In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p...In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.展开更多
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w...The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.展开更多
A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming probl...A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.展开更多
Aim To improve the efficiency of fatigue material tests and relevant statistical treatment of test data. Methods\ Least square approach and other special treatments were used. Results and Conclusion\ The concepts...Aim To improve the efficiency of fatigue material tests and relevant statistical treatment of test data. Methods\ Least square approach and other special treatments were used. Results and Conclusion\ The concepts of each phase in fatigue tests and statistical treatment are clarified. The method proposed leads to three important properties. Reduced number of specimens brings to the advantage of lowering test expenditures. The whole test procedure has more flexibility for there is no need to conduct many tests at the same stress level as in traditional cases.展开更多
In this paper,we introduce a new four-parameter version of the traditional Weibull distribution.It is able to provide seven shapes of hazard rate,including constant,decreasing,increasing,unimodal,bathtub,unimodal then...In this paper,we introduce a new four-parameter version of the traditional Weibull distribution.It is able to provide seven shapes of hazard rate,including constant,decreasing,increasing,unimodal,bathtub,unimodal then bathtub,and bathtub then unimodal shapes.Some basic characteristics of the proposedmodel are studied,including moments,entropies,mean deviations and order statistics,and its parameters are estimated using the maximum likelihood approach.Based on the asymptotic properties of the estimators,the approximate confidence intervals are also taken into consideration in addition to the point estimators.We examine the effectiveness of the maximum likelihood estimators of the model’s parameters through simulation research.Based on the simulation findings,it can be concluded that the provided estimators are consistent and that asymptotic normality is a good method to get the interval estimates.Three actual data sets for COVID-19,engineering and blood cancer are used to empirically demonstrate the new distribution’s usefulness inmodeling real-world data.The analysis demonstrates the proposed distribution’s ability in modeling many forms of data as opposed to some of its well-known sub-models,such as alpha powerWeibull distribution.展开更多
Identification of modal parameters of a linear structure with output-only measurements has received much attention over the past decades. In the paper, the Natural Excitation Technique (NExT) is used for acquisition o...Identification of modal parameters of a linear structure with output-only measurements has received much attention over the past decades. In the paper, the Natural Excitation Technique (NExT) is used for acquisition of the impulse signals from the structural responses. Then Eigensystem Realization Algorithm (ERA) is utilized for modal identification. For disregarding the fictitious ‘computational modes', a procedure, Statistically Averaging Modal Frequency Method (SAMFM), is developed to distinguish the true modes from noise modes, and to improve the precision of the identified modal frequencies of the structure. An offshore platform is modeled with the finite element method. The theoretical modal parameters are obtained for a comparison with the identified values. The dynamic responses of the platform under random wave loading are computed for providing the output signals used for identification with ERA. Results of simulation demonstrate that the proposed method can determine the system modal frequency with high precision.展开更多
A novel damage detection method is applied to a 3-story frame structure, to obtain statistical quantification control criterion of the existence, location and identification of damage. The mean, standard deviation, an...A novel damage detection method is applied to a 3-story frame structure, to obtain statistical quantification control criterion of the existence, location and identification of damage. The mean, standard deviation, and exponentially weighted moving average (EWMA) are applied to detect damage information according to statistical process control (SPC) theory. It is concluded that the detection is insignificant with the mean and EWMA because the structural response is not independent and is not a normal distribution. On the other hand, the damage information is detected well with the standard deviation because the influence of the data distribution is not pronounced with this parameter. A suitable moderate confidence level is explored for more significant damage location and quantification detection, and the impact of noise is investigated to illustrate the robustness of the method.展开更多
