Rainfall and temperature variability analysis is important for researchers and policy formulators in making critical decisions on water availability and use in communities. The Western Sahel, which comprises Mali is c...Rainfall and temperature variability analysis is important for researchers and policy formulators in making critical decisions on water availability and use in communities. The Western Sahel, which comprises Mali is considered as one of the vulnerable regions to climate change, and also encountered the challenges of climatic shocks such as flood and drought. This research therefore sought to investigate climate change effects on hydrological events and trends in Sahelian rainfall intensity using Bamako (Mali) as a case study from 1991 to 2020, as limited data availability did not allow an extended period of study. Monthly observed data provided by MALI-METEO was used to validate daily rainfalls data from African Rainfall Climatology Version 2 (ARC2) satellite-based rainfall product on monthly basis. The validated model performance used Nash-Sutcliffe Efficiency (NSE) and Percent Bias (PBAIS) and gave results of 0.904 and 1.0506 respectively. Trends in annual maximum temperatures and rainfalls were analyzed using Mann-Kendall trend test. The result indicated that the trend in annual maximum rainfalls was decreasing, while annual total rainfall was increasing but not significant at 5% significance level. The rate of increase in annual total rainfalls was 0.475 mm/year according to the observed annual rainfall series and decreased to 0.68 mm/year in annual maximum. The analysis further found that annual maximum temperatures were increasing at the rate of 0.03°C/year at 5% significance level. To provide more accurate climate predictions, it is recommended that further studies on rainfall and temperature with data sets spanning 60 - 90 years be carried out.展开更多
Vegetation is the main component of the terrestrial ecosystem and plays a key role in global climate change. Remotely sensed vegetation indices are widely used to detect vegetation trends at large scales. To understan...Vegetation is the main component of the terrestrial ecosystem and plays a key role in global climate change. Remotely sensed vegetation indices are widely used to detect vegetation trends at large scales. To understand the trends of vegetation cover, this research examined the spatial-temporal trends of global vegetation by employing the normalized difference vegetation index(NDVI) from the Advanced Very High Resolution Radiometer(AVHRR) Global Inventory Modeling and Mapping Studies(GIMMS) time series(1982–2015). Ten samples were selected to test the temporal trend of NDVI, and the results show that in arid and semi-arid regions, NDVI showed a deceasing trend, while it showed a growing trend in other regions. Mann-Kendal(MK) trend test results indicate that 83.37% of NDVI pixels exhibited positive trends and that only 16.63% showed negative trends(P < 0.05) during the period from 1982 to 2015. The increasing NDVI trends primarily occurred in tree-covered regions because of forest growth and re-growth and also because of vegetation succession after a forest disturbance. The increasing trend of the NDVI in cropland regions was primarily because of the increasing cropland area and the improvement in planting techniques. This research describes the spatial vegetation trends at a global scale over the past 30+ years, especially for different land cover types.展开更多
Rockbursts have become a significant hazard in underground mining,underscoring the need for a robust early warning model to ensure safety management.This study presents a novel approach for rockburst prediction,integr...Rockbursts have become a significant hazard in underground mining,underscoring the need for a robust early warning model to ensure safety management.This study presents a novel approach for rockburst prediction,integrating the Mann-Kendall trend test(MKT)and multi-indices fusion to enable real-time and quantitative assessment of rockburst hazards.The methodology employed in this study involves the development of a comprehensive precursory index library for rockbursts.The MKT is then applied to analyze the real-time trend of each index,with adherence to rockburst characterization laws serving as the warning criterion.By employing a confusion matrix,the warning effectiveness of each index is assessed,enabling index preference determination.Ultimately,the integrated rockburst hazard index Q is derived through data fusion.The results demonstrate that the proposed model achieves a warning effectiveness of 0.563 for Q,surpassing the performance of any individual index.Moreover,the model’s adaptability and scalability are enhanced through periodic updates driven by actual field monitoring data,making it suitable for complex underground working environments.By providing an efficient and accurate basis for decision-making,the proposed model holds great potential for the prevention and control of rockbursts.It offers a valuable tool for enhancing safety measures in underground mining operations.展开更多
Hydrological events should be described through several correlated variables, so multivariate HFA has gained popularity and become an active research field during recent years. However, at present multivariate HFA mai...Hydrological events should be described through several correlated variables, so multivariate HFA has gained popularity and become an active research field during recent years. However, at present multivariate HFA mainly focuses directly on fitting the frequency distribution without confirming whether the assumptions are satisfied. Neglecting testing these assumptions could get severely wrong frequency distribution. This paper uses multivariate Mann-Kendal testing to detect the multivariate trends of annual flood peak and annual maximum 15 day volume for four control hydrological stations in the?Upper Yangtze River Basin. Results indicate that multivariate test could detect the trends of joint variables, whereas univariate tests can only detect the univariate trends. Therefore, it is recommended to jointly apply univariate and multivariate trend tests to capture all the existing trends.展开更多
Taking the Lhasa River Basin above Lhasa hydrological station in Tibetan Plateau as a study area, the characteristics of the annual and monthly mean runoff during 1956-2003 were analyzed, based on the hydro-data of th...Taking the Lhasa River Basin above Lhasa hydrological station in Tibetan Plateau as a study area, the characteristics of the annual and monthly mean runoff during 1956-2003 were analyzed, based on the hydro-data of the two hydrological stations (Lhasa and Tanggya) and the meteorological data of the three meteorological stations (Damxung, Lhasa and Tanggya). The trends and the change points of runoff and climate from 1956 to 2003 were detected using the nonparametric Mann-Kendall test and Pettitt-Mann-Whitney change-point statistics. The correlations between runoff and climate change were analyzed using multiple linear regression. The major results could be summarized as follows: (1) The annual mean runoff during the last 50 years is characterized by a great fluctuation and a positive trend with two change points (around 1970 and the early 1980s), after which the runoff tended to increase and was increasing intensively in the last 20 years. Besides, the monthly mean runoff with a positive trend is centralized in winter half-year (November to April) and some other months (May, July and September). (2) The trends of the climate change in the study area are generally consistent with the trend of the runoff, but the leading climate factors which aroused the runoff variation are distinct. Precipitation is the dominant factor influencing the annual and monthly mean runoff in summer half year, while temperature is the primary factor in winter season.展开更多
Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tari...Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tarim River Basin of Xinjiang Uygur Autonomous Region,China.Major findings are as follows:1) In the 48-year study period,average annual temperature,annual precipitation and average annual relative humidity all presented nonlinear trends.2) At the 16-year time scale,all three climate indices unanimously showed a rather flat before 1964 and a detectable pickup thereafter.At the 8-year time scale,an S-shaped nonlinear and uprising trend was revealed with slight fluctuations in the entire process for all three indices.Incidentally,they all showed similar pattern of a slight increase before 1980 and a noticeable up-swing afterwards.The 4-year time scale provided a highly fluctuating pattern of periodical oscillations and spiral increases.3) Average annual relative humidity presented a negative correlation with average annual temperature and a positive correlation with annual precipitation at each time scale,which revealed a close dynamic relationship among them at the confidence level of 0.001.4) The Mann-Kendall test at the 0.05 confidence level demonstrated that the climate warming trend,as represented by the rising average annual temperature,was remarkable,but the climate wetting trend,as indicated by the rising annual precipitation and average annual relative humidity,was not obvious.展开更多
Linhe National Meteorological Station, a representative weather station in the Hetao Irrigation District of China, was selected as the research site for the present study. Changes in climatic variables and reference e...Linhe National Meteorological Station, a representative weather station in the Hetao Irrigation District of China, was selected as the research site for the present study. Changes in climatic variables and reference evapotranspiration (ET0 ) (estimated by the Penman-Monteith method) were detected using Mann-Kendall tests and Sen's slope estimator, respectively. The authors analyzed the relationship between the ET0 change and each climatic variable's change. From 1954 to 2012, the air temperature showed a significant increasing trend, whereas relative humidity and wind speed decreased dramatically. These changes resulted in a slight increase in ETo. The radiative component of total ET0 increased from 50% to 57%, indicating that this component made a greater contribution to the increase in total ETo than the aerodynamic component, especially during the crop growing season (from April to October). The sensitivity analysis showed that ETo in Hetao is most sensitive to mean daily air temperature (11.8%), followed by wind speed (-7.3%) and relative humidity (4.8%). Changes in sunshine duration had only a minor effect on ET0 over the past 59 years.展开更多
Having analyzed a global grid temperature anomaly data set and some sea level pressure data during the last century, we found the following facts. Firstly, the annual temperature change with a warming trend of about 0...Having analyzed a global grid temperature anomaly data set and some sea level pressure data during the last century, we found the following facts. Firstly, the annual temperature change with a warming trend of about 0.6°C/ 100 years in the tropical area over Indian to the western Pacific Oceans was most closely correlated to the global mean change. Therefore, the temperature change in this area might serve as an indi-cator of global mean change at annual and longer time scales. Secondly, a cooling of about -0.3°C/ 100 years occurred over the northern Atlantic. Thirdly, a two-wave pattern of temperature change, warming over northern Asia and northwestern America and cooling over the northern Atlantic and the northern Pa-cific, occurred during the last half century linked to strengthening westerlies over the northern Atlantic and the weakening Siberian High. Fourthly, a remarkable seasonal difference occurred over the Eurasian con-tinent, with cooling (warming) in winter (summer) during 1896–1945, and warming (cooling) in winter (summer) during 1946-1995. The corresponding variations of the North Atlantic Oscillation and the South-ern Oscillation were also discussed. Key words Temperature trend - Mann-Kendall’s Test - Significance - Regional difference - Correlation coefficient This study was supported by the Ministry of Science and Technology Projects G1999043400 and Na-tional Key Project- “Studies on Short-Term Climate Prediction System in China” under Grant No.96-908-01-04.展开更多
Rainfall and temperature are climatic variables mostly affected by global warming. This study aimed to investigate the temporal trend analysis in annual temperature and rainfall in the Southern Togo for the 1970-2014 ...Rainfall and temperature are climatic variables mostly affected by global warming. This study aimed to investigate the temporal trend analysis in annual temperature and rainfall in the Southern Togo for the 1970-2014 period. Daily and annual rainfall and temperature were collected from four weather stations at Atakpame, Kouma-Konda, Lome, and Tabligbo. The temperature variability was determined by the Standardized Anomaly Index (SAI) and the annual rainfall variability was determined using the Standardized Precipitation Index (SPI). The Mann-Kendall test was used for trend analysis. Mann-Kendall statistical test for the mean annual, mean annual minimum and maximum temperature from 1970 to 2014 showed significant warming trends for all stations except Kouma-Konda where mean annual maximum temperature had exhibited non significant cooling trend (P = 0.01). For Standardized Precipitation Index in the 12-month time scale, dry tendency dominates Atakpamé (55.7%) and Kouma-Konda (55.5%) while wet tendency dominates slightly Lomé (50.9%) and Tabligbo (51.4%). The Mann-Kendall test revealed an increasing trend in standardized anomaly index at all the sites, prejudicial to rainfed agriculture practiced by about 90% of Togolese crop growers. The trend analysis in the climate variables indicated a change in climate that necessitates some specific actions for resources management sustainability and conservation.展开更多
Researches are being carried out world-wide to understand the nature of temperature change during recent past at different geographical scales so that comprehensive inferences can be drawn about recent temperature tre...Researches are being carried out world-wide to understand the nature of temperature change during recent past at different geographical scales so that comprehensive inferences can be drawn about recent temperature trend and future climate. Detection of turning points in time series of meteorological parameters puts challenges to the researches. In this work, the temperature time series from 1941 to 2010 for Asansol observatory, West Bengal, India, has been considered to understand the nature, trends and change points in the data set using sequential version of Mann-Kendall test statistic. Literatures suggest that use of this test statistic is the most appropriate for detecting climatic abrupt changes as compared to other statistical tests in use. This method has been employed upon monthly average temperatures recorded over the said 70 years for detection of abrupt changes in the average temperature of each of the months. The approximate potential trend turning points have been calculated separately for each month (January to December). Sequential version of Mann-Kendall test statistic values for the months of July and August is significant at 95% confidence level (p 0.05). The average temperature for most of the other months has shown an increasing trend but more significant rise in July and August temperature has been recognized since 1960s.展开更多
