Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(gen...Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(generally 5%–10%)during Li^(+)storage causes unsatisfactory long-term cyclability.Here,“zero-strain”NiNb_(2)O_(6) fibers are explored as a new anode material with comprehensively good electrochemical properties.During Li^(+)storage,the expansion of electrochemical inactive NiO_(6) octahedra almost fully offsets the shrinkage of active NbO_(6) octahedra through reversible O movement.Such superior volume-accommodation capability of the NiO_(6) layers guarantees the“zero-strain”behavior of NiNb_(2)O_(6) in a broad temperature range(0.53%//0.51%//0.74%at 25//−10//60℃),leading to the excellent cyclability of the NiNb_(2)O_(6) fibers(92.8%//99.2%//91.1%capacity retention after 1000//2000//1000 cycles at 10C and 25//−10//60℃).This NiNb_(2)O_(6) material further exhibits a large reversible capacity(300//184//318 mAh g−1 at 0.1C and 25//−10//60℃)and outstanding rate performance(10 to 0.5C capacity percentage of 64.3%//50.0%//65.4%at 25//−10//60℃).Therefore,the NiNb_(2)O_(6) fibers are especially suitable for large-capacity,fast-charging,long-life,and all-climate lithium-ion batteries.展开更多
An advance in the integration of high-performing semiconductors into fibers enables innovative fiber devices and fabric systems that sense,communicate and interact,paving the way for unprecedented applications in wear...An advance in the integration of high-performing semiconductors into fibers enables innovative fiber devices and fabric systems that sense,communicate and interact,paving the way for unprecedented applications in wearable technology,fabric computation,and ambient intelligence.展开更多
Nanocomposite fibers are fibrous materials with specific properties and functionalities,which are prepared by introducing nanomaterials or nanostructures in the fibers.Polymeric nanocomposite fibers exhibit multiple f...Nanocomposite fibers are fibrous materials with specific properties and functionalities,which are prepared by introducing nanomaterials or nanostructures in the fibers.Polymeric nanocomposite fibers exhibit multiple functionalities,showing great application potential in healthcare,aerospace,mechanical engineering,and energy storage.Here,six functionalities of polymer nanocomposite fibers are reviewed:mechanical reinforcement,resistance to electromagnetic interference and flame,thermal and electrical conduction,generation of far-infrared ray,negative ion and electricity,energy storage,and sensing.For each functionality,the fiber component selection and preparation methods are summarized.The commonly used polymers comprise natural and synthetic polymers,and typical nanomaterials include carbon-based,polymer-based,metal-based,and metal oxide-based ones.Various compounding strategies and spinning approaches,such as wet-spinning,melt-spinning,and electrospinning,are introduced.Moreover,the functional properties of fibers fabricated from different constituents and by different strategies are compared,providing a reference for performance optimization.Finally,the prospective directions of research and application are discussed,and possible approaches are suggested to facilitate the development of advanced nanocomposite fibers.展开更多
Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herei...Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.展开更多
Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications ...Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects.展开更多
Temperature regulating fibers(TRF_(s)) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRFsare not high, and the preparation methods are still at ...Temperature regulating fibers(TRF_(s)) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRFsare not high, and the preparation methods are still at the laboratory scale. It remains a great challenge to use industrial spinning equipment to achieve continuous processing of TRF_(s) with excellent thermal and mechanical properties. Here, polyamide 6(PA6) based TRF_(s) with a sheath-core structure were prepared by bicomponent melt-spinning. The sheath-core TRF(TRF_(sc)) are composed of PA6 as sheath and functional PA6 as core, which are filled with the shape stable phase change materials(ssPCM),dendritic silica@polyethylene glycol(SiO_(2)@PEG). With the aid of the sheath structure, the filling content of SiO_(2)@PEG can reach 30 %, so that the enthalpy of the TRF_(s) can be as high as 21.3 J/g. The ultra-high enthalpy guarantees the temperature regulation ability during the alternating process of cooling and heating. In hot environment, the temperature regulation time is 6.59 min, and the temperature difference is 12.93℃. In addition, the mechanical strength of the prepared TRF_(sc) reaches 2.26 cN/dtex, which can fully meet its application in the field of thermal management textiles and devices to manage the temperature regulation of the human body or precision equipment, etc.展开更多
Images and videos provide a wealth of information for people in production and life.Although most digital information is transmitted via optical fiber,the image acquisition and transmission processes still rely heavil...Images and videos provide a wealth of information for people in production and life.Although most digital information is transmitted via optical fiber,the image acquisition and transmission processes still rely heavily on electronic circuits.The development of all-optical transmission networks and optical computing frameworks has pointed to the direction for the next generation of data transmission and information processing.Here,we propose a high-speed,low-cost,multiplexed parallel and one-piece all-fiber architecture for image acquisition,encoding,and transmission,called the Multicore Fiber Acquisition and Transmission Image System(MFAT).Based on different spatial and modal channels of the multicore fiber,fiber-coupled self-encoding,and digital aperture decoding technology,scenes can be observed directly from up to 1 km away.The expansion of capacity provides the possibility of parallel coded transmission of multimodal high-quality data.MFAT requires no additional signal transmitting and receiving equipment.The all-fiber processing saves the time traditionally spent on signal conversion and image pre-processing(compression,encoding,and modulation).Additionally,it provides an effective solution for 2D information acquisition and transmission tasks in extreme environments such as high temperatures and electromagnetic interference.展开更多