A method for packing irregular particles with a prescribed volume fraction is proposed.Furthermore,the generated granular material adheres to the prescribed statistical distribution and satisfies the desired complex s...A method for packing irregular particles with a prescribed volume fraction is proposed.Furthermore,the generated granular material adheres to the prescribed statistical distribution and satisfies the desired complex spatial arrangement.First,the irregular geometries of the realistic particles were obtained from the original particle images.Second,the Minkowski sum was used to check the overlap between irregular particles and place an irregular particle in contact with other particles.Third,the optimised advance front method(OAFM)generated irregular particle packing with the prescribed statistical dis-tribution and volume fraction based on the Minkowski sum.Moreover,the signed distance function was introduced to pack the particles in accordance with the desired spatial arrangement.Finally,seven biaxial tests were performed using the UDEC software,which demonstrated the accuracy and potential usefulness of the proposed method.It can model granular material efficiently and reflect the meso-structural characteristics of complex granular materials.This method has a wide range of applications where discrete modelling of granular media is necessary.展开更多
A statistical monitoring method has been developedfor accurate, safety surveillance methods of γ-BHC resideueor harmful substances in foods or feeds. It is very importantfor safety monitoring and arbitrament inspecti...A statistical monitoring method has been developedfor accurate, safety surveillance methods of γ-BHC resideueor harmful substances in foods or feeds. It is very importantfor safety monitoring and arbitrament inspections. This paperintroduces a calculation formula by a six-point calibrationmethod and an example for detection of Y-BHC in corn.The method can guarantee the accuracy of the results,and it does very substantially reduce the probability of an er-ror by one-point calibration.展开更多
The value of a statistical life(VSL)is a crucial tool for monetizing health impacts.To explore the VSL in China,this study examines people’s willingness to pay(WTP)to reduce death risk from air pollution in six repre...The value of a statistical life(VSL)is a crucial tool for monetizing health impacts.To explore the VSL in China,this study examines people’s willingness to pay(WTP)to reduce death risk from air pollution in six representative cities in China based on face-to-face contingent valuation interviews(n=3936)from March 7,2019 to September 30,2019.The results reveal that the WTP varied from CNY 455 to 763 in 2019(USD 66-111),corresponding to a VSL range of CNY 3.79-6.36 million(USD 549395-921940).The VSL in China in 2019 is estimated to be CNY 4.76 million(USD 689659).The statistics indicate that monthly expenditure levels,environmental concerns,risk attitudes,and assumed market acceptance,which have seldom been dis‐cussed in previous studies,significantly impact WTP and VSL.These findings will serve as a reference for ana‐lyzing mortality risk reduction benefits in future research and for policymaking.展开更多
Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary...Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary and involves certain dynamic changes.In this paper,according to the basic steps of the background subtraction method,a novel non-parametric moving object detection method is proposed based on an improved ant colony algorithm by using the Markov random field.Concretely,the contributions are as follows:1)A new nonparametric strategy is utilized to model the background,based on an improved kernel density estimation;this approach uses an adaptive bandwidth,and the fused features combine the colours,gradients and positions.2)A Markov random field method based on this adaptive background model via the constraint of the spatial context is proposed to extract objects.3)The posterior function is maximized efficiently by using an improved ant colony system algorithm.Extensive experiments show that the proposed method demonstrates a better performance than many existing state-of-the-art methods.展开更多
Ag-sheathed (Bi,Pb)(2)SoCa(2)Cu(3)O(x) tapes were prepared by the powder-in-tube method. The influences of rolling parameters on superconducting characteristics of Bi(2223)/Ag tapes were analyzed qualitatively with a ...Ag-sheathed (Bi,Pb)(2)SoCa(2)Cu(3)O(x) tapes were prepared by the powder-in-tube method. The influences of rolling parameters on superconducting characteristics of Bi(2223)/Ag tapes were analyzed qualitatively with a statistical method. The results demonstrate that roll diameter and reduction per pass significantly influence the properties of Bi(2223)/Ag superconducting tapes while roll speed does less and working friction the least. An optimized rolling process was therefore achieved according to the above results.展开更多
In this paper a stochastic boundary element method (SEEM) is developed to analyze moderately thick plates with random material parameters and random thickness. Based on the Taylor series expansion, the boundary integr...In this paper a stochastic boundary element method (SEEM) is developed to analyze moderately thick plates with random material parameters and random thickness. Based on the Taylor series expansion, the boundary integration equations concerning the mean and deviation of the generalized displacements are derived, respectively. It is found that the randomness of material parameters is equivalent to a random load, so the mean and covariance matrices of unknown generalized boundary displacements and tractions can be obtained. Furthermore, the mean and covariance of generalized displacements and forces at internal points can also be obtained. A numerical example has been worked out with the method proposed and necessary analysis is made for the results.展开更多