Eastern Black Sea Region in northeastern part of Turkey has the highest precipitation total in the country, approaching 2500 mm per a year. It is therefore an important region as it frequently encounters with flash fl...Eastern Black Sea Region in northeastern part of Turkey has the highest precipitation total in the country, approaching 2500 mm per a year. It is therefore an important region as it frequently encounters with flash floods due to heavy rains. For future planning of water resources, environment and urbanization, it is important to know the expected behavior of hydrometeorological processes, mainly precipitation and flow. Due to these facts, in this study, homogeneity of long-term annual precipitation and streamflow series of the Eastern Black Sea Region, Turkey is checked using double mass curve method and trends are determined by means of the Mann-Kendall test. The data network consists of 38 precipitation gauging stations and 40 flow gauging stations across the Eastern Black Sea Region. It is found that 27 precipitation stations out of 38 are homogeneous and no trend is available. Out of the remaining stations, nine are found non-homogeneous and four with trend. For annual flow data, it is found that 22 stations out of 40 are homogeneous and no trend is available. The remaining 18 stations are found non-homogeneous, among which 5 stations have trend at the same time.展开更多
Abstract: Estimation of evapotranspiration (ET) for mountain ecosystem is of absolute importance since it serves as an important component in balancing the hydrologic cycle. The present study evaluates the performa...Abstract: Estimation of evapotranspiration (ET) for mountain ecosystem is of absolute importance since it serves as an important component in balancing the hydrologic cycle. The present study evaluates the performance of original and location specific calibrated Hargreaves equation (HARG) with the estimates of Food and Agricultural Organization (FAO) Penman Monteith (PM) method for higher altitudes in East Sikkim, India. The results show that the uncalibrated HARG model underestimates ET0 by 0.35 mm day^-1 whereas the results are significantly improved by regional calibration of the model. In addition, this paper also presents the variability in the trajectory associated with the climatic variables with the changing climate in the study site. Non- parametric Mann-Kendall (MK) test was used to investigate and understand the mean monthly trend of eight climatic parameters including reference evapotranspiration (ET0) for the period of 1985 - 2009. Trend of ET0 was estimated for the calculations done by FAO PM equation. The outcomes of the trend analysis show significant increasing (p ≤ 0.05) trend represented by higher Z-values, through MK test, for net radiation (Rn), maximum temperature (Tmax) and minimum temperature (Train), especially in the first months of the year. Whereas, significant (0.01 ≥ p ≤0.05) decreasing trend in vapor pressure deficit (VPD) and precipitation (P) is observed throughout the year. Declining trend in sunshine duration, VPD and ET0 is found in spring (March - May) and monsoon (June - November) season. The result displays significant (0.01≤ p ≤0.05) decreasing ET0 trend between (June - December) except in July, exhibiting the positive relation with VPD followed by sunshine duration at the station. Overall, the study emphasizes the importance of trend analysis of ET0 and other climatic variables for efficient planning and managing the agricultural practices, in identifying the changes in the meteorological parameters and to accurately assess the hydrologic water balance of the hilly regions.展开更多
The trends and periodicities in the annual and seasonal temperature time series at fifteen weather stations within Ontario Great Lakes Basins have been analyzed, for the period 1941-2005, using the statistical analyse...The trends and periodicities in the annual and seasonal temperature time series at fifteen weather stations within Ontario Great Lakes Basins have been analyzed, for the period 1941-2005, using the statistical analyses (Fourier series analysis, t-test, and Mann-Kendall test). The stations were spatially divided into three regions: northwest (NW), southwest (SW), and southeast (SE) to evaluate spatial variability in temperature. The results of the study reveal that the annual maximum mean temperature showed increasing trend for NW, and mixed trends for SW and SE regions. The variability was found to be more for northern stations as compared to southern stations for annual extreme minimum temperature. In addition, the trend slope per 100 years for the average annual extreme minimum temperature increased within the range of -0.8°C (Stratford) to 15°C (Porcupine). The seasonal analysis demonstrated that extreme maximum temperature has an increasing trend and maximum mean temperature has a decreasing trend during summer and winter. The extreme minimum temperature for winter illustrated an increasing trend (90%) with 22% statistically significant for NW region. For the SW region, the trend is also increasing (80%) for most of the temperature variables and 25% of temperature data were significantly increased in the SW region. The SE region stations showed overall very clear increasing trends (95%) for all the temperature variables. The data also showed that 47% of data were statistically significant in the SE region. The analysis of variance accounted for by trend, significant periodicities, and random component show that the pattern is similar for the percent of variance accounted for periodicities, and random component contribute dominantly for the four temperature variables and frost free days (FFD) for all three regions. Overall, the study reveals that the extreme minimum temperature is increasing annually and seasonally, with statistically significant at many stations.展开更多
Climate change and global warming are widely recognized as the most significant environmental dilemma the world is experiencing today. Recent studies have shown that the Earth’s surface air temperature has increased ...Climate change and global warming are widely recognized as the most significant environmental dilemma the world is experiencing today. Recent studies have shown that the Earth’s surface air temperature has increased by 0.6°C - 0.8°C during the 20th century, along with changes in the hydrological cycle. This has alerted the international community and brought great interest to climate scientists leading to several studies on climate trend detection at various scales. This paper examines the long-term modification of the near surface air temperature in Rwanda. Time series of near surface air temperature data for the period ranging from 1958 to 2010 for five weather observatories were collected from the Rwanda National Meteorological Service. Variations and trends of annual mean temperature time series were examined. The cumulative sum charts (CUSUM) and bootstrapping and the sequential version of the Mann Kendall Rank Statistic were used for the detection of abrupt changes. Regression analysis was performed for the trends and the Mann-Kendall Rank Statistic Test was used for the examination of their significance. Statistically significant abrupt changes and trends have been detected. The major change point in the annual mean temperature occurred around 1977-1979. The analysis of the annual mean temperature showed for all observatories a not very significant cooling trend during the period ranging from 1958 to 1977-1979 while a significant warming trend was furthermore observed for the period after the 1977-1979 where Kigali, the Capital of Rwanda, presented the highest values of the slope (0.0455/year) with high value of coefficient of determination (R2 = 0.6798), the Kendall’s tau statistic (M-K = 0.62), the Kendall Score (S = 328) with a two-sided p-value far less than the confidence level α of 5%). This is most likely explained by the growing population and increasing urbanization and industrialization the country has experienced, especially the Capital City Kigali, during the last decades.展开更多