Cotton,an important industrial crop cultivated in more than 70 countries,plays a major role in the livelihood of millions of farmers and industrialists.Cotton is mainly grown for its fiber,an economic component that c...Cotton,an important industrial crop cultivated in more than 70 countries,plays a major role in the livelihood of millions of farmers and industrialists.Cotton is mainly grown for its fiber,an economic component that can be differentiated from its epidermal cells in the outer integument of a developing seed.Fiber length,fiber strength,and fiber fineness are three main attributes that contribute to the quality of cotton fibers.Recent advancements in genomics have identified key genes,which are the most important factors that govern these three traits,can be introduced into cultivars of interest via gene editing,marker-assisted selection,and transgenics,thus the narrow genetic background of cotton can be addressed and its fiber quality traits can be enhanced.Over the past two decades,quantitative trait loci(QTLs)have been mapped for different fiber traits,approximately 1850 QTLs have been mapped for fiber length,fiber strength,and fineness among which a few genes have been edited for quality improvement in cotton.In this background,the current review covers the development and the factors that influence these traits,along with the reported genes,QTLs,and the edited genomes for trait improvement.展开更多
The concrete mixed to sugarcane bagasse fibers and polypropylene fibers prepared with varied conditions were presented. The aim of our study is to formulate a concrete mixed with sugarcane bagasse fibers, which will g...The concrete mixed to sugarcane bagasse fibers and polypropylene fibers prepared with varied conditions were presented. The aim of our study is to formulate a concrete mixed with sugarcane bagasse fibers, which will gradually replace the conventional polypropylene fibers often used. We formulated all our concretes using the dreux gorisse method. We used an oven calibrated at 105˚C to dry the washed fibers. We also carried out tensile splitting and compression tests, at 28 and 112 days of age. The reinforcement mechanisms of sugarcane bagasse fibers and polypropylene fibers concretes were subjected to tensile splitting and compression tests after total immersion of the specimens in tap water at 28 and 112 days. Porosity at 28 days, mass loss and drying shrinkage at 80 days were also studied. The curing processes of concretes containing 0.10, 0.15, 0.17, 0.23 and 0.25% bagasse fibers were compared with those of ordinary concretes containing no fiber. The results showed that the addition of bagasse fibers reduces mechanical strength and porosity. In summary, specimens SBC-0.15 and SBC-0.17 showed the best results for all fibers. We plan to do the same work, but this time with raffia or palm nut fibers.展开更多
The development of wood adhesives using biomass resources holds significant importance for sustainable resource utilization and public health.Utilizing non-condensed lignin directly as a wood adhesive provides a new a...The development of wood adhesives using biomass resources holds significant importance for sustainable resource utilization and public health.Utilizing non-condensed lignin directly as a wood adhesive provides a new approach for the green,low-cost,and large-scale production of high-performance wood adhesives.This innovation has the potential to drive the green and low-carbon development of the wood/plant products industry.展开更多
The self-powered tissue engineering scaffold with good biocompatibility is of great significance for stimulating nerve cell growth.In this study,silk fibroin(SF)-based fibers with regulatable structure and piezoelectr...The self-powered tissue engineering scaffold with good biocompatibility is of great significance for stimulating nerve cell growth.In this study,silk fibroin(SF)-based fibers with regulatable structure and piezoelectric performance are fabricated by dry-spinning and post-treatment.The concentration of SF and calcium ion in spinning dope and the post-treatment affect the conformation transition and crystallinity of SF.As a result,the SF fibers exhibit high piezoelectric coefficient d_(33)(3.24 pm/V)and output voltage(~27 V).Furthermore,these piezoelectric fibers promote the growth of PC-12 cells,demonstrating the promising potential for nerve repair and other energy harvester.展开更多
The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production ...The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production of bioethanol remains a challenge given the crystallinity of cellulose and the presence of the complex. The pretreatment aimed to solubilize the lignin fraction and to make cellulose more accessible to the hydrolytic enzymes, was done using the organosolv process. A mathematical modeling was performed to point out the effect of the temperature on the kinetics of the release of the reducing sugars during the pretreatment. Two mathematical model was used, SAEMAN’s model and Response surface methodology. The first show that the kinetic parameters of the hydrolysis of the cellulose and reducing sugar are: 0.05089 min<sup>-1</sup>, 5358.1461 J·mol<sup>-1</sup>, 1383.03691 min<sup>-1</sup>, 51577.6100 J·mol<sup>-1</sup> respectively. The second model was used. Temperature is the factor having the most positive influence whereas, ethanol concentration is not an essential factor. To release the maximum, an organosolv pre-treatment of this sub-strate should be carried out at 209.08°C for 47.60 min with an ethanol-water ratio of 24.02%. Organosolv pre-treatment is an effective process for delignification of the lignocellulosic structure.展开更多