In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,th...In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,the random distribution characteristics of particles,including the shape,size,orientation,spatial location,and volume fractions,are all considered.Firstly,the repre.sentation for the microscopic configuration of the statistically inhomogeneous materials is described.Secondly,the SSOTS formulation for the dynamic thermo-mechanical coupled problem is proposed in a constructive way,including the cell problems,effective thermal and mechanical parameters,homogenized problems,and the SSOTS formulas of the temperatures,displacements,heat flux densities and stresses.And then the algorithm procedure corresponding to the SSOTS method is brought forward.The numerical results obtained by using the SSOTS algorithm are compared with those by classical methods.In addition,the thermo-mechanical coupling effect is studied by comparing the results of coupled case with those of uncoupled case.It demonstrates that the coupling effect on the temperatures,heat flux densities,displacements,and stresses is very distinct.The results show that the SSOTS method is valid to predict the dynamic thermo-mechanical coupled performances of statistically inhomogeneous materials.展开更多
Statistical approaches for evaluating causal effects and for discovering causal networks are discussed in this paper.A causal relation between two variables is different from an association or correlation between them...Statistical approaches for evaluating causal effects and for discovering causal networks are discussed in this paper.A causal relation between two variables is different from an association or correlation between them.An association measurement between two variables and may be changed dramatically from positive to negative by omitting a third variable,which is called Yule-Simpson paradox.We shall discuss how to evaluate the causal effect of a treatment or exposure on an outcome to avoid the phenomena of Yule-Simpson paradox. Surrogates and intermediate variables are often used to reduce measurement costs or duration when measurement of endpoint variables is expensive,inconvenient,infeasible or unobservable in practice.There have been many criteria for surrogates.However,it is possible that for a surrogate satisfying these criteria,a treatment has a positive effect on the surrogate,which in turn has a positive effect on the outcome,but the treatment has a negative effect on the outcome,which is called the surrogate paradox.We shall discuss criteria for surrogates to avoid the phenomena of the surrogate paradox. Causal networks which describe the causal relationships among a large number of variables have been applied to many research fields.It is important to discover structures of causal networks from observed data.We propose a recursive approach for discovering a causal network in which a structural learning of a large network is decomposed recursively into learning of small networks.Further to discover causal relationships,we present an active learning approach in terms of external interventions on some variables.When we focus on the causes of an interest outcome, instead of discovering a whole network,we propose a local learning approach to discover these causes that affect the outcome.展开更多
In the first paper in this series, a variational data assimilation of ideal tropical cyclone (TC) tracks was performed for the statistical-dynamical prediction model SD-90 by the adjoint method, and a prediction of ...In the first paper in this series, a variational data assimilation of ideal tropical cyclone (TC) tracks was performed for the statistical-dynamical prediction model SD-90 by the adjoint method, and a prediction of TC tracks was made with good accuracy for tracks containing no sharp turns. In the present paper, the cases of real TC tracks are studied. Due to the complexity of TC motion, attention is paid to the diagnostic research of TC motion. First, five TC tracks are studied. Using the data of each entire TC track, by the adjoint method, five TC tracks are fitted well, and the forces acting on the TCs are retrieved. For a given TC, the distribution of the resultant of the retrieved force and Coriolis force well matches the corresponding TC track, i.e., when a TC turns, the resultant of the retrieved force and Coriolis force acts as a centripetal force, which means that the TC indeed moves like a particle; in particular, for TC 9911, the clockwise looping motion is also fitted well. And the distribution of the resultant appears to be periodic in some cases. Then, the present method is carried out for a portion of the track data for TC 9804, which indicates that when the amount of data for a TC track is sufficient, the algorithm is stable. And finally, the same algorithm is implemented for TCs with a double-eyewall structure, namely Bilis (2000) and Winnie (1997), and the results prove the applicability of the algorithm to TCs with complicated mesoscale structures if the TC track data are obtained every three hours.展开更多