Bangladesh is one in all the foremost climate vulnerable countries of the world. In recent years, climate change studies over the country get plenty of attention by the researchers and policy makers. A substantial qua...Bangladesh is one in all the foremost climate vulnerable countries of the world. In recent years, climate change studies over the country get plenty of attention by the researchers and policy makers. A substantial quantity of global climate change studies over the country use climate models to estimate future projections and uncertainties. Maximum temperature, precipitation and their potential future changes are evaluated in an ensemble of the 5th Phase Coupled Model Inter-comparison Project (CMIP5) within the Intergovernmental Panel on Climate Change (IPCC) diagnostic exercise for the Fifth Assessment Report (AR5) and the available historical data collected by the Bangladesh Meteorological Department (BMD) during the period 1981-2008 in the north-western region of Bangladesh and also the comparison between these two values. It has been found that average maximum temperature shows a positive trend of increase at a rate of 0.29°C and 5.3°C per century respectively, for BMD data and MPI-ESM-LR (CMIP5) model data. But the rainfall is decreasing at a rate of 8.8 mm and 40.1 mm per century respectively for BMD data and MPI-ESM-LR (CMIP5) model data. It is seen that July was the maximum monsoon rainfall month and January was the lowest rainfall month. The peak frequency is slightly smaller than 12 months, which indicates that the major events are occurring before ending a year compared to the previous year. According to MPI-ESM-LR (CMIP5) model data, future normal temperature on north-western region will be increased at a rate of 1.62°C during the period 2040-2100.展开更多
The impact of climate change on sea level has received a great deal of attention by scientists worldwide. In this context, the problem of sea levels on global and regional scales have been analyzed in a number of stud...The impact of climate change on sea level has received a great deal of attention by scientists worldwide. In this context, the problem of sea levels on global and regional scales have been analyzed in a number of studies based on tide gauges observations and satellite altimetry measurements. This study focuses on trend estimates from 18 high-quality tide gauge stations along the Mediterranean Sea coast. The seasonal Mann-Kendall test was run at a 5% significance level for each of the 18 stations for the period of 1993-2015 (satellite altimetry era). The results of this test indicate that the trends for 17 stations were statistically significant and showed an increase (no significant trend was observed only at one station). The rates of sea level change for the 17 stations that exhibit significant trends, estimated using seasonal Sen's approach, range after correction for Vertical Land Motion (VLM) from 1.48 to 8.72 mm/a for the period 1993-2015. Furthermore, the magnitude of change at the location of each tide gauge station was estimated using the satellite altimetry measurements. Thus, the results obtained agree with those from the tide-gauge data analysis.展开更多
The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite has been collect- ing valuable data about the Earth system for more than 14 years, and one of the benefits of this is t...The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite has been collect- ing valuable data about the Earth system for more than 14 years, and one of the benefits of this is that it has made it possible to detect the long-term variation in aerosol loading across the globe. However, the long-term aerosol optical depth (AOD) trends derived from MODIS need careful validation and assessment, especially over land. Using AOD products with at least 70 months' worth of measurements collected during 2002-15 at 53 Aerosol Robotic Network (AERONET) sites over land, Mann-Kendall (MK) trends in AOD were derived and taken as the ground truth data for evaluating the corresponding results from MOD|S onboard Aqua. The results showed that the AERONET AOD trends over all sites in Europe and North Amer- ica, as well as most sites in Africa and Asia, can be reproduced by MODIS/Aqua. However, disagreement in AOD trends between MODIS and AERONET was found at a few sites in Australia and South America. The AOD trends calculated from AERONET instantaneous data at the MODIS overpass times were consistent with those from AERONET daily data, which suggests that the AOD trends derived from satellite measurements of 1-2 overpasses may be representative of those from daily measurements.展开更多
The main purpose of this study is to highlight, on the basis of statistical tests, the significant long-term changes of the Mediterranean Sea level, through the analysis of historical tide gauge records. In this frame...The main purpose of this study is to highlight, on the basis of statistical tests, the significant long-term changes of the Mediterranean Sea level, through the analysis of historical tide gauge records. In this framework, 14 tide gauge monthly series selected from the Permanent Service of the Mean Sea Level(PSMSL) database were used. The search for the presence or not of trends within these series, that have a temporal coverage from 59 to 142 years, was carried out using the Mann-Kendall test and the Sen’s slope estimator. The obtained results show that the Split Rt Marjana series are the only ones which does not exhibit a significant trend. The other 13 series show significant increasing trends. This result seems sufficient to suppose the presence, in the past century, of a new climatic phase on the scale of the Mediterranean basin, where the rising sea level is one of the consequences.展开更多
This paper presents an analysis of the fire trends in southern European countries, where forest fires are a major hazard. Data on number of fires and burned area size from 1985 until 2009 were retrieved from the Europ...This paper presents an analysis of the fire trends in southern European countries, where forest fires are a major hazard. Data on number of fires and burned area size from 1985 until 2009 were retrieved from the European Fire Database in the European Forest Fire Information System and used to study the temporal and spatial variability of fire occurrence at three different spatial scales: the whole European Mediterranean region, country level and province level (NUTS3). The temporal trends were assessed with the Mann-Kendall test and Sen's slope in the period 1985-2009. At regional (supranational) level, our results suggest a significant decreasing trend in the burned area for the whole study period. At country level, the trends vary by country, although there is a general increase in number of fires, mainly in Portugal, and a decrease in bumed areas, as is the case of Spain. A similar behavior was found at NUTS3 level, with an increase of number of fires in the Spanish and Portuguese provinces and a generalized decrease of the burned area in most provinces of the region. These results provide an important insight into the spatial distribution and temporal evolution of fires, a crucial step to investigate the underlying causes and impacts of fire occurrence in this region.展开更多
This paper mainly investigated the basic information about non-stationary trend change point patterns. After performing the investigation, the corresponding results show the existence of a trend, its magnitude, and ch...This paper mainly investigated the basic information about non-stationary trend change point patterns. After performing the investigation, the corresponding results show the existence of a trend, its magnitude, and change points in 24-hourly annual maximum series (AMS) extracted from monthly maximum series (MMS) data for thirty years (1986-2015) rainfall data for Uyo metropolis. Trend analysis was performed using Mann-Kendall (MK) test and Sen’s slope estimator (SSE) used to obtain the trend magnitude, while the trend change point analysis was conducted using the distribution-free cumulative sum test (CUSUM) and the sequential Mann-Kendall test (SQMK). A free CUSUM plot date of change point of rainfall trend as 2002 at 90% confidence interval was obtained from where the increasing trend started and became more pronounced in the year 2011, another change point year from the SQMK plot with the trend intensifying. The SSE gave an average rate of change in rainfall as 2.1288 and 2.16 mm/year for AMS and MMS time series data respectively. Invariably, the condition for Non-stationary concept application is met for intensity-duration-frequency modeling.展开更多