Introduction: While autograft bone is the gold standard for multilevel posterolateral lumbar fusion, bone substitutes and graft extenders such as allograft bone, ceramics and demineralized bone matrix (DBM) have been ...Introduction: While autograft bone is the gold standard for multilevel posterolateral lumbar fusion, bone substitutes and graft extenders such as allograft bone, ceramics and demineralized bone matrix (DBM) have been used to avoid the morbidity and insufficient quantity associated with harvesting autologous bone. The primary objective of this retrospective study was to determine whether, in patients with increased risk of operative nonunion related to multilevel fusion, adding DBM fibers to mineralized bone allograft resulted in better fusion than using allograft alone. The secondary objectives were to evaluate how adding DBM fibers affects functional disability, low back pain, intraoperative blood loss and the nonunion rate. Methods: This retrospective study involved a chart review of consecutive patients who underwent multilevel lumbar spinal fusion and were operated on by a single surgeon. The patients were divided into two groups: 14 patients received mineralized bone allograft (control group) and 14 patients received a combination of mineralized bone allograft and DBM (experimental group). Patients were reviewed at a mean of 16.4 ± 2.2 months after surgery at which point CT scans were analyzed to determine whether fusion had occurred;Oswestry disability index (ODI) and pain were also evaluated. Results: A mean of 5 levels [min 2, max 13] were fused in these patients. Posterolateral fusion as defined by the Lenke classification was not significantly different between groups. The experimental DBM group had a significantly better composite fusion score than the control group (P Discussion: Adding DBM fibers to allograft bone during multilevel posterolateral spinal fusion was safe and produced better composite fusion than using allograft only as an autograft extender.展开更多
Spun-bond non-woven fabrics(NWFs)made of porous C-shaped polypropylene fibers were applied in rapid oil absorption and effective on-line oil spillage monitoring.It is of great interest to further optimize the absorpti...Spun-bond non-woven fabrics(NWFs)made of porous C-shaped polypropylene fibers were applied in rapid oil absorption and effective on-line oil spillage monitoring.It is of great interest to further optimize the absorption properties of these materials by tuning their preparation parameters as well as characterize them with theoretical models.In this paper,effects of die shape,diluent composition(mixtures of dibutyl and dioctyl phthalate),and drawing speed on their porous structure and oil-absorbing performance were systematically investigated and characterized based on two novel concepts,i.e.,the equivalent capillary tube pore radius and the kinetic pore tortuosity(barrier to access)derived from the simplest capillary tube liquid-filling model.The use of higher dibutyl phthalate fractions under faster drawing speeds resulted in the formation of larger and more connected inner filament sub-micron pores.Three stages of tube filling relating to inter-filament large pores,medium pores close to bonding points,and inner filament small pores were observed in the spun-bond NWFs.Continuous oil recovery rates of 986 L·m^(-2)·h^(-1) with an oil/water selectivity of 6.4 were achieved in dynamic skimming experiments using simulated spilled oil.展开更多
Thermal management of nanoscale quantum dots(QDs)in light-emitting devices is a long-lasting challenge.The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fil...Thermal management of nanoscale quantum dots(QDs)in light-emitting devices is a long-lasting challenge.The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fillers.However,this strategy failed to deliver the QDs’heat generation across a long distance,and the accumulated heat still causes considerable temperature rise of QDs-polymer composite,which eventually menaces the performance and reliability of lightemitting devices.Inspired by the radially aligned fruit fibers in oranges,we proposed to eliminate this heat dissipation challenge by establishing long-range ordered heat transfer pathways within the QDs-polymer composite.Ultrahigh molecular weight polyethylene fibers(UPEF)were radially aligned throughout the polymer matrix,thus facilitating massive efficient heat dissipation of the QDs.Under a UPEF filling fraction of 24.46 vol%,the in-plane thermal conductivity of QDs-radially aligned UPEF composite(QDs-RAPE)could reach 10.45 W m^(−1) K^(−1),which is the highest value of QDs-polymer composite reported so far.As a proof of concept,the QDs’working temperature can be reduced by 342.5℃ when illuminated by a highly concentrated laser diode(LD)under driving current of 1000 mA,thus improving their optical performance.This work may pave a new way for next generation high-power QDs lighting applications.展开更多
Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron ni...Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride,thereby limiting their performance in applications such as thermal management.In this study,we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation.The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath.Notably,the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers,primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process.With a BNNSs loading of 60 wt%,the resulting coaxial fibers showed exceptional properties,including an ultrahigh Herman orientation parameter of 0.81,thermal conductivity of 17.2 W m^(-1)K^(-1),and tensile strength of 192.5 MPa.These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers,making them highly suitable for applications such as wearable thermal management textiles.Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs.展开更多
The compelling combination of thermochromism and multifunctional wearable heaters in smart textiles has received increas-ing attention given the significant synergistic effect of green solar heat supply and energy sto...The compelling combination of thermochromism and multifunctional wearable heaters in smart textiles has received increas-ing attention given the significant synergistic effect of green solar heat supply and energy storage.However,due to color incompatibility and poor knittability,developing fabrics with bistable thermochromic properties to achieve efficient solar-thermal management remains a challenging endeavor.Here,by combining bistable thermochromic,photochromic,and efficient solar-thermal properties,we constructed an asymmetric Janus(Janus A/B)fiber(BTCSJF)that can simultaneously display two colors and help with energy reserve while harvesting solar power.Benefiting greatly from donor-acceptor elec-tron transfer,dynamic hydrogen bonding,and supercooling properties,BTCSJF displays a quick switch in color,excellent bistability,and enhanced performance in storing phase-change energy.In addition,BTCSJF can be self-heated by 35.6℃higher than conventional fibers because it can capture and store solar energy.This research outlines a method to fabricate braided fibers with two theoretically incompatible properties that have promising implications for self-powered integrated bistable color-changing and personal thermal management applications.展开更多
