Based on the Global Color Symmetry Model, the non-perturbative Q, CD vacuum is investigated in the parameterized fully dressed quark propagator. Our theoretical predictions for various quantities characterized the QCD...Based on the Global Color Symmetry Model, the non-perturbative Q, CD vacuum is investigated in the parameterized fully dressed quark propagator. Our theoretical predictions for various quantities characterized the QCD vacuum are in agreement with those predicted by many other phenomenologieal QCD inspired models. The successful predictions clearly indicate the extensive validity of our parameterized quark propagator used here. A detailed discussion on the arbitrariness in determining the integration cut-off parameter ofμ in calculating QCD vacuum condensates and a good method, which avoided the dependence of calculating results on the cut-off parameter is also strongly recommended to readers.展开更多
According to extensive study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation with an effective gluon propagator, a parametrized fully dressed confining quark prop...According to extensive study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation with an effective gluon propagator, a parametrized fully dressed confining quark propagator is suggested in this paper. The parametrized quark propagator describes a confined quark propagation in hadron, and is analytic everywhere in complex p^2-plane and has no Lehmann representation. The vector and scalar self-energy functions [1 - Af(p^2)] and [Bf(p^2) - mf], dynamlcally running effective mass of quark Mf(p^2) and the structure of non-local quark vacuum condensates as well as local quark vacuum condensates are predicted by use of the parametrized quark propagator. The results axe compatible with other theoretical calculations,展开更多
Based on an extensive study of the Dyson-Schwinger equations for a fullydressed quark propagator in the 'rainbow' approximation, a parametrized form of the quark propagatoris suggested. The corresponding quark...Based on an extensive study of the Dyson-Schwinger equations for a fullydressed quark propagator in the 'rainbow' approximation, a parametrized form of the quark propagatoris suggested. The corresponding quark self-energy Σ_f and tie structure of non-local quark vacuumcondensate 【 0 | : q(x)q(0) : | 0 】 are investigated. The algebraic form of the quark propagatorproposed in this work describes a confining quark propagation, and is quite convenient to be used inany numerical calculations.展开更多
Based on Dyson Schwinger Equations (DSEs) in the “rainbow” approximation, the dependence of quark effective mass on gluon propagator is investigated by use of three different phenomenological gluon propagators wit...Based on Dyson Schwinger Equations (DSEs) in the “rainbow” approximation, the dependence of quark effective mass on gluon propagator is investigated by use of three different phenomenological gluon propagators with two parameters, the strength parameter x and range parameter △. Our theoretical calculations for the quark effective mass Mf(p^2), defined by the self-energy functions Af(p^2) and Bi(p%2) of the DSEs, show that the dynamically running quark effective mass is strongly dependent on gluon propagator. Therefore, because gluon propagator is completely unknown, the quark effective mass cannot be exactly determined theoretically.展开更多
Based on the parameterized fully dressed quark propagator proposed by us, the tensor susceptibilities of QCD vacuum and quark vacuum condensates are investigated. Our predicted values of the tensor susceptibilities ar...Based on the parameterized fully dressed quark propagator proposed by us, the tensor susceptibilities of QCD vacuum and quark vacuum condensates are investigated. Our predicted values of the tensor susceptibilities are in agreement with those predicted by many other theoretical models with QCD feature. The results also show that the tensor susceptibility of QCD vacuum strongly depends on flavor of quark but not sensitive to variation of quark vacuum condensates. However, the quark vacuum condensate is very sensitive to the change of cut-off-parameter μ^2 of the integration, that is, it depends on the separation point of perturbative and non-perturbative QCD region. The successful predictions clearly indicate the extensive validity of our parameterized fully dressed quark propagator used here.展开更多
We complete the derivation of the Cornwall-Jackiw-Tomboulis effective potentiM for quark propagator at finite temperature and finite quark chemical potential in the real-time formalism of thermal field theory and in L...We complete the derivation of the Cornwall-Jackiw-Tomboulis effective potentiM for quark propagator at finite temperature and finite quark chemical potential in the real-time formalism of thermal field theory and in Landau gauge. In the approximation that the function A(p^2) in inverse quark propagator is replaced by unity, by means of the running gauge coupling and the quark mass function invariant under the renormalization group in zero temperature Quantum Chromadynamics (QCD), we obtain a calculable expression for the thermal effective potential, which will be a useful means to research chiral phase transition in QCD in the real-time formalism.展开更多