文摘Rainfall and temperature variability analysis is important for researchers and policy formulators in making critical decisions on water availability and use in communities. The Western Sahel, which comprises Mali is considered as one of the vulnerable regions to climate change, and also encountered the challenges of climatic shocks such as flood and drought. This research therefore sought to investigate climate change effects on hydrological events and trends in Sahelian rainfall intensity using Bamako (Mali) as a case study from 1991 to 2020, as limited data availability did not allow an extended period of study. Monthly observed data provided by MALI-METEO was used to validate daily rainfalls data from African Rainfall Climatology Version 2 (ARC2) satellite-based rainfall product on monthly basis. The validated model performance used Nash-Sutcliffe Efficiency (NSE) and Percent Bias (PBAIS) and gave results of 0.904 and 1.0506 respectively. Trends in annual maximum temperatures and rainfalls were analyzed using Mann-Kendall trend test. The result indicated that the trend in annual maximum rainfalls was decreasing, while annual total rainfall was increasing but not significant at 5% significance level. The rate of increase in annual total rainfalls was 0.475 mm/year according to the observed annual rainfall series and decreased to 0.68 mm/year in annual maximum. The analysis further found that annual maximum temperatures were increasing at the rate of 0.03°C/year at 5% significance level. To provide more accurate climate predictions, it is recommended that further studies on rainfall and temperature with data sets spanning 60 - 90 years be carried out.
基金Under the auspices of National Natural Science Foundation of China(No.41771179,41871103,41771138)the National Key Research and Development Project(No.2016YFA0602301)
文摘Vegetation is the main component of the terrestrial ecosystem and plays a key role in global climate change. Remotely sensed vegetation indices are widely used to detect vegetation trends at large scales. To understand the trends of vegetation cover, this research examined the spatial-temporal trends of global vegetation by employing the normalized difference vegetation index(NDVI) from the Advanced Very High Resolution Radiometer(AVHRR) Global Inventory Modeling and Mapping Studies(GIMMS) time series(1982–2015). Ten samples were selected to test the temporal trend of NDVI, and the results show that in arid and semi-arid regions, NDVI showed a deceasing trend, while it showed a growing trend in other regions. Mann-Kendal(MK) trend test results indicate that 83.37% of NDVI pixels exhibited positive trends and that only 16.63% showed negative trends(P < 0.05) during the period from 1982 to 2015. The increasing NDVI trends primarily occurred in tree-covered regions because of forest growth and re-growth and also because of vegetation succession after a forest disturbance. The increasing trend of the NDVI in cropland regions was primarily because of the increasing cropland area and the improvement in planting techniques. This research describes the spatial vegetation trends at a global scale over the past 30+ years, especially for different land cover types.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Grant Nos.52011530037 and 51904019)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange&Growth Program(Grant No.QNXM20210004).We also greatly appreciate the assistance provided by Kuangou coal mine,China Energy Group Xinjiang Energy Co.,Ltd.
文摘Rockbursts have become a significant hazard in underground mining,underscoring the need for a robust early warning model to ensure safety management.This study presents a novel approach for rockburst prediction,integrating the Mann-Kendall trend test(MKT)and multi-indices fusion to enable real-time and quantitative assessment of rockburst hazards.The methodology employed in this study involves the development of a comprehensive precursory index library for rockbursts.The MKT is then applied to analyze the real-time trend of each index,with adherence to rockburst characterization laws serving as the warning criterion.By employing a confusion matrix,the warning effectiveness of each index is assessed,enabling index preference determination.Ultimately,the integrated rockburst hazard index Q is derived through data fusion.The results demonstrate that the proposed model achieves a warning effectiveness of 0.563 for Q,surpassing the performance of any individual index.Moreover,the model’s adaptability and scalability are enhanced through periodic updates driven by actual field monitoring data,making it suitable for complex underground working environments.By providing an efficient and accurate basis for decision-making,the proposed model holds great potential for the prevention and control of rockbursts.It offers a valuable tool for enhancing safety measures in underground mining operations.
文摘Hydrological events should be described through several correlated variables, so multivariate HFA has gained popularity and become an active research field during recent years. However, at present multivariate HFA mainly focuses directly on fitting the frequency distribution without confirming whether the assumptions are satisfied. Neglecting testing these assumptions could get severely wrong frequency distribution. This paper uses multivariate Mann-Kendal testing to detect the multivariate trends of annual flood peak and annual maximum 15 day volume for four control hydrological stations in the?Upper Yangtze River Basin. Results indicate that multivariate test could detect the trends of joint variables, whereas univariate tests can only detect the univariate trends. Therefore, it is recommended to jointly apply univariate and multivariate trend tests to capture all the existing trends.
基金National Basic Research Program of China, No.2005CB422006 National Natural Science Foundation of China, No.90202012 No.40561002
文摘Taking the Lhasa River Basin above Lhasa hydrological station in Tibetan Plateau as a study area, the characteristics of the annual and monthly mean runoff during 1956-2003 were analyzed, based on the hydro-data of the two hydrological stations (Lhasa and Tanggya) and the meteorological data of the three meteorological stations (Damxung, Lhasa and Tanggya). The trends and the change points of runoff and climate from 1956 to 2003 were detected using the nonparametric Mann-Kendall test and Pettitt-Mann-Whitney change-point statistics. The correlations between runoff and climate change were analyzed using multiple linear regression. The major results could be summarized as follows: (1) The annual mean runoff during the last 50 years is characterized by a great fluctuation and a positive trend with two change points (around 1970 and the early 1980s), after which the runoff tended to increase and was increasing intensively in the last 20 years. Besides, the monthly mean runoff with a positive trend is centralized in winter half-year (November to April) and some other months (May, July and September). (2) The trends of the climate change in the study area are generally consistent with the trend of the runoff, but the leading climate factors which aroused the runoff variation are distinct. Precipitation is the dominant factor influencing the annual and monthly mean runoff in summer half year, while temperature is the primary factor in winter season.