Potassium-ion batteries(KIBs)have been seen as a competitive alternative to lithium-ion batteries(LIBs)due to their natural abundance,low cost and rocking chair-like operating mechanism similar to LIBs.Soft carbon has...Potassium-ion batteries(KIBs)have been seen as a competitive alternative to lithium-ion batteries(LIBs)due to their natural abundance,low cost and rocking chair-like operating mechanism similar to LIBs.Soft carbon has a lower voltage plateau compared to hard carbon and an easily modulated lattice structure compared to graphite,which provides particular advantages in KIBs anodes.Pitch has attracted much attention as a simple,readily available and inexpensive precursor for soft carbon,but its structure is easily damaged during cycling.Herein,the flexible film Pitch@CNF are prepared by uniformly winding reticulated carbon fibers on the surface of pitch-soft carbon via electrostatic spinning technique,which not only enables the pitch to maintain its structure well during cycling and withstand the volume expansion upon K^(+) insertion,but also is conducive to ionic transport of the three-dimensional reticulated structure.Meanwhile,the abundant pores on the carbon fibers can provide more K^(+) active sites.The prepared flexible self-supporting films can be used directly as electrodes without the addition of binders and conductive agents.The reversible capacity is 290 mAh·g^(-1)at a current density of 0.1 A·g^(-1),and the capacity retention rate is 83%after 500 cycles.展开更多
Integrated printing of magnetic soft robots with complex structures using recyclable materials to achieve sustainability of the soft robots remains a persistent challenge.Here,we propose a kind of ferromagnetic fibers...Integrated printing of magnetic soft robots with complex structures using recyclable materials to achieve sustainability of the soft robots remains a persistent challenge.Here,we propose a kind of ferromagnetic fibers that can be used to print soft robots with complex structures.These ferromagnetic fibers are recyclable and can make soft robots sustainable.The ferromagnetic fibers based on thermoplastic polyurethane(TPU)/NdFeB hybrid particles are extruded by an extruder.We use a desktop three-dimensional(3D)printer to demonstrate the feasibility of printing two-dimensional(2D)and complex 3D soft robots.These printed soft robots can be recycled and reprinted into new robots once their tasks are completed.Moreover,these robots show almost no difference in actuation capability compared to prior versions and have new functions.Successful applications include lifting,grasping,and moving objects,and these functions can be operated untethered wirelessly.In addition,the locomotion of the magnetic soft robot in a human stomach model shows the prospect of medical applications.Overall,these fully recyclable ferromagnetic fibers pave the way for printing and reprinting sustainable soft robots while also effectively reducing e-waste and robotics waste materials,which is important for resource conservation and environmental protection.展开更多
Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed...Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed solid-state electrolytes(SSEs)are still difficult to meet the practical application requirements of SSLMBs.In this review,based on the analysis of main problems and challenges faced by the development of SSEs,the ingenious application and latest progresses including specific suggestions of various polymer fibers and their membrane products in solving these issues are emphatically reviewed.Firstly,the inherent defects of inorganic and organic electrolytes are pointed out.Then,the application strategies of polymer fibers/fiber membranes in strengthening strength,reducing thickness,enhancing thermal stability,increasing the film formability,improving ion conductivity and optimizing interface stability are discussed in detail from two aspects of improving physical structure properties and electrochemical performances.Finally,the researches and development trends of the intelligent applications of high-performance polymer fibers in SSEs is prospected.This review intends to provide timely and important guidance for the design and development of polymer fiber composite SSEs for SSLMBs.展开更多
基金supported by the National Natural Science Foundation of China(51762014,52231007,12327804,T2321003,22088101)in part by the National Key Research Program of China under Grant 2021YFA1200600.
文摘Niobates are promising all-climate Li^(+)-storage anode material due to their fast charge transport,large specific capacities,and resistance to electrolyte reaction.However,their moderate unit-cellvolume expansion(generally 5%–10%)during Li^(+)storage causes unsatisfactory long-term cyclability.Here,“zero-strain”NiNb_(2)O_(6) fibers are explored as a new anode material with comprehensively good electrochemical properties.During Li^(+)storage,the expansion of electrochemical inactive NiO_(6) octahedra almost fully offsets the shrinkage of active NbO_(6) octahedra through reversible O movement.Such superior volume-accommodation capability of the NiO_(6) layers guarantees the“zero-strain”behavior of NiNb_(2)O_(6) in a broad temperature range(0.53%//0.51%//0.74%at 25//−10//60℃),leading to the excellent cyclability of the NiNb_(2)O_(6) fibers(92.8%//99.2%//91.1%capacity retention after 1000//2000//1000 cycles at 10C and 25//−10//60℃).This NiNb_(2)O_(6) material further exhibits a large reversible capacity(300//184//318 mAh g−1 at 0.1C and 25//−10//60℃)and outstanding rate performance(10 to 0.5C capacity percentage of 64.3%//50.0%//65.4%at 25//−10//60℃).Therefore,the NiNb_(2)O_(6) fibers are especially suitable for large-capacity,fast-charging,long-life,and all-climate lithium-ion batteries.