Based on the Dyson-Schwinger equations of QCD in the "rainbow" approximation, the fully dressed quarkpropagator Sf(p) is investigated, and then an algebraic parametrization form of the propagator is obtained...Based on the Dyson-Schwinger equations of QCD in the "rainbow" approximation, the fully dressed quarkpropagator Sf(p) is investigated, and then an algebraic parametrization form of the propagator is obtained as a solutionof the equations. The dressed quark amplitudes Af and Bf built up the fully dressed quark propagator and the dynamicalrunning masses Mf defined by Af and Bf for light quarks u, d and s are calculated, respectively. Using the predictedrunning masses Mf, quark condensates <0|q(0)q(0)|0> = -(0.255 GeV)a for u, d quarks, and <0|s s|0> = 0.8<0|q(0)q(0)]0)for s quark, and experimental pion decay constant fπ = 0.093 GeV, the masses of Goldstone bosons K, π, and η are alsoevaluated. The numerical results show that the masses of quarks are dependent on their momentum p2. The fully dressedquark amplitudes Af and Bf have correct behaviors which can be used for many purposes in our future researches onnonperturbative QCD.展开更多
Based on the Dyson–Schwinger equations of QCD in the 'rainbow' approximation, the fully dressed quark propagator is investigated, and then an algebraic parametrization form of the propagator is obtained as a...Based on the Dyson–Schwinger equations of QCD in the 'rainbow' approximation, the fully dressed quark propagator is investigated, and then an algebraic parametrization form of the propagator is obtained as a solution of the equations. The dressed quark amplitudes and built up the fully dressed quark propagator and the dynamical running masses defined by and for light quarks u, d and s are calculated, respectively. Using the predicted running masses , quark condensates for u, d quarks, and for s quark, and experimental pion decay constant , the masses of Goldstone bosons K, π, and η are also evaluated. The numerical results show that the masses of quarks are dependent on their momentum . The fully dressed quark amplitudes and have correct behaviors which can be used for many purposes in our future researches on nonperturbative QCD.展开更多
By means of a formal expression of Cornwall-Jackiw-Tomboulis effective potential for quark propagator at finite temperatures and finite quark chemical potentials, we derive the real-time thermal Schwinger-Dyson equati...By means of a formal expression of Cornwall-Jackiw-Tomboulis effective potential for quark propagator at finite temperatures and finite quark chemical potentials, we derive the real-time thermal Schwinger-Dyson equation for quark propagator in Landau gauge. Denote the inverse quark propagator by A(p^2)ψ - B(p^2), we argue that, when temperature T is lower than the given infrared momentum cutoff pc, A(p^2) = 1 is a feasible approximation and can be assumed in discussions of chiral symmetry phase transition problem in QCD.展开更多
Based on the fully dressed confining quark propagator, the pion decay constant fπ, local quark vacuum condensate, and the masses of light quarks and in-medlum Goldstone bosons are investigated. The pion decay constan...Based on the fully dressed confining quark propagator, the pion decay constant fπ, local quark vacuum condensate, and the masses of light quarks and in-medlum Goldstone bosons are investigated. The pion decay constant fπ is predicted and compared with its value of experimental measurement. A great agreement is obtained. With the predicted fπ and values of Goldstone boson masses measured by experiments in free configuration the current masses of light quarks and the masses of in-medium Goldstone bosons are obtained.展开更多
Based on the fully dressed quark propagator and chiral perturbation theory, we study the ratio of the strange quark mass ms to up or down quark mass mu,d . The ratio is related to the determination of quark masses whi...Based on the fully dressed quark propagator and chiral perturbation theory, we study the ratio of the strange quark mass ms to up or down quark mass mu,d . The ratio is related to the determination of quark masses which are fundamental input parameters of QCD Lagrangian in the Standard Model of particle physics and can not be directly measured since the quark is confined within a hadron. An accurate determination of these QCD free parameters is extremely important for both phenomenological and theoretical applications. We begin with a brief introduction to the non-perturbation QCD theory, and then study the mass ratio in the framework of the chiral perturbation