This paper focuses on the dynamic thermo-mechanical coupled response of random particulate composite materials. Both the inertia term and coupling term are considered in the dynamic coupled problem. The formulation of...This paper focuses on the dynamic thermo-mechanical coupled response of random particulate composite materials. Both the inertia term and coupling term are considered in the dynamic coupled problem. The formulation of the problem by a statistical second-order two-scale (SSOTS) analysis method and the algorithm procedure based on the finite-element difference method are presented. Numerical results of coupled cases are compared with those of uncoupled cases. It shows that the coupling effects on temperature, thermal flux, displacement, and stresses are very distinct, and the micro- characteristics of particles affect the coupling effect of the random composites. Furthermore, the coupling effect causes a lag in the variations of temperature, thermal flux, displacement, and stresses.展开更多
The development of adaptation measures to climate change relies on data from climate models or impact models. In order to analyze these large data sets or an ensemble of these data sets, the use of statistical methods...The development of adaptation measures to climate change relies on data from climate models or impact models. In order to analyze these large data sets or an ensemble of these data sets, the use of statistical methods is required. In this paper, the methodological approach to collecting, structuring and publishing the methods, which have been used or developed by former or present adaptation initiatives, is described. The intention is to communicate achieved knowledge and thus support future users. A key component is the participation of users in the development process. Main elements of the approach are standardized, template-based descriptions of the methods including the specific applications, references, and method assessment. All contributions have been quality checked, sorted, and placed in a larger context. The result is a report on statistical methods which is freely available as printed or online version. Examples of how to use the methods are presented in this paper and are also included in the brochure.展开更多
Data of traffic flow, speed and density are required for planning, designing, and modelling of traffic stream for all parts of the road system. Specialized equipments such as stationary counts are used to record volum...Data of traffic flow, speed and density are required for planning, designing, and modelling of traffic stream for all parts of the road system. Specialized equipments such as stationary counts are used to record volume and speed;but they are expensive, difficult to set up, and require periodic maintenance. The moving observer method was proposed in 1954 by Wardrop and Charlesworth to estimate these variables inexpensively. Basically, the observer counts the number of vehicles overtaken, the number of vehicles passed, and the number of vehicles encountered while traveling in the opposite direction. The trip time is reported for both travel directions. Additionally, the length of road segment is measured. These variables are then used in estimating speeds and volumes. In a westbound direction from Interstate Highway 30 (I-30) in the DFW area, this study examined the accuracy and feasibility of this method by comparing it with stationary observer method as the standard method for such counts. The statistical tests were used to test the accuracy. Results show that this method provides accurate volume and speed estimates when compared to the stationary method for the road segment with three lanes per direction, especially when several runs are taken.展开更多
In public health,simulation modeling stands as an invaluable asset,enabling the evaluation of new systems without their physical implementation,experimentation with existing systems without operational adjustments,and...In public health,simulation modeling stands as an invaluable asset,enabling the evaluation of new systems without their physical implementation,experimentation with existing systems without operational adjustments,and testing system limits without real-world repercussions.In simulation modeling,the Monte Carlo method emerges as a powerful yet underutilized tool.Although the Monte Carlo method has not yet gained widespread prominence in healthcare,its technological capabilities hold promise for substantial cost reduction and risk mitigation.In this review article,we aimed to explore the transformative potential of the Monte Carlo method in healthcare contexts.We underscore the significance of experiential insights derived from simulated experimentation,especially in resource-constrained scenarios where time,financial constraints,and limited resources necessitate innovative and efficient approaches.As public health faces increasing challenges,incorporating the Monte Carlo method presents an opportunity for enhanced system construction,analysis,and evaluation.展开更多
文摘In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.