基金Under the auspices of the Second-stage Knowledge Innovation Programs of Chinese Academy of Sciences (No KZCX2-XB2-03,KZCX2-YW-127)National Natural Science Foundation of China (No 40671014)Shanghai Academic Discipline Project (Human Geography) (No B410)
文摘Using wavelet analysis,regression analysis and the Mann-Kendall test,this paper analyzed time-series(1959-2006) weather data from 23 meteorological stations in an attempt to characterize the climate change in the Tarim River Basin of Xinjiang Uygur Autonomous Region,China.Major findings are as follows:1) In the 48-year study period,average annual temperature,annual precipitation and average annual relative humidity all presented nonlinear trends.2) At the 16-year time scale,all three climate indices unanimously showed a rather flat before 1964 and a detectable pickup thereafter.At the 8-year time scale,an S-shaped nonlinear and uprising trend was revealed with slight fluctuations in the entire process for all three indices.Incidentally,they all showed similar pattern of a slight increase before 1980 and a noticeable up-swing afterwards.The 4-year time scale provided a highly fluctuating pattern of periodical oscillations and spiral increases.3) Average annual relative humidity presented a negative correlation with average annual temperature and a positive correlation with annual precipitation at each time scale,which revealed a close dynamic relationship among them at the confidence level of 0.001.4) The Mann-Kendall test at the 0.05 confidence level demonstrated that the climate warming trend,as represented by the rising average annual temperature,was remarkable,but the climate wetting trend,as indicated by the rising annual precipitation and average annual relative humidity,was not obvious.
基金supported by the National Natural Science Foundation of China(Grant No.51179005)the Special Fund for Public Welfare Industry of the Ministry of Water Resources of China(Grant No.201401036)
文摘Linhe National Meteorological Station, a representative weather station in the Hetao Irrigation District of China, was selected as the research site for the present study. Changes in climatic variables and reference evapotranspiration (ET0 ) (estimated by the Penman-Monteith method) were detected using Mann-Kendall tests and Sen's slope estimator, respectively. The authors analyzed the relationship between the ET0 change and each climatic variable's change. From 1954 to 2012, the air temperature showed a significant increasing trend, whereas relative humidity and wind speed decreased dramatically. These changes resulted in a slight increase in ETo. The radiative component of total ET0 increased from 50% to 57%, indicating that this component made a greater contribution to the increase in total ETo than the aerodynamic component, especially during the crop growing season (from April to October). The sensitivity analysis showed that ETo in Hetao is most sensitive to mean daily air temperature (11.8%), followed by wind speed (-7.3%) and relative humidity (4.8%). Changes in sunshine duration had only a minor effect on ET0 over the past 59 years.
基金This study was supported by the Ministry of Science and Technology Projects O 1999043400 National Key Project-Studies on Sh
文摘Having analyzed a global grid temperature anomaly data set and some sea level pressure data during the last century, we found the following facts. Firstly, the annual temperature change with a warming trend of about 0.6°C/ 100 years in the tropical area over Indian to the western Pacific Oceans was most closely correlated to the global mean change. Therefore, the temperature change in this area might serve as an indi-cator of global mean change at annual and longer time scales. Secondly, a cooling of about -0.3°C/ 100 years occurred over the northern Atlantic. Thirdly, a two-wave pattern of temperature change, warming over northern Asia and northwestern America and cooling over the northern Atlantic and the northern Pa-cific, occurred during the last half century linked to strengthening westerlies over the northern Atlantic and the weakening Siberian High. Fourthly, a remarkable seasonal difference occurred over the Eurasian con-tinent, with cooling (warming) in winter (summer) during 1896–1945, and warming (cooling) in winter (summer) during 1946-1995. The corresponding variations of the North Atlantic Oscillation and the South-ern Oscillation were also discussed. Key words Temperature trend - Mann-Kendall’s Test - Significance - Regional difference - Correlation coefficient This study was supported by the Ministry of Science and Technology Projects G1999043400 and Na-tional Key Project- “Studies on Short-Term Climate Prediction System in China” under Grant No.96-908-01-04.
文摘Rainfall and temperature are climatic variables mostly affected by global warming. This study aimed to investigate the temporal trend analysis in annual temperature and rainfall in the Southern Togo for the 1970-2014 period. Daily and annual rainfall and temperature were collected from four weather stations at Atakpame, Kouma-Konda, Lome, and Tabligbo. The temperature variability was determined by the Standardized Anomaly Index (SAI) and the annual rainfall variability was determined using the Standardized Precipitation Index (SPI). The Mann-Kendall test was used for trend analysis. Mann-Kendall statistical test for the mean annual, mean annual minimum and maximum temperature from 1970 to 2014 showed significant warming trends for all stations except Kouma-Konda where mean annual maximum temperature had exhibited non significant cooling trend (P = 0.01). For Standardized Precipitation Index in the 12-month time scale, dry tendency dominates Atakpamé (55.7%) and Kouma-Konda (55.5%) while wet tendency dominates slightly Lomé (50.9%) and Tabligbo (51.4%). The Mann-Kendall test revealed an increasing trend in standardized anomaly index at all the sites, prejudicial to rainfed agriculture practiced by about 90% of Togolese crop growers. The trend analysis in the climate variables indicated a change in climate that necessitates some specific actions for resources management sustainability and conservation.
