters.展开更多
Generalized Additive Models(GAMs)are widely employed in ecological research,serving as a powerful tool for ecologists to explore complex nonlinear relationships between a response variable and predictors.Nevertheless,...Generalized Additive Models(GAMs)are widely employed in ecological research,serving as a powerful tool for ecologists to explore complex nonlinear relationships between a response variable and predictors.Nevertheless,evaluating the relative importance of predictors with concurvity(analogous to collinearity)on response variables in GAMs remains a challenge.To address this challenge,we developed an R package named gam.hp.gam.hp calculates individual R^(2) values for predictors,based on the concept of'average shared variance',a method previously introduced for multiple regression and canonical analyses.Through these individual R^(2)s,which add up to the overall R^(2),researchers can evaluate the relative importance of each predictor within GAMs.We illustrate the utility of the gam.hp package by evaluating the relative importance of emission sources and meteorological factors in explaining ozone concentration variability in air quality data from London,UK.We believe that the gam.hp package will improve the interpretation of results obtained from GAMs.展开更多
基金supported by the National Natural Science Foundation of China(62033010)Qing Lan Project of Jiangsu Province(R2023Q07)。
文摘For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the framework of the pro-posed scheme,a Parzen window(kernel density estimation,KDE)method on sliding window technology is applied for roughly esti-mating the sample probability density,a precise data probability density function(PDF)model is constructed with the least square method on K-fold cross validation,and the testing result based on evaluation method is obtained based on some data characteristic analyses of curve shape,abruptness and symmetry.Some com-parison simulations with classical methods and UAV flight exper-iment shows that the proposed scheme has higher recognition accuracy than classical methods for some kinds of Gaussian-like data,which provides better reference for the design of Kalman filter(KF)in complex water environment.
文摘This study aimed to examine the performance of the Siegel-Tukey and Savage tests on data sets with heterogeneous variances. The analysis, considering Normal, Platykurtic, and Skewed distributions and a standard deviation ratio of 1, was conducted for both small and large sample sizes. For small sample sizes, two main categories were established: equal and different sample sizes. Analyses were performed using Monte Carlo simulations with 20,000 repetitions for each scenario, and the simulations were evaluated using SAS software. For small sample sizes, the I. type error rate of the Siegel-Tukey test generally ranged from 0.045 to 0.055, while the I. type error rate of the Savage test was observed to range from 0.016 to 0.041. Similar trends were observed for Platykurtic and Skewed distributions. In scenarios with different sample sizes, the Savage test generally exhibited lower I. type error rates. For large sample sizes, two main categories were established: equal and different sample sizes. For large sample sizes, the I. type error rate of the Siegel-Tukey test ranged from 0.047 to 0.052, while the I. type error rate of the Savage test ranged from 0.043 to 0.051. In cases of equal sample sizes, both tests generally had lower error rates, with the Savage test providing more consistent results for large sample sizes. In conclusion, it was determined that the Savage test provides lower I. type error rates for small sample sizes and that both tests have similar error rates for large sample sizes. These findings suggest that the Savage test could be a more reliable option when analyzing variance differences.
基金supported by Natural Science Fund for colleges and universities in Jiangsu Province(No. 07KJD170012)Natural Science Fund of Huaihai Institute of Technology (No. Z2008009)
文摘Coastal sediment type map has been widely used in marine economic and engineering activities, but the traditional mapping methods had some limitations due to their intrinsic assumption or subjectivity. In this paper, a non-parametric indicator Kriging method has been proposed for generating coastal sediment map. The method can effectively avoid mapping subjectivity, has no special requirements for the sample data to meet second-order stationary or normal distribution, and can also provide useful information on the quantitative evaluation of mapping uncertainty. The application of the method in the southern sea area of Lianyungang showed that much more convincing mapping results could be obtained compared with the traditional methods such as IDW, Kriging and Voronoi diagram under the same condition, so the proposed method was applicable with great utilization value.