theory (χPT) with a parameterized fully dressed quark propagator which describes confining fully dressed quark propagation and is analytic everywhere in the finite complex p2-plane and has no Lehmann representation so there are no quark production thresholds in any theoretical calculations of observable data. Our prediction for the ratio ms/mu,d is consistent with other model predictions such as Lattice QCD, instanton model, QCD sum rules and the empirical values used widely in the literature. As a by-product of this study, our theoretical results, together with other predictions of physical quantities that used this quark propagator in our previous publications, clearly show that the parameterized form of the fully dressed quark propagator is an applicable and reliable approximation to the solution of the Dyson-Schwinger Equation of quark propagator in the QCD.展开更多
基金The project supported in part by National Natural Science Foundation of China under Grant Nos.10647002 and 10565001Natural Science Foundation of Guangxi Province under Grant Nos.0542042,0481030,and 0575020Guangxi University of Technology under Grant No.05006
文摘Based on the Global Color Symmetry Model, the non-perturbative Q, CD vacuum is investigated in the parameterized fully dressed quark propagator. Our theoretical predictions for various quantities characterized the QCD vacuum are in agreement with those predicted by many other phenomenologieal QCD inspired models. The successful predictions clearly indicate the extensive validity of our parameterized quark propagator used here. A detailed discussion on the arbitrariness in determining the integration cut-off parameter ofμ in calculating QCD vacuum condensates and a good method, which avoided the dependence of calculating results on the cut-off parameter is also strongly recommended to readers.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos, 10247004, 10565001, and by the Department of Science and Technology of Guangxi Province of China under Grant Nos. 0481030, 0575020, 0542042
文摘According to extensive study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation with an effective gluon propagator, a parametrized fully dressed confining quark propagator is suggested in this paper. The parametrized quark propagator describes a confined quark propagation in hadron, and is analytic everywhere in complex p^2-plane and has no Lehmann representation. The vector and scalar self-energy functions [1 - Af(p^2)] and [Bf(p^2) - mf], dynamlcally running effective mass of quark Mf(p^2) and the structure of non-local quark vacuum condensates as well as local quark vacuum condensates are predicted by use of the parametrized quark propagator. The results axe compatible with other theoretical calculations,
文摘Based on an extensive study of the Dyson-Schwinger equations for a fullydressed quark propagator in the 'rainbow' approximation, a parametrized form of the quark propagatoris suggested. The corresponding quark self-energy Σ_f and tie structure of non-local quark vacuumcondensate 【 0 | : q(x)q(0) : | 0 】 are investigated. The algebraic form of the quark propagatorproposed in this work describes a confining quark propagation, and is quite convenient to be used inany numerical calculations.
文摘Based on Dyson Schwinger Equations (DSEs) in the “rainbow” approximation, the dependence of quark effective mass on gluon propagator is investigated by use of three different phenomenological gluon propagators with two parameters, the strength parameter x and range parameter △. Our theoretical calculations for the quark effective mass Mf(p^2), defined by the self-energy functions Af(p^2) and Bi(p%2) of the DSEs, show that the dynamically running quark effective mass is strongly dependent on gluon propagator. Therefore, because gluon propagator is completely unknown, the quark effective mass cannot be exactly determined theoretically.
基金supported by National Natural Science Foundation of China under Grant Nos.10647002 and 10565001the Natural Science Foundation of Guangxi under Grant Nos.0542042,0481030,and 0575020Guangxi University of Technology under Grant No.05006
文摘Based on the parameterized fully dressed quark propagator proposed by us, the tensor susceptibilities of QCD vacuum and quark vacuum condensates are investigated. Our predicted values of the tensor susceptibilities are in agreement with those predicted by many other theoretical models with QCD feature. The results also show that the tensor susceptibility of QCD vacuum strongly depends on flavor of quark but not sensitive to variation of quark vacuum condensates. However, the quark vacuum condensate is very sensitive to the change of cut-off-parameter μ^2 of the integration, that is, it depends on the separation point of perturbative and non-perturbative QCD region. The successful predictions clearly indicate the extensive validity of our parameterized fully dressed quark propagator used here.