文摘Researches are being carried out world-wide to understand the nature of temperature change during recent past at different geographical scales so that comprehensive inferences can be drawn about recent temperature trend and future climate. Detection of turning points in time series of meteorological parameters puts challenges to the researches. In this work, the temperature time series from 1941 to 2010 for Asansol observatory, West Bengal, India, has been considered to understand the nature, trends and change points in the data set using sequential version of Mann-Kendall test statistic. Literatures suggest that use of this test statistic is the most appropriate for detecting climatic abrupt changes as compared to other statistical tests in use. This method has been employed upon monthly average temperatures recorded over the said 70 years for detection of abrupt changes in the average temperature of each of the months. The approximate potential trend turning points have been calculated separately for each month (January to December). Sequential version of Mann-Kendall test statistic values for the months of July and August is significant at 95% confidence level (p 0.05). The average temperature for most of the other months has shown an increasing trend but more significant rise in July and August temperature has been recognized since 1960s.
文摘Eastern Black Sea Region in northeastern part of Turkey has the highest precipitation total in the country, approaching 2500 mm per a year. It is therefore an important region as it frequently encounters with flash floods due to heavy rains. For future planning of water resources, environment and urbanization, it is important to know the expected behavior of hydrometeorological processes, mainly precipitation and flow. Due to these facts, in this study, homogeneity of long-term annual precipitation and streamflow series of the Eastern Black Sea Region, Turkey is checked using double mass curve method and trends are determined by means of the Mann-Kendall test. The data network consists of 38 precipitation gauging stations and 40 flow gauging stations across the Eastern Black Sea Region. It is found that 27 precipitation stations out of 38 are homogeneous and no trend is available. Out of the remaining stations, nine are found non-homogeneous and four with trend. For annual flow data, it is found that 22 stations out of 40 are homogeneous and no trend is available. The remaining 18 stations are found non-homogeneous, among which 5 stations have trend at the same time.
文摘Abstract: Estimation of evapotranspiration (ET) for mountain ecosystem is of absolute importance since it serves as an important component in balancing the hydrologic cycle. The present study evaluates the performance of original and location specific calibrated Hargreaves equation (HARG) with the estimates of Food and Agricultural Organization (FAO) Penman Monteith (PM) method for higher altitudes in East Sikkim, India. The results show that the uncalibrated HARG model underestimates ET0 by 0.35 mm day^-1 whereas the results are significantly improved by regional calibration of the model. In addition, this paper also presents the variability in the trajectory associated with the climatic variables with the changing climate in the study site. Non- parametric Mann-Kendall (MK) test was used to investigate and understand the mean monthly trend of eight climatic parameters including reference evapotranspiration (ET0) for the period of 1985 - 2009. Trend of ET0 was estimated for the calculations done by FAO PM equation. The outcomes of the trend analysis show significant increasing (p ≤ 0.05) trend represented by higher Z-values, through MK test, for net radiation (Rn), maximum temperature (Tmax) and minimum temperature (Train), especially in the first months of the year. Whereas, significant (0.01 ≥ p ≤0.05) decreasing trend in vapor pressure deficit (VPD) and precipitation (P) is observed throughout the year. Declining trend in sunshine duration, VPD and ET0 is found in spring (March - May) and monsoon (June - November) season. The result displays significant (0.01≤ p ≤0.05) decreasing ET0 trend between (June - December) except in July, exhibiting the positive relation with VPD followed by sunshine duration at the station. Overall, the study emphasizes the importance of trend analysis of ET0 and other climatic variables for efficient planning and managing the agricultural practices, in identifying the changes in the meteorological parameters and to accurately assess the hydrologic water balance of the hilly regions.
文摘The trends and periodicities in the annual and seasonal temperature time series at fifteen weather stations within Ontario Great Lakes Basins have been analyzed, for the period 1941-2005, using the statistical analyses (Fourier series analysis, t-test, and Mann-Kendall test). The stations were spatially divided into three regions: northwest (NW), southwest (SW), and southeast (SE) to evaluate spatial variability in temperature. The results of the study reveal that the annual maximum mean temperature showed increasing trend for NW, and mixed trends for SW and SE regions. The variability was found to be more for northern stations as compared to southern stations for annual extreme minimum temperature. In addition, the trend slope per 100 years for the average annual extreme minimum temperature increased within the range of -0.8°C (Stratford) to 15°C (Porcupine). The seasonal analysis demonstrated that extreme maximum temperature has an increasing trend and maximum mean temperature has a decreasing trend during summer and winter. The extreme minimum temperature for winter illustrated an increasing trend (90%) with 22% statistically significant for NW region. For the SW region, the trend is also increasing (80%) for most of the temperature variables and 25% of temperature data were significantly increased in the SW region. The SE region stations showed overall very clear increasing trends (95%) for all the temperature variables. The data also showed that 47% of data were statistically significant in the SE region. The analysis of variance accounted for by trend, significant periodicities, and random component show that the pattern is similar for the percent of variance accounted for periodicities, and random component contribute dominantly for the four temperature variables and frost free days (FFD) for all three regions. Overall, the study reveals that the extreme minimum temperature is increasing annually and seasonally, with statistically significant at many stations.
文摘Climate change and global warming are widely recognized as the most significant environmental dilemma the world is experiencing today. Recent studies have shown that the Earth’s surface air temperature has increased by 0.6°C - 0.8°C during the 20th century, along with changes in the hydrological cycle. This has alerted the international community and brought great interest to climate scientists leading to several studies on climate trend detection at various scales. This paper examines the long-term modification of the near surface air temperature in Rwanda. Time series of near surface air temperature data for the period ranging from 1958 to 2010 for five weather observatories were collected from the Rwanda National Meteorological Service. Variations and trends of annual mean temperature time series were examined. The cumulative sum charts (CUSUM) and bootstrapping and the sequential version of the Mann Kendall Rank Statistic were used for the detection of abrupt changes. Regression analysis was performed for the trends and the Mann-Kendall Rank Statistic Test was used for the examination of their significance. Statistically significant abrupt changes and trends have been detected. The major change point in the annual mean temperature occurred around 1977-1979. The analysis of the annual mean temperature showed for all observatories a not very significant cooling trend during the period ranging from 1958 to 1977-1979 while a significant warming trend was furthermore observed for the period after the 1977-1979 where Kigali, the Capital of Rwanda, presented the highest values of the slope (0.0455/year) with high value of coefficient of determination (R2 = 0.6798), the Kendall’s tau statistic (M-K = 0.62), the Kendall Score (S = 328) with a two-sided p-value far less than the confidence level α of 5%). This is most likely explained by the growing population and increasing urbanization and industrialization the country has experienced, especially the Capital City Kigali, during the last decades.