基金support National Natural Science Foundation of China(Grant No.52202167)the Science and Technology Commission of Shanghai Municipality(Grant No.20JC1414900)+1 种基金the National Natural Science Foundation of China(Grant No.52127805)the National Key Research and Development Program of China(Grant No.2021YFA1201300).
文摘An advance in the integration of high-performing semiconductors into fibers enables innovative fiber devices and fabric systems that sense,communicate and interact,paving the way for unprecedented applications in wearable technology,fabric computation,and ambient intelligence.
基金support from the National Natural Science Foundation of China(No.52090030)Shanxi-Zheda Institute of New Materials and Chemical Engineering(2022SZ-TD011,2022SZTD012,2022SZ-TD014,and 2021SZ-FR004)the Fundamental Research Funds for the Central Universities(No.2021FZZX001-17).
文摘Nanocomposite fibers are fibrous materials with specific properties and functionalities,which are prepared by introducing nanomaterials or nanostructures in the fibers.Polymeric nanocomposite fibers exhibit multiple functionalities,showing great application potential in healthcare,aerospace,mechanical engineering,and energy storage.Here,six functionalities of polymer nanocomposite fibers are reviewed:mechanical reinforcement,resistance to electromagnetic interference and flame,thermal and electrical conduction,generation of far-infrared ray,negative ion and electricity,energy storage,and sensing.For each functionality,the fiber component selection and preparation methods are summarized.The commonly used polymers comprise natural and synthetic polymers,and typical nanomaterials include carbon-based,polymer-based,metal-based,and metal oxide-based ones.Various compounding strategies and spinning approaches,such as wet-spinning,melt-spinning,and electrospinning,are introduced.Moreover,the functional properties of fibers fabricated from different constituents and by different strategies are compared,providing a reference for performance optimization.Finally,the prospective directions of research and application are discussed,and possible approaches are suggested to facilitate the development of advanced nanocomposite fibers.
基金Natural Science Foundation for Distinguished Young Scholars of Zhejiang Province,Grant/Award Number:LR20E020001Foundation of State Key Laboratory of Coal Conversion,Grant/Award Number:J20-21-909+4 种基金Science and Technology Department of Zhejiang Province,Grant/Award Number:2023C01231National Natural Science Foundation of China,Grant/Award Numbers:52372235,52073252,52002052,22379020,U20A20253,21972127,22279116Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment,Grant/Award Number:SKLPEE-KF202206Key Research and Development Project of Science and Technology Department of Sichuan Province,Grant/Award Number:2022YFSY0004Ministry of Education,Grant/Award Number:KFM 202202。
文摘Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.
基金Project supported by the National Natural Science Foundation of China (Nos.12172326 and 11972319)the National Key Research and Development Program of China (No.2020YFA0711700)the Natural Science Foundation of Zhejiang Province of China (No.LR21A020002)。
文摘Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects.
基金financially supported by the National Natural Science Foundation of China (52073047)the Science and Technology Commission of Shanghai Municipality (20JC1414900)+1 种基金the Program of Shanghai Technology Research Leader (20XD1433700)the INTERNATIONAL COOPERATION Fund of the Science and Technology Commission of Shanghai Municipality (20520740800)。
文摘Temperature regulating fibers(TRF_(s)) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRFsare not high, and the preparation methods are still at the laboratory scale. It remains a great challenge to use industrial spinning equipment to achieve continuous processing of TRF_(s) with excellent thermal and mechanical properties. Here, polyamide 6(PA6) based TRF_(s) with a sheath-core structure were prepared by bicomponent melt-spinning. The sheath-core TRF(TRF_(sc)) are composed of PA6 as sheath and functional PA6 as core, which are filled with the shape stable phase change materials(ssPCM),dendritic silica@polyethylene glycol(SiO_(2)@PEG). With the aid of the sheath structure, the filling content of SiO_(2)@PEG can reach 30 %, so that the enthalpy of the TRF_(s) can be as high as 21.3 J/g. The ultra-high enthalpy guarantees the temperature regulation ability during the alternating process of cooling and heating. In hot environment, the temperature regulation time is 6.59 min, and the temperature difference is 12.93℃. In addition, the mechanical strength of the prepared TRF_(sc) reaches 2.26 cN/dtex, which can fully meet its application in the field of thermal management textiles and devices to manage the temperature regulation of the human body or precision equipment, etc.
