The research provides valuable insights into the intricate world of Non-Pneumatic (NP) tire technology, covering various facets from modeling and validation to material properties, design optimization, and tire-soil i...The research provides valuable insights into the intricate world of Non-Pneumatic (NP) tire technology, covering various facets from modeling and validation to material properties, design optimization, and tire-soil interactions. It begins with an exploration of existing NP tire modeling techniques, emphasizing the importance of accurate and reliable models for NP tires, including static and dynamic validation methods, and demonstrating the influence of structural features and material properties on tire performance. The review emphasizes the challenges and prospects of NP tires and aims to support the development of innovative airless tire solutions. The reviewed papers collectively contribute to a deeper understanding of NP tires, their applications, and potential enhancements in performance and efficiency across various industries.展开更多
According to relevant airworthiness standards, the aircraft fuel tank access cover must withstand the impact by tire fragments, and minimize the penetration and deformation, which is critical for flight safety. To ass...According to relevant airworthiness standards, the aircraft fuel tank access cover must withstand the impact by tire fragments, and minimize the penetration and deformation, which is critical for flight safety. To assess the safety of an aircraft fuel tank access cover subjected to tire fragments, a study of dynamic response was presented in this paper using the Finite element(FE) software ANSYS/LS-DYNA. To obtain the reliable mechanical characteristics of tire tread rubber, a series of material tests have been conducted. Then the proposed rubber material model is validated by comparing the numerical simulations with the experimental results of aluminium alloy plate impact. The simulation results indicate that the rubber fragment and alloy plate will undergo the largest deformation when impact angle is equal to 90°. Finally, the proposed FE model and modelling approaches are extended to the numerical simulation of a full-scale aircraft fuel tank access cover impact. The numerical simulations are carried out with impact velocity of 71.1 m/s and impact angle of 40.5°. The simulation results indicate that the aluminium alloy by precision casting is more likely to rupture, and the middle region of the access cover is vulnerable to fragment impact. This research proposes a reliable rubber model applying to various strain rates. Considering the influence of impact regions, the dynamic response and various failure patterns of fuel tank access cover are acquired. The findings of this paper can be used to improve the future aircraft safety design.展开更多
文摘The research provides valuable insights into the intricate world of Non-Pneumatic (NP) tire technology, covering various facets from modeling and validation to material properties, design optimization, and tire-soil interactions. It begins with an exploration of existing NP tire modeling techniques, emphasizing the importance of accurate and reliable models for NP tires, including static and dynamic validation methods, and demonstrating the influence of structural features and material properties on tire performance. The review emphasizes the challenges and prospects of NP tires and aims to support the development of innovative airless tire solutions. The reviewed papers collectively contribute to a deeper understanding of NP tires, their applications, and potential enhancements in performance and efficiency across various industries.
基金Supported by Research Fund for the Doctoral Program of Higher Education of China(Grant No.20136102120031)National Science Foundation of China(Grant No.51805150)
文摘According to relevant airworthiness standards, the aircraft fuel tank access cover must withstand the impact by tire fragments, and minimize the penetration and deformation, which is critical for flight safety. To assess the safety of an aircraft fuel tank access cover subjected to tire fragments, a study of dynamic response was presented in this paper using the Finite element(FE) software ANSYS/LS-DYNA. To obtain the reliable mechanical characteristics of tire tread rubber, a series of material tests have been conducted. Then the proposed rubber material model is validated by comparing the numerical simulations with the experimental results of aluminium alloy plate impact. The simulation results indicate that the rubber fragment and alloy plate will undergo the largest deformation when impact angle is equal to 90°. Finally, the proposed FE model and modelling approaches are extended to the numerical simulation of a full-scale aircraft fuel tank access cover impact. The numerical simulations are carried out with impact velocity of 71.1 m/s and impact angle of 40.5°. The simulation results indicate that the aluminium alloy by precision casting is more likely to rupture, and the middle region of the access cover is vulnerable to fragment impact. This research proposes a reliable rubber model applying to various strain rates. Considering the influence of impact regions, the dynamic response and various failure patterns of fuel tank access cover are acquired. The findings of this paper can be used to improve the future aircraft safety design.