文摘The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.
文摘A multi-objective linear programming problem is made from fuzzy linear programming problem. It is due the fact that it is used fuzzy programming method during the solution. The Multi objective linear programming problem can be converted into the single objective function by various methods as Chandra Sen’s method, weighted sum method, ranking function method, statistical averaging method. In this paper, Chandra Sen’s method and statistical averaging method both are used here for making single objective function from multi-objective function. Two multi-objective programming problems are solved to verify the result. One is numerical example and the other is real life example. Then the problems are solved by ordinary simplex method and fuzzy programming method. It can be seen that fuzzy programming method gives better optimal values than the ordinary simplex method.
文摘Aim To improve the efficiency of fatigue material tests and relevant statistical treatment of test data. Methods\ Least square approach and other special treatments were used. Results and Conclusion\ The concepts of each phase in fatigue tests and statistical treatment are clarified. The method proposed leads to three important properties. Reduced number of specimens brings to the advantage of lowering test expenditures. The whole test procedure has more flexibility for there is no need to conduct many tests at the same stress level as in traditional cases.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,Saudi Arabia has funded this project under Grant No.(G-102-130-1443).
文摘In this paper,we introduce a new four-parameter version of the traditional Weibull distribution.It is able to provide seven shapes of hazard rate,including constant,decreasing,increasing,unimodal,bathtub,unimodal then bathtub,and bathtub then unimodal shapes.Some basic characteristics of the proposedmodel are studied,including moments,entropies,mean deviations and order statistics,and its parameters are estimated using the maximum likelihood approach.Based on the asymptotic properties of the estimators,the approximate confidence intervals are also taken into consideration in addition to the point estimators.We examine the effectiveness of the maximum likelihood estimators of the model’s parameters through simulation research.Based on the simulation findings,it can be concluded that the provided estimators are consistent and that asymptotic normality is a good method to get the interval estimates.Three actual data sets for COVID-19,engineering and blood cancer are used to empirically demonstrate the new distribution’s usefulness inmodeling real-world data.The analysis demonstrates the proposed distribution’s ability in modeling many forms of data as opposed to some of its well-known sub-models,such as alpha powerWeibull distribution.
文摘Identification of modal parameters of a linear structure with output-only measurements has received much attention over the past decades. In the paper, the Natural Excitation Technique (NExT) is used for acquisition of the impulse signals from the structural responses. Then Eigensystem Realization Algorithm (ERA) is utilized for modal identification. For disregarding the fictitious ‘computational modes', a procedure, Statistically Averaging Modal Frequency Method (SAMFM), is developed to distinguish the true modes from noise modes, and to improve the precision of the identified modal frequencies of the structure. An offshore platform is modeled with the finite element method. The theoretical modal parameters are obtained for a comparison with the identified values. The dynamic responses of the platform under random wave loading are computed for providing the output signals used for identification with ERA. Results of simulation demonstrate that the proposed method can determine the system modal frequency with high precision.
基金Natural Natural Science Foundation of China Under Grant No 50778077 & 50608036the Graduate Innovation Fund of Huazhong University of Science and Technology Under Grant No HF-06-028
文摘A novel damage detection method is applied to a 3-story frame structure, to obtain statistical quantification control criterion of the existence, location and identification of damage. The mean, standard deviation, and exponentially weighted moving average (EWMA) are applied to detect damage information according to statistical process control (SPC) theory. It is concluded that the detection is insignificant with the mean and EWMA because the structural response is not independent and is not a normal distribution. On the other hand, the damage information is detected well with the standard deviation because the influence of the data distribution is not pronounced with this parameter. A suitable moderate confidence level is explored for more significant damage location and quantification detection, and the impact of noise is investigated to illustrate the robustness of the method.