文摘Short-term traffic flow is one of the core technologies to realize traffic flow guidance. In this article, in view of the characteristics that the traffic flow changes repeatedly, a short-term traffic flow forecasting method based on a three-layer K-nearest neighbor non-parametric regression algorithm is proposed. Specifically, two screening layers based on shape similarity were introduced in K-nearest neighbor non-parametric regression method, and the forecasting results were output using the weighted averaging on the reciprocal values of the shape similarity distances and the most-similar-point distance adjustment method. According to the experimental results, the proposed algorithm has improved the predictive ability of the traditional K-nearest neighbor non-parametric regression method, and greatly enhanced the accuracy and real-time performance of short-term traffic flow forecasting.
基金supported in part by the National Natural Science Foundation of China under Grants 61841103,61673164,and 61602397in part by the Natural Science Foundation of Hunan Provincial under Grants 2016JJ2041 and 2019JJ50106+1 种基金in part by the Key Project of Education Department of Hunan Provincial under Grant 18B385and in part by the Graduate Research Innovation Projects of Hunan Province under Grants CX2018B805 and CX2018B813.
文摘Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary and involves certain dynamic changes.In this paper,according to the basic steps of the background subtraction method,a novel non-parametric moving object detection method is proposed based on an improved ant colony algorithm by using the Markov random field.Concretely,the contributions are as follows:1)A new nonparametric strategy is utilized to model the background,based on an improved kernel density estimation;this approach uses an adaptive bandwidth,and the fused features combine the colours,gradients and positions.2)A Markov random field method based on this adaptive background model via the constraint of the spatial context is proposed to extract objects.3)The posterior function is maximized efficiently by using an improved ant colony system algorithm.Extensive experiments show that the proposed method demonstrates a better performance than many existing state-of-the-art methods.
基金Science and Technology on Electro-Optic Control Laboratory and the Fund of Aeronautical Science(No.201951048001)。
文摘The ability to build an imaging process is crucial to vision measurement.The non-parametric imaging model describes an imaging process as a pixel cluster,in which each pixel is related to a spatial ray originated from an object point.However,a non-parametric model requires a sophisticated calculation process or high-cost devices to obtain a massive quantity of parameters.These disadvantages limit the application of camera models.Therefore,we propose a novel camera model calibration method based on a single-axis rotational target.The rotational vision target offers 3D control points with no need for detailed information of poses of the rotational target.Radial basis function(RBF)network is introduced to map 3D coordinates to 2D image coordinates.We subsequently derive the optimization formulization of imaging model parameters and compute the parameter from the given control points.The model is extended to adapt the stereo camera that is widely used in vision measurement.Experiments have been done to evaluate the performance of the proposed camera calibration method.The results show that the proposed method has superiority in accuracy and effectiveness in comparison with the traditional methods.
基金supported by the National Polytechnic Institute(SIP-20221151,SIP-20220916)。
文摘This paper addresses the design of an exponential function-based learning law for artificial neural networks(ANNs)with continuous dynamics.The ANN structure is used to obtain a non-parametric model of systems with uncertainties,which are described by a set of nonlinear ordinary differential equations.Two novel adaptive algorithms with predefined exponential convergence rate adjust the weights of the ANN.The first algorithm includes an adaptive gain depending on the identification error which accelerated the convergence of the weights and promotes a faster convergence between the states of the uncertain system and the trajectories of the neural identifier.The second approach uses a time-dependent sigmoidal gain that forces the convergence of the identification error to an invariant set characterized by an ellipsoid.The generalized volume of this ellipsoid depends on the upper bounds of uncertainties,perturbations and modeling errors.The application of the invariant ellipsoid method yields to obtain an algorithm to reduce the volume of the convergence region for the identification error.Both adaptive algorithms are derived from the application of a non-standard exponential dependent function and an associated controlled Lyapunov function.Numerical examples demonstrate the improvements enforced by the algorithms introduced in this study by comparing the convergence settings concerning classical schemes with non-exponential continuous learning methods.The proposed identifiers overcome the results of the classical identifier achieving a faster convergence to an invariant set of smaller dimensions.