文摘Bangladesh is one in all the foremost climate vulnerable countries of the world. In recent years, climate change studies over the country get plenty of attention by the researchers and policy makers. A substantial quantity of global climate change studies over the country use climate models to estimate future projections and uncertainties. Maximum temperature, precipitation and their potential future changes are evaluated in an ensemble of the 5th Phase Coupled Model Inter-comparison Project (CMIP5) within the Intergovernmental Panel on Climate Change (IPCC) diagnostic exercise for the Fifth Assessment Report (AR5) and the available historical data collected by the Bangladesh Meteorological Department (BMD) during the period 1981-2008 in the north-western region of Bangladesh and also the comparison between these two values. It has been found that average maximum temperature shows a positive trend of increase at a rate of 0.29°C and 5.3°C per century respectively, for BMD data and MPI-ESM-LR (CMIP5) model data. But the rainfall is decreasing at a rate of 8.8 mm and 40.1 mm per century respectively for BMD data and MPI-ESM-LR (CMIP5) model data. It is seen that July was the maximum monsoon rainfall month and January was the lowest rainfall month. The peak frequency is slightly smaller than 12 months, which indicates that the major events are occurring before ending a year compared to the previous year. According to MPI-ESM-LR (CMIP5) model data, future normal temperature on north-western region will be increased at a rate of 1.62°C during the period 2040-2100.
文摘The impact of climate change on sea level has received a great deal of attention by scientists worldwide. In this context, the problem of sea levels on global and regional scales have been analyzed in a number of studies based on tide gauges observations and satellite altimetry measurements. This study focuses on trend estimates from 18 high-quality tide gauge stations along the Mediterranean Sea coast. The seasonal Mann-Kendall test was run at a 5% significance level for each of the 18 stations for the period of 1993-2015 (satellite altimetry era). The results of this test indicate that the trends for 17 stations were statistically significant and showed an increase (no significant trend was observed only at one station). The rates of sea level change for the 17 stations that exhibit significant trends, estimated using seasonal Sen's approach, range after correction for Vertical Land Motion (VLM) from 1.48 to 8.72 mm/a for the period 1993-2015. Furthermore, the magnitude of change at the location of each tide gauge station was estimated using the satellite altimetry measurements. Thus, the results obtained agree with those from the tide-gauge data analysis.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41475027,41475138 and 41675033)
文摘The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite has been collect- ing valuable data about the Earth system for more than 14 years, and one of the benefits of this is that it has made it possible to detect the long-term variation in aerosol loading across the globe. However, the long-term aerosol optical depth (AOD) trends derived from MODIS need careful validation and assessment, especially over land. Using AOD products with at least 70 months' worth of measurements collected during 2002-15 at 53 Aerosol Robotic Network (AERONET) sites over land, Mann-Kendall (MK) trends in AOD were derived and taken as the ground truth data for evaluating the corresponding results from MOD|S onboard Aqua. The results showed that the AERONET AOD trends over all sites in Europe and North Amer- ica, as well as most sites in Africa and Asia, can be reproduced by MODIS/Aqua. However, disagreement in AOD trends between MODIS and AERONET was found at a few sites in Australia and South America. The AOD trends calculated from AERONET instantaneous data at the MODIS overpass times were consistent with those from AERONET daily data, which suggests that the AOD trends derived from satellite measurements of 1-2 overpasses may be representative of those from daily measurements.
文摘The main purpose of this study is to highlight, on the basis of statistical tests, the significant long-term changes of the Mediterranean Sea level, through the analysis of historical tide gauge records. In this framework, 14 tide gauge monthly series selected from the Permanent Service of the Mean Sea Level(PSMSL) database were used. The search for the presence or not of trends within these series, that have a temporal coverage from 59 to 142 years, was carried out using the Mann-Kendall test and the Sen’s slope estimator. The obtained results show that the Split Rt Marjana series are the only ones which does not exhibit a significant trend. The other 13 series show significant increasing trends. This result seems sufficient to suppose the presence, in the past century, of a new climatic phase on the scale of the Mediterranean basin, where the rising sea level is one of the consequences.
文摘This paper presents an analysis of the fire trends in southern European countries, where forest fires are a major hazard. Data on number of fires and burned area size from 1985 until 2009 were retrieved from the European Fire Database in the European Forest Fire Information System and used to study the temporal and spatial variability of fire occurrence at three different spatial scales: the whole European Mediterranean region, country level and province level (NUTS3). The temporal trends were assessed with the Mann-Kendall test and Sen's slope in the period 1985-2009. At regional (supranational) level, our results suggest a significant decreasing trend in the burned area for the whole study period. At country level, the trends vary by country, although there is a general increase in number of fires, mainly in Portugal, and a decrease in bumed areas, as is the case of Spain. A similar behavior was found at NUTS3 level, with an increase of number of fires in the Spanish and Portuguese provinces and a generalized decrease of the burned area in most provinces of the region. These results provide an important insight into the spatial distribution and temporal evolution of fires, a crucial step to investigate the underlying causes and impacts of fire occurrence in this region.
文摘This paper mainly investigated the basic information about non-stationary trend change point patterns. After performing the investigation, the corresponding results show the existence of a trend, its magnitude, and change points in 24-hourly annual maximum series (AMS) extracted from monthly maximum series (MMS) data for thirty years (1986-2015) rainfall data for Uyo metropolis. Trend analysis was performed using Mann-Kendall (MK) test and Sen’s slope estimator (SSE) used to obtain the trend magnitude, while the trend change point analysis was conducted using the distribution-free cumulative sum test (CUSUM) and the sequential Mann-Kendall test (SQMK). A free CUSUM plot date of change point of rainfall trend as 2002 at 90% confidence interval was obtained from where the increasing trend started and became more pronounced in the year 2011, another change point year from the SQMK plot with the trend intensifying. The SSE gave an average rate of change in rainfall as 2.1288 and 2.16 mm/year for AMS and MMS time series data respectively. Invariably, the condition for Non-stationary concept application is met for intensity-duration-frequency modeling.