基金The authors would like to acknowledge the financial support provided by the National Key R&D Program of China(Grant No.2018YFC1504802)the National Natural Science Foundation of China(Grant Nos.41972266,12102230).
文摘A method for packing irregular particles with a prescribed volume fraction is proposed.Furthermore,the generated granular material adheres to the prescribed statistical distribution and satisfies the desired complex spatial arrangement.First,the irregular geometries of the realistic particles were obtained from the original particle images.Second,the Minkowski sum was used to check the overlap between irregular particles and place an irregular particle in contact with other particles.Third,the optimised advance front method(OAFM)generated irregular particle packing with the prescribed statistical dis-tribution and volume fraction based on the Minkowski sum.Moreover,the signed distance function was introduced to pack the particles in accordance with the desired spatial arrangement.Finally,seven biaxial tests were performed using the UDEC software,which demonstrated the accuracy and potential usefulness of the proposed method.It can model granular material efficiently and reflect the meso-structural characteristics of complex granular materials.This method has a wide range of applications where discrete modelling of granular media is necessary.
文摘A statistical monitoring method has been developedfor accurate, safety surveillance methods of γ-BHC resideueor harmful substances in foods or feeds. It is very importantfor safety monitoring and arbitrament inspections. This paperintroduces a calculation formula by a six-point calibrationmethod and an example for detection of Y-BHC in corn.The method can guarantee the accuracy of the results,and it does very substantially reduce the probability of an er-ror by one-point calibration.
基金supported by the National Natural Science Foun‐dation of China[Grant No.71773061].
文摘The value of a statistical life(VSL)is a crucial tool for monetizing health impacts.To explore the VSL in China,this study examines people’s willingness to pay(WTP)to reduce death risk from air pollution in six representative cities in China based on face-to-face contingent valuation interviews(n=3936)from March 7,2019 to September 30,2019.The results reveal that the WTP varied from CNY 455 to 763 in 2019(USD 66-111),corresponding to a VSL range of CNY 3.79-6.36 million(USD 549395-921940).The VSL in China in 2019 is estimated to be CNY 4.76 million(USD 689659).The statistics indicate that monthly expenditure levels,environmental concerns,risk attitudes,and assumed market acceptance,which have seldom been dis‐cussed in previous studies,significantly impact WTP and VSL.These findings will serve as a reference for ana‐lyzing mortality risk reduction benefits in future research and for policymaking.
基金supported in part by the National Natural Science Foundation of China under Grants 61841103,61673164,and 61602397in part by the Natural Science Foundation of Hunan Provincial under Grants 2016JJ2041 and 2019JJ50106+1 种基金in part by the Key Project of Education Department of Hunan Provincial under Grant 18B385and in part by the Graduate Research Innovation Projects of Hunan Province under Grants CX2018B805 and CX2018B813.
文摘Detecting moving objects in the stationary background is an important problem in visual surveillance systems.However,the traditional background subtraction method fails when the background is not completely stationary and involves certain dynamic changes.In this paper,according to the basic steps of the background subtraction method,a novel non-parametric moving object detection method is proposed based on an improved ant colony algorithm by using the Markov random field.Concretely,the contributions are as follows:1)A new nonparametric strategy is utilized to model the background,based on an improved kernel density estimation;this approach uses an adaptive bandwidth,and the fused features combine the colours,gradients and positions.2)A Markov random field method based on this adaptive background model via the constraint of the spatial context is proposed to extract objects.3)The posterior function is maximized efficiently by using an improved ant colony system algorithm.Extensive experiments show that the proposed method demonstrates a better performance than many existing state-of-the-art methods.
文摘Ag-sheathed (Bi,Pb)(2)SoCa(2)Cu(3)O(x) tapes were prepared by the powder-in-tube method. The influences of rolling parameters on superconducting characteristics of Bi(2223)/Ag tapes were analyzed qualitatively with a statistical method. The results demonstrate that roll diameter and reduction per pass significantly influence the properties of Bi(2223)/Ag superconducting tapes while roll speed does less and working friction the least. An optimized rolling process was therefore achieved according to the above results.