基金financial supports from the National Key R&D Program of China (2021YFA1401103)the National Natural Science Foundation of China (61925502 and 51772145)
文摘Images and videos provide a wealth of information for people in production and life.Although most digital information is transmitted via optical fiber,the image acquisition and transmission processes still rely heavily on electronic circuits.The development of all-optical transmission networks and optical computing frameworks has pointed to the direction for the next generation of data transmission and information processing.Here,we propose a high-speed,low-cost,multiplexed parallel and one-piece all-fiber architecture for image acquisition,encoding,and transmission,called the Multicore Fiber Acquisition and Transmission Image System(MFAT).Based on different spatial and modal channels of the multicore fiber,fiber-coupled self-encoding,and digital aperture decoding technology,scenes can be observed directly from up to 1 km away.The expansion of capacity provides the possibility of parallel coded transmission of multimodal high-quality data.MFAT requires no additional signal transmitting and receiving equipment.The all-fiber processing saves the time traditionally spent on signal conversion and image pre-processing(compression,encoding,and modulation).Additionally,it provides an effective solution for 2D information acquisition and transmission tasks in extreme environments such as high temperatures and electromagnetic interference.
文摘Cotton,an important industrial crop cultivated in more than 70 countries,plays a major role in the livelihood of millions of farmers and industrialists.Cotton is mainly grown for its fiber,an economic component that can be differentiated from its epidermal cells in the outer integument of a developing seed.Fiber length,fiber strength,and fiber fineness are three main attributes that contribute to the quality of cotton fibers.Recent advancements in genomics have identified key genes,which are the most important factors that govern these three traits,can be introduced into cultivars of interest via gene editing,marker-assisted selection,and transgenics,thus the narrow genetic background of cotton can be addressed and its fiber quality traits can be enhanced.Over the past two decades,quantitative trait loci(QTLs)have been mapped for different fiber traits,approximately 1850 QTLs have been mapped for fiber length,fiber strength,and fineness among which a few genes have been edited for quality improvement in cotton.In this background,the current review covers the development and the factors that influence these traits,along with the reported genes,QTLs,and the edited genomes for trait improvement.
文摘The concrete mixed to sugarcane bagasse fibers and polypropylene fibers prepared with varied conditions were presented. The aim of our study is to formulate a concrete mixed with sugarcane bagasse fibers, which will gradually replace the conventional polypropylene fibers often used. We formulated all our concretes using the dreux gorisse method. We used an oven calibrated at 105˚C to dry the washed fibers. We also carried out tensile splitting and compression tests, at 28 and 112 days of age. The reinforcement mechanisms of sugarcane bagasse fibers and polypropylene fibers concretes were subjected to tensile splitting and compression tests after total immersion of the specimens in tap water at 28 and 112 days. Porosity at 28 days, mass loss and drying shrinkage at 80 days were also studied. The curing processes of concretes containing 0.10, 0.15, 0.17, 0.23 and 0.25% bagasse fibers were compared with those of ordinary concretes containing no fiber. The results showed that the addition of bagasse fibers reduces mechanical strength and porosity. In summary, specimens SBC-0.15 and SBC-0.17 showed the best results for all fibers. We plan to do the same work, but this time with raffia or palm nut fibers.
基金supported by National Natural Science Foundation of China,under Grant 22108031Shanghai Sailing Program,under Grant 21YF1400800.
文摘The development of wood adhesives using biomass resources holds significant importance for sustainable resource utilization and public health.Utilizing non-condensed lignin directly as a wood adhesive provides a new approach for the green,low-cost,and large-scale production of high-performance wood adhesives.This innovation has the potential to drive the green and low-carbon development of the wood/plant products industry.
基金Project sponsored by the Basic Research Project of the Science and Technology Commission of Shanghai Municipality (Grant No.21JC1400100)the Shanghai Rising-Star Program (Grant No.22QA1400400)+1 种基金the National Natural Science Foundation of China (Grant No.52173031)the Oriental Talent Plan (Leading Talent Program,No.152)。
文摘The self-powered tissue engineering scaffold with good biocompatibility is of great significance for stimulating nerve cell growth.In this study,silk fibroin(SF)-based fibers with regulatable structure and piezoelectric performance are fabricated by dry-spinning and post-treatment.The concentration of SF and calcium ion in spinning dope and the post-treatment affect the conformation transition and crystallinity of SF.As a result,the SF fibers exhibit high piezoelectric coefficient d_(33)(3.24 pm/V)and output voltage(~27 V).Furthermore,these piezoelectric fibers promote the growth of PC-12 cells,demonstrating the promising potential for nerve repair and other energy harvester.
文摘The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production of bioethanol remains a challenge given the crystallinity of cellulose and the presence of the complex. The pretreatment aimed to solubilize the lignin fraction and to make cellulose more accessible to the hydrolytic enzymes, was done using the organosolv process. A mathematical modeling was performed to point out the effect of the temperature on the kinetics of the release of the reducing sugars during the pretreatment. Two mathematical model was used, SAEMAN’s model and Response surface methodology. The first show that the kinetic parameters of the hydrolysis of the cellulose and reducing sugar are: 0.05089 min<sup>-1</sup>, 5358.1461 J·mol<sup>-1</sup>, 1383.03691 min<sup>-1</sup>, 51577.6100 J·mol<sup>-1</sup> respectively. The second model was used. Temperature is the factor having the most positive influence whereas, ethanol concentration is not an essential factor. To release the maximum, an organosolv pre-treatment of this sub-strate should be carried out at 209.08°C for 47.60 min with an ethanol-water ratio of 24.02%. Organosolv pre-treatment is an effective process for delignification of the lignocellulosic structure.