文摘A quantitative study was used in the study of the tendency to change drought indicators in Vietnam through the Ninh Thuan province case study. The research data are temperature and precipitation data of 11 stations from 1986 to 2016 inside and outside Ninh Thuan province. To do the research, the author uses a non-parametric analysis method and the drought index calculation method. Specifically, with the non-parametric method, the author uses the analysis, Mann-Kendall (MK) and Theil-Sen (Sen’s slope), and to analyze drought, the author uses the Standardized Precipitation Index (SPI) and the Moisture Index (MI). Two Softwares calculated in this study are ProUCL 5.1 and MAKENSEN 1.0 by the US Environmental Protection Agency and Finnish Meteorological Institute. The calculation results show that meteorological drought will decrease in the future with areas such as Phan Rang, Song Pha, Quan The, Ba Thap tend to increase very clearly, while Tam My and Nhi Ha tend to increase very clearly short. With the agricultural drought, the average MI results increased 0.013 per year, of which Song Pha station tended to increase the highest with 0.03 per year and lower with Nhi Ha with 0.001 per year. The forecast results also show that by the end of the 21st century, the SPI tends to decrease with SPI 1 being <span style="white-space:nowrap;">−</span>0.68, SPI 3 being <span style="white-space:nowrap;">−</span>0.40, SPI 6 being <span style="white-space:nowrap;">−</span>0.25, SPI 12 is 0.42. Along with that is the forecast that the MI index will increase 0.013 per year to 2035, the MI index is 0.93, in 2050 it is 1.13, in 2075 it will be 1.46, and by 2100 it is 1.79. Research results will be used in policymaking, environmental resources management agencies, and researchers to develop and study solutions to adapt and mitigate drought in the context of variable climate change.
文摘The effect of treatment on patient’s outcome can easily be determined through the impact of the treatment on biological events. Observing the treatment for patients for a certain period of time can help in determining whether there is any change in the biomarker of the patient. It is important to study how the biomarker changes due to treatment and whether for different individuals located in separate centers can be clustered together since they might have different distributions. The study is motivated by a Bayesian non-parametric mixture model, which is more flexible when compared to the Bayesian Parametric models and is capable of borrowing information across different centers allowing them to be grouped together. To this end, this research modeled Biological markers taking into consideration the Surrogate markers. The study employed the nested Dirichlet process prior, which is easily peaceable on different distributions for several centers, with centers from the same Dirichlet process component clustered automatically together. The study sampled from the posterior by use of Markov chain Monte carol algorithm. The model is illustrated using a simulation study to see how it performs on simulated data. Clearly, from the simulation study it was clear that, the model was capable of clustering data into different clusters.
基金supported by the National Natural Science Foundation of China (32271551)National Key Research and Development Program of China (2023YFF0805803)the Metasequoia funding of Nanjing Forestry University。
文摘Generalized Additive Models(GAMs)are widely employed in ecological research,serving as a powerful tool for ecologists to explore complex nonlinear relationships between a response variable and predictors.Nevertheless,evaluating the relative importance of predictors with concurvity(analogous to collinearity)on response variables in GAMs remains a challenge.To address this challenge,we developed an R package named gam.hp.gam.hp calculates individual R^(2) values for predictors,based on the concept of'average shared variance',a method previously introduced for multiple regression and canonical analyses.Through these individual R^(2)s,which add up to the overall R^(2),researchers can evaluate the relative importance of each predictor within GAMs.We illustrate the utility of the gam.hp package by evaluating the relative importance of emission sources and meteorological factors in explaining ozone concentration variability in air quality data from London,UK.We believe that the gam.hp package will improve the interpretation of results obtained from GAMs.