文摘We complete the derivation of the Cornwall-Jackiw-Tomboulis effective potentiM for quark propagator at finite temperature and finite quark chemical potential in the real-time formalism of thermal field theory and in Landau gauge. In the approximation that the function A(p^2) in inverse quark propagator is replaced by unity, by means of the running gauge coupling and the quark mass function invariant under the renormalization group in zero temperature Quantum Chromadynamics (QCD), we obtain a calculable expression for the thermal effective potential, which will be a useful means to research chiral phase transition in QCD in the real-time formalism.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 19975053, 19835010, 100750811007505, and the CAS Knowledge Innovation Pro jet No. KJCX2-SW-No2
文摘Based on the Dyson-Schwinger equations of QCD in the "rainbow" approximation, the fully dressed quarkpropagator Sf(p) is investigated, and then an algebraic parametrization form of the propagator is obtained as a solutionof the equations. The dressed quark amplitudes Af and Bf built up the fully dressed quark propagator and the dynamicalrunning masses Mf defined by Af and Bf for light quarks u, d and s are calculated, respectively. Using the predictedrunning masses Mf, quark condensates <0|q(0)q(0)|0> = -(0.255 GeV)a for u, d quarks, and <0|s s|0> = 0.8<0|q(0)q(0)]0)for s quark, and experimental pion decay constant fπ = 0.093 GeV, the masses of Goldstone bosons K, π, and η are alsoevaluated. The numerical results show that the masses of quarks are dependent on their momentum p2. The fully dressedquark amplitudes Af and Bf have correct behaviors which can be used for many purposes in our future researches onnonperturbative QCD.
文摘Based on the Dyson–Schwinger equations of QCD in the 'rainbow' approximation, the fully dressed quark propagator is investigated, and then an algebraic parametrization form of the propagator is obtained as a solution of the equations. The dressed quark amplitudes and built up the fully dressed quark propagator and the dynamical running masses defined by and for light quarks u, d and s are calculated, respectively. Using the predicted running masses , quark condensates for u, d quarks, and for s quark, and experimental pion decay constant , the masses of Goldstone bosons K, π, and η are also evaluated. The numerical results show that the masses of quarks are dependent on their momentum . The fully dressed quark amplitudes and have correct behaviors which can be used for many purposes in our future researches on nonperturbative QCD.
文摘By means of a formal expression of Cornwall-Jackiw-Tomboulis effective potential for quark propagator at finite temperatures and finite quark chemical potentials, we derive the real-time thermal Schwinger-Dyson equation for quark propagator in Landau gauge. Denote the inverse quark propagator by A(p^2)ψ - B(p^2), we argue that, when temperature T is lower than the given infrared momentum cutoff pc, A(p^2) = 1 is a feasible approximation and can be assumed in discussions of chiral symmetry phase transition problem in QCD.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 10247004, 10565001, and the Natural Science Foundation of Guangxi Province of China undcr Grant Nos. 0481030, 0575020, and 0542042
文摘Based on the fully dressed confining quark propagator, the pion decay constant fπ, local quark vacuum condensate, and the masses of light quarks and in-medlum Goldstone bosons are investigated. The pion decay constant fπ is predicted and compared with its value of experimental measurement. A great agreement is obtained. With the predicted fπ and values of Goldstone boson masses measured by experiments in free configuration the current masses of light quarks and the masses of in-medium Goldstone bosons are obtained.
基金Supported by National Natural Science Foundation of China (10647002)Guangxi Natural Science Foundation for Young Researchers(0991009)+1 种基金Guangxi Natural Science Foundation (2011GXNSFA018140)Department of Guangxi Education (200807MS112)
文摘Based on the fully dressed quark propagator and chiral perturbation theory, we study the ratio of the strange quark mass ms to up or down quark mass mu,d . The ratio is related to the determination of quark masses which are fundamental input parameters of QCD Lagrangian in the Standard Model of particle physics and can not be directly measured since the quark is confined within a hadron. An accurate determination of these QCD free parameters is extremely important for both phenomenological and theoretical applications. We begin with a brief introduction to the non-perturbation QCD theory, and then study the mass ratio in the framework of the chiral perturbation theory (χPT) with a parameterized fully dressed quark propagator which describes confining fully dressed quark propagation and is analytic everywhere in the finite complex p2-plane and has no Lehmann representation so there are no quark production thresholds in any theoretical calculations of observable data. Our prediction for the ratio ms/mu,d is consistent with other model predictions such as Lattice QCD, instanton model, QCD sum rules and the empirical values used widely in the literature. As a by-product of this study, our theoretical results, together with other predictions of physical quantities that used this quark propagator in our previous publications, clearly show that the parameterized form of the fully dressed quark propagator is an applicable and reliable approximation to the solution of the Dyson-Schwinger Equation of quark propagator in the QCD.