文摘In this paper a stochastic boundary element method (SEEM) is developed to analyze moderately thick plates with random material parameters and random thickness. Based on the Taylor series expansion, the boundary integration equations concerning the mean and deviation of the generalized displacements are derived, respectively. It is found that the randomness of material parameters is equivalent to a random load, so the mean and covariance matrices of unknown generalized boundary displacements and tractions can be obtained. Furthermore, the mean and covariance of generalized displacements and forces at internal points can also be obtained. A numerical example has been worked out with the method proposed and necessary analysis is made for the results.
基金supported by the National Natural Science Foundation of China(Grants 11471262,11202032)the Basic Research Project of National Defense(Grant B 1520132013)supported by the State Key Laboratory of Science and Engineering Computing and Center for high performance computing of Northwestem Polytechnical University
文摘In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,the random distribution characteristics of particles,including the shape,size,orientation,spatial location,and volume fractions,are all considered.Firstly,the repre.sentation for the microscopic configuration of the statistically inhomogeneous materials is described.Secondly,the SSOTS formulation for the dynamic thermo-mechanical coupled problem is proposed in a constructive way,including the cell problems,effective thermal and mechanical parameters,homogenized problems,and the SSOTS formulas of the temperatures,displacements,heat flux densities and stresses.And then the algorithm procedure corresponding to the SSOTS method is brought forward.The numerical results obtained by using the SSOTS algorithm are compared with those by classical methods.In addition,the thermo-mechanical coupling effect is studied by comparing the results of coupled case with those of uncoupled case.It demonstrates that the coupling effect on the temperatures,heat flux densities,displacements,and stresses is very distinct.The results show that the SSOTS method is valid to predict the dynamic thermo-mechanical coupled performances of statistically inhomogeneous materials.
文摘Statistical approaches for evaluating causal effects and for discovering causal networks are discussed in this paper.A causal relation between two variables is different from an association or correlation between them.An association measurement between two variables and may be changed dramatically from positive to negative by omitting a third variable,which is called Yule-Simpson paradox.We shall discuss how to evaluate the causal effect of a treatment or exposure on an outcome to avoid the phenomena of Yule-Simpson paradox. Surrogates and intermediate variables are often used to reduce measurement costs or duration when measurement of endpoint variables is expensive,inconvenient,infeasible or unobservable in practice.There have been many criteria for surrogates.However,it is possible that for a surrogate satisfying these criteria,a treatment has a positive effect on the surrogate,which in turn has a positive effect on the outcome,but the treatment has a negative effect on the outcome,which is called the surrogate paradox.We shall discuss criteria for surrogates to avoid the phenomena of the surrogate paradox. Causal networks which describe the causal relationships among a large number of variables have been applied to many research fields.It is important to discover structures of causal networks from observed data.We propose a recursive approach for discovering a causal network in which a structural learning of a large network is decomposed recursively into learning of small networks.Further to discover causal relationships,we present an active learning approach in terms of external interventions on some variables.When we focus on the causes of an interest outcome, instead of discovering a whole network,we propose a local learning approach to discover these causes that affect the outcome.
基金This work was supported jointly by the Typhoon Foundation of Shanghaiby LASC of the Institute of Atmospheric Physics of the Chinese Academy of Sciencesby the National Natural Science Foundation of China under Grant No. 40633030.