文摘Introduction: While autograft bone is the gold standard for multilevel posterolateral lumbar fusion, bone substitutes and graft extenders such as allograft bone, ceramics and demineralized bone matrix (DBM) have been used to avoid the morbidity and insufficient quantity associated with harvesting autologous bone. The primary objective of this retrospective study was to determine whether, in patients with increased risk of operative nonunion related to multilevel fusion, adding DBM fibers to mineralized bone allograft resulted in better fusion than using allograft alone. The secondary objectives were to evaluate how adding DBM fibers affects functional disability, low back pain, intraoperative blood loss and the nonunion rate. Methods: This retrospective study involved a chart review of consecutive patients who underwent multilevel lumbar spinal fusion and were operated on by a single surgeon. The patients were divided into two groups: 14 patients received mineralized bone allograft (control group) and 14 patients received a combination of mineralized bone allograft and DBM (experimental group). Patients were reviewed at a mean of 16.4 ± 2.2 months after surgery at which point CT scans were analyzed to determine whether fusion had occurred;Oswestry disability index (ODI) and pain were also evaluated. Results: A mean of 5 levels [min 2, max 13] were fused in these patients. Posterolateral fusion as defined by the Lenke classification was not significantly different between groups. The experimental DBM group had a significantly better composite fusion score than the control group (P Discussion: Adding DBM fibers to allograft bone during multilevel posterolateral spinal fusion was safe and produced better composite fusion than using allograft only as an autograft extender.
基金supported by the National Natural Science Foundation of China NSFC-U1809213National Natural Science Foundation of China NSFC-21975222.
文摘Spun-bond non-woven fabrics(NWFs)made of porous C-shaped polypropylene fibers were applied in rapid oil absorption and effective on-line oil spillage monitoring.It is of great interest to further optimize the absorption properties of these materials by tuning their preparation parameters as well as characterize them with theoretical models.In this paper,effects of die shape,diluent composition(mixtures of dibutyl and dioctyl phthalate),and drawing speed on their porous structure and oil-absorbing performance were systematically investigated and characterized based on two novel concepts,i.e.,the equivalent capillary tube pore radius and the kinetic pore tortuosity(barrier to access)derived from the simplest capillary tube liquid-filling model.The use of higher dibutyl phthalate fractions under faster drawing speeds resulted in the formation of larger and more connected inner filament sub-micron pores.Three stages of tube filling relating to inter-filament large pores,medium pores close to bonding points,and inner filament small pores were observed in the spun-bond NWFs.Continuous oil recovery rates of 986 L·m^(-2)·h^(-1) with an oil/water selectivity of 6.4 were achieved in dynamic skimming experiments using simulated spilled oil.
基金supported by the National Natural Science Foundation of China(52106089).
文摘Thermal management of nanoscale quantum dots(QDs)in light-emitting devices is a long-lasting challenge.The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fillers.However,this strategy failed to deliver the QDs’heat generation across a long distance,and the accumulated heat still causes considerable temperature rise of QDs-polymer composite,which eventually menaces the performance and reliability of lightemitting devices.Inspired by the radially aligned fruit fibers in oranges,we proposed to eliminate this heat dissipation challenge by establishing long-range ordered heat transfer pathways within the QDs-polymer composite.Ultrahigh molecular weight polyethylene fibers(UPEF)were radially aligned throughout the polymer matrix,thus facilitating massive efficient heat dissipation of the QDs.Under a UPEF filling fraction of 24.46 vol%,the in-plane thermal conductivity of QDs-radially aligned UPEF composite(QDs-RAPE)could reach 10.45 W m^(−1) K^(−1),which is the highest value of QDs-polymer composite reported so far.As a proof of concept,the QDs’working temperature can be reduced by 342.5℃ when illuminated by a highly concentrated laser diode(LD)under driving current of 1000 mA,thus improving their optical performance.This work may pave a new way for next generation high-power QDs lighting applications.
基金This work was supported by the National Key Research and Development Project(Nos.2019YFA0705403,2022YFA1205300)the National Natural Science Foundation of China(No.T2293693)+3 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(No.2017ZT07C341)the Guangdong Basic and Applied Basic Research Foundation(No.2020B0301030002)the Shenzhen Basic Research Project(Nos.WDZC20200824091903001,JSGG20220831105402004)Zhiyuan Xiong thanks the financial support from South China University of Technology.
文摘Hexagonal boron nitride nanosheets(BNNSs)exhibit remarkable thermal and dielectric properties.However,their self-assembly and alignment in macroscopic forms remain challenging due to the chemical inertness of boron nitride,thereby limiting their performance in applications such as thermal management.In this study,we present a coaxial wet spinning approach for the fabrication of BNNSs/polymer composite fibers with high nanosheet orientation.The composite fibers were prepared using a superacid-based solvent system and showed a layered structure comprising an aramid core and an aramid/BNNSs sheath.Notably,the coaxial fibers exhibited significantly higher BNNSs alignment compared to uniaxial aramid/BNNSs fibers,primarily due to the additional compressive forces exerted at the core-sheath interface during the hot drawing process.With a BNNSs loading of 60 wt%,the resulting coaxial fibers showed exceptional properties,including an ultrahigh Herman orientation parameter of 0.81,thermal conductivity of 17.2 W m^(-1)K^(-1),and tensile strength of 192.5 MPa.These results surpassed those of uniaxial fibers and previously reported BNNSs composite fibers,making them highly suitable for applications such as wearable thermal management textiles.Our findings present a promising strategy for fabricating high-performance composite fibers based on BNNSs.
