期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Seismic fragility curves for structures using non-parametric representations 被引量:3
1
作者 Chu MAI Katerina KONAKLI Bruno SUDRET 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2017年第2期169-186,共18页
Fragility curves are commonly used in civil engineering to assess the vulnerability of structures to earthquakes. The probability of failure associated with a prescribed criterion (e.g., the maximal inter-storey drif... Fragility curves are commonly used in civil engineering to assess the vulnerability of structures to earthquakes. The probability of failure associated with a prescribed criterion (e.g., the maximal inter-storey drift of a building exceeding a certain threshold) is represented as a function of the intensity of the earthquake ground motion (e.g., peak ground acceleration or spectral acceleration). The classical approach relies on assuming a lognormal shape of the fragility curves; it is thus parametric. In this paper, we introduce two non-parametric approaches to establish the fragility curves without employing the above assumption, namely binned Monte Carlo simulation and kernel density estimation. As an illustration, we compute the fragility curves for a three-storey steel frame using a large number of synthetic ground motions. The curves obtained with the non-parametric approaches are compared with respective curves based on the lognormal assumption. A similar comparison is presented for a case when a limited number of recorded ground motions is available. It is found that the accuracy of the lognormal curves depends on the ground motion intensity measure, the failure criterion and most importantly, on the employed method for estimating the parameters of the lognormal shape. 展开更多
关键词 earthquake engineering fragility curves lognormal assumption non-parametric approach kernel density estimation epistemic uncertainty
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部