文摘In the first paper in this series, a variational data assimilation of ideal tropical cyclone (TC) tracks was performed for the statistical-dynamical prediction model SD-90 by the adjoint method, and a prediction of TC tracks was made with good accuracy for tracks containing no sharp turns. In the present paper, the cases of real TC tracks are studied. Due to the complexity of TC motion, attention is paid to the diagnostic research of TC motion. First, five TC tracks are studied. Using the data of each entire TC track, by the adjoint method, five TC tracks are fitted well, and the forces acting on the TCs are retrieved. For a given TC, the distribution of the resultant of the retrieved force and Coriolis force well matches the corresponding TC track, i.e., when a TC turns, the resultant of the retrieved force and Coriolis force acts as a centripetal force, which means that the TC indeed moves like a particle; in particular, for TC 9911, the clockwise looping motion is also fitted well. And the distribution of the resultant appears to be periodic in some cases. Then, the present method is carried out for a portion of the track data for TC 9804, which indicates that when the amount of data for a TC track is sufficient, the algorithm is stable. And finally, the same algorithm is implemented for TCs with a double-eyewall structure, namely Bilis (2000) and Winnie (1997), and the results prove the applicability of the algorithm to TCs with complicated mesoscale structures if the TC track data are obtained every three hours.
基金supported by the Special Funds for the National Basic Research Program of China(Grant No.2012CB025904)the National Natural ScienceFoundation of China(Grant Nos.90916027 and 11302052)
文摘This paper focuses on the dynamic thermo-mechanical coupled response of random particulate composite materials. Both the inertia term and coupling term are considered in the dynamic coupled problem. The formulation of the problem by a statistical second-order two-scale (SSOTS) analysis method and the algorithm procedure based on the finite-element difference method are presented. Numerical results of coupled cases are compared with those of uncoupled cases. It shows that the coupling effects on temperature, thermal flux, displacement, and stresses are very distinct, and the micro- characteristics of particles affect the coupling effect of the random composites. Furthermore, the coupling effect causes a lag in the variations of temperature, thermal flux, displacement, and stresses.
文摘The development of adaptation measures to climate change relies on data from climate models or impact models. In order to analyze these large data sets or an ensemble of these data sets, the use of statistical methods is required. In this paper, the methodological approach to collecting, structuring and publishing the methods, which have been used or developed by former or present adaptation initiatives, is described. The intention is to communicate achieved knowledge and thus support future users. A key component is the participation of users in the development process. Main elements of the approach are standardized, template-based descriptions of the methods including the specific applications, references, and method assessment. All contributions have been quality checked, sorted, and placed in a larger context. The result is a report on statistical methods which is freely available as printed or online version. Examples of how to use the methods are presented in this paper and are also included in the brochure.
文摘Data of traffic flow, speed and density are required for planning, designing, and modelling of traffic stream for all parts of the road system. Specialized equipments such as stationary counts are used to record volume and speed;but they are expensive, difficult to set up, and require periodic maintenance. The moving observer method was proposed in 1954 by Wardrop and Charlesworth to estimate these variables inexpensively. Basically, the observer counts the number of vehicles overtaken, the number of vehicles passed, and the number of vehicles encountered while traveling in the opposite direction. The trip time is reported for both travel directions. Additionally, the length of road segment is measured. These variables are then used in estimating speeds and volumes. In a westbound direction from Interstate Highway 30 (I-30) in the DFW area, this study examined the accuracy and feasibility of this method by comparing it with stationary observer method as the standard method for such counts. The statistical tests were used to test the accuracy. Results show that this method provides accurate volume and speed estimates when compared to the stationary method for the road segment with three lanes per direction, especially when several runs are taken.
基金Supported by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,No.BG-RRP-2.004-0008.
文摘In public health,simulation modeling stands as an invaluable asset,enabling the evaluation of new systems without their physical implementation,experimentation with existing systems without operational adjustments,and testing system limits without real-world repercussions.In simulation modeling,the Monte Carlo method emerges as a powerful yet underutilized tool.Although the Monte Carlo method has not yet gained widespread prominence in healthcare,its technological capabilities hold promise for substantial cost reduction and risk mitigation.In this review article,we aimed to explore the transformative potential of the Monte Carlo method in healthcare contexts.We underscore the significance of experiential insights derived from simulated experimentation,especially in resource-constrained scenarios where time,financial constraints,and limited resources necessitate innovative and efficient approaches.As public health faces increasing challenges,incorporating the Monte Carlo method presents an opportunity for enhanced system construction,analysis,and evaluation.