基金supported by the Natural Science Foundation of Jiangsu Province(No.BK20211240)the International Joint Research Laboratory for Eco-Textile Technology(IJRLETT)at Jiangnan University.
文摘The compelling combination of thermochromism and multifunctional wearable heaters in smart textiles has received increas-ing attention given the significant synergistic effect of green solar heat supply and energy storage.However,due to color incompatibility and poor knittability,developing fabrics with bistable thermochromic properties to achieve efficient solar-thermal management remains a challenging endeavor.Here,by combining bistable thermochromic,photochromic,and efficient solar-thermal properties,we constructed an asymmetric Janus(Janus A/B)fiber(BTCSJF)that can simultaneously display two colors and help with energy reserve while harvesting solar power.Benefiting greatly from donor-acceptor elec-tron transfer,dynamic hydrogen bonding,and supercooling properties,BTCSJF displays a quick switch in color,excellent bistability,and enhanced performance in storing phase-change energy.In addition,BTCSJF can be self-heated by 35.6℃higher than conventional fibers because it can capture and store solar energy.This research outlines a method to fabricate braided fibers with two theoretically incompatible properties that have promising implications for self-powered integrated bistable color-changing and personal thermal management applications.
文摘Potassium-ion batteries(KIBs)have been seen as a competitive alternative to lithium-ion batteries(LIBs)due to their natural abundance,low cost and rocking chair-like operating mechanism similar to LIBs.Soft carbon has a lower voltage plateau compared to hard carbon and an easily modulated lattice structure compared to graphite,which provides particular advantages in KIBs anodes.Pitch has attracted much attention as a simple,readily available and inexpensive precursor for soft carbon,but its structure is easily damaged during cycling.Herein,the flexible film Pitch@CNF are prepared by uniformly winding reticulated carbon fibers on the surface of pitch-soft carbon via electrostatic spinning technique,which not only enables the pitch to maintain its structure well during cycling and withstand the volume expansion upon K^(+) insertion,but also is conducive to ionic transport of the three-dimensional reticulated structure.Meanwhile,the abundant pores on the carbon fibers can provide more K^(+) active sites.The prepared flexible self-supporting films can be used directly as electrodes without the addition of binders and conductive agents.The reversible capacity is 290 mAh·g^(-1)at a current density of 0.1 A·g^(-1),and the capacity retention rate is 83%after 500 cycles.
基金funded by the International Cooperation Program of the Natural Science Foundation of China(No.52261135542)Zhejiang Provincial Natural Science Foundation of China(No.LD22E050002)the Russian Science Foundation(No.23-43-00057)for financial support。
文摘Integrated printing of magnetic soft robots with complex structures using recyclable materials to achieve sustainability of the soft robots remains a persistent challenge.Here,we propose a kind of ferromagnetic fibers that can be used to print soft robots with complex structures.These ferromagnetic fibers are recyclable and can make soft robots sustainable.The ferromagnetic fibers based on thermoplastic polyurethane(TPU)/NdFeB hybrid particles are extruded by an extruder.We use a desktop three-dimensional(3D)printer to demonstrate the feasibility of printing two-dimensional(2D)and complex 3D soft robots.These printed soft robots can be recycled and reprinted into new robots once their tasks are completed.Moreover,these robots show almost no difference in actuation capability compared to prior versions and have new functions.Successful applications include lifting,grasping,and moving objects,and these functions can be operated untethered wirelessly.In addition,the locomotion of the magnetic soft robot in a human stomach model shows the prospect of medical applications.Overall,these fully recyclable ferromagnetic fibers pave the way for printing and reprinting sustainable soft robots while also effectively reducing e-waste and robotics waste materials,which is important for resource conservation and environmental protection.
基金supported by the National Natural Science Foundation of China(52203066,51973157,61904123)Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金Tianjin Research Innovation Project for Postgraduate Students(2021YJSB234)Science and Technology Plans of Tianjin(19PTSYJC00010)Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University。
文摘Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed solid-state electrolytes(SSEs)are still difficult to meet the practical application requirements of SSLMBs.In this review,based on the analysis of main problems and challenges faced by the development of SSEs,the ingenious application and latest progresses including specific suggestions of various polymer fibers and their membrane products in solving these issues are emphatically reviewed.Firstly,the inherent defects of inorganic and organic electrolytes are pointed out.Then,the application strategies of polymer fibers/fiber membranes in strengthening strength,reducing thickness,enhancing thermal stability,increasing the film formability,improving ion conductivity and optimizing interface stability are discussed in detail from two aspects of improving physical structure properties and electrochemical performances.Finally,the researches and development trends of the intelligent applications of high-performance polymer fibers in SSEs is prospected.This review intends to provide timely and important guidance for the design and development of polymer fiber composite SSEs for SSLMBs.