High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium ...High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated.展开更多
Non-polar a-plane (1120) GaN films have been grown on r-plane (1102) sapphire substrates by metal organic chemical vapour deposition. The influences of V/III ratio on the species diffusion anisotropy of a-plane Ga...Non-polar a-plane (1120) GaN films have been grown on r-plane (1102) sapphire substrates by metal organic chemical vapour deposition. The influences of V/III ratio on the species diffusion anisotropy of a-plane GaN films were investigated by scanning electron microscopy, cathodoluminescence and high-resolution x-ray diffraction measurements. The anisotropy of a-plane GaN films may result from the different migration length of adatoms along two in-plane directions. V/III ratio has an effect on the growth rates of different facets and crystal quality. The stripe feature morphology was obviously observed in the film with a high V/III ratio because of the slow growth rate along the [1100] direction. When the V/III ratio increased from 1000 to 6000, the in-plane crystal quality anisotropy was decreased due to the weakened predominance in migration length of gallium adatoms.展开更多
A theoretical study of polar and semi/non-polar InGaN/GaN light-emitting diodes(LEDs) with different internal surface polarization charges, which can be grown on Si substrates, is conducted by using APSYS software. ...A theoretical study of polar and semi/non-polar InGaN/GaN light-emitting diodes(LEDs) with different internal surface polarization charges, which can be grown on Si substrates, is conducted by using APSYS software. In comparison with polar structure LEDs, the semi-polar structure exhibits a higher concentration of electrons and holes and radiative recombination rate, and its reduced built-in polarization field weakens the extent of band bending which causes the shift of peak emission wavelength. So the efficiency droop of semi-polar InGaN/GaN LEDs declines obviously and the optical power is significantly improved. In comparison with non-polar structure LEDs, although the concentration of holes and electrons as well as the radiative recombination rate of the semi-polar structure are better in the last two quantum wells(QWs) approaching the p-Ga N side, the uniformity of distribution of carriers and radiative recombination rate for the nonpolar structure is better. So the theoretical analysis indicates that the removal of the internal polarization field in the MQWs active regions for non-polar structure LEDs contributes to the uniform distribution of electrons and holes, and decreases the electron leakage. Thus it enhances the radiative recombination rate, and further improves the IQEs and optical powers, and shows the best photoelectric properties among these three structures.展开更多
This paper demonstrates that threshold voltages of GaN MISFET are controlla-ble by varying the Mg ion doses for Mg ion implantation. Furthermore, it de-monstrates for the first time that the short channel effect can b...This paper demonstrates that threshold voltages of GaN MISFET are controlla-ble by varying the Mg ion doses for Mg ion implantation. Furthermore, it de-monstrates for the first time that the short channel effect can be suppressed using a halo structure that has a p-layer in channel regions adjacent to source/ drain regions using tilt ion implantation. A device with a Mg dose of 8 × 1013/cm2 achieved maximum drain current of 240 mA/mm and a transconductance of 40 mS/mm. These results indicate a definite potential for the use of our new process in GaN MISFETs for applications in power switching devices.展开更多
The blue band (BB) in low temperature photoluminescence of Mg-doped GaN films with different Mg concentrations is investigated.The BB peak of as-grown samples with higher Mg concentration centres at lower energy.A shi...The blue band (BB) in low temperature photoluminescence of Mg-doped GaN films with different Mg concentrations is investigated.The BB peak of as-grown samples with higher Mg concentration centres at lower energy.A shift of the BB peak energy is observed after annealing in N2 at different temperatures,meanwhile,the difference between the BB peak energy is observed after annealing in N2 at different temperatures.Meanwhile,the difference between the BB peak energies diminishes for raised annealing temperature,and the BB peaks for different samples converge to 2.92eV after annealing at 850℃.These experimental results can be accounted for by a model based on compensation effect.The shift of BB lines provides a useful criterion for the optimum annealing temperature of the Mg-doped GaN material,and the value is taken to be 850℃ in our case.展开更多
Effects of the growth temperature on morphological and microstructural evolution of a-plane GaN films grown on r-plane sapphires by metal organic chemical vapor deposition are investigated by atomic force microscopy a...Effects of the growth temperature on morphological and microstructural evolution of a-plane GaN films grown on r-plane sapphires by metal organic chemical vapor deposition are investigated by atomic force microscopy and secondary ion mass spectroscopy (SIMS). Surface morphology, structural quality and related impurity incorpora- tion are very sensitive to the growth temperature. A significant difference of yellow luminescence is observed and attributed to the incorporation of carbon into GaN films, which is confirmed by SIMS analysis. Our results show that the sample with triangular-pit morphology has sample with pentagon-like pit morphology, which is significantly higher concentrations of oxygen than the other induced by the existence of an N-face in triangular pits.展开更多
文摘High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60676032, 60577030 and 60476028)the National Basic Research Program of China (Grant No. 2007CB307004)the National Science Foundation for Post-doctoral Scientists of China (Grant No. 20060400018)
文摘Non-polar a-plane (1120) GaN films have been grown on r-plane (1102) sapphire substrates by metal organic chemical vapour deposition. The influences of V/III ratio on the species diffusion anisotropy of a-plane GaN films were investigated by scanning electron microscopy, cathodoluminescence and high-resolution x-ray diffraction measurements. The anisotropy of a-plane GaN films may result from the different migration length of adatoms along two in-plane directions. V/III ratio has an effect on the growth rates of different facets and crystal quality. The stripe feature morphology was obviously observed in the film with a high V/III ratio because of the slow growth rate along the [1100] direction. When the V/III ratio increased from 1000 to 6000, the in-plane crystal quality anisotropy was decreased due to the weakened predominance in migration length of gallium adatoms.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172079)the Science and Technology Program of Guangdong Province,China(Grant Nos.2010B090400456 and 2010A081002002)+1 种基金the Science and Technology Program of Guangzhou,China(Grant No.2011J4300018)the Program for Changjiang Scholars and Innovative Research Team in Universities of China(Grant No.IRT13064)
文摘A theoretical study of polar and semi/non-polar InGaN/GaN light-emitting diodes(LEDs) with different internal surface polarization charges, which can be grown on Si substrates, is conducted by using APSYS software. In comparison with polar structure LEDs, the semi-polar structure exhibits a higher concentration of electrons and holes and radiative recombination rate, and its reduced built-in polarization field weakens the extent of band bending which causes the shift of peak emission wavelength. So the efficiency droop of semi-polar InGaN/GaN LEDs declines obviously and the optical power is significantly improved. In comparison with non-polar structure LEDs, although the concentration of holes and electrons as well as the radiative recombination rate of the semi-polar structure are better in the last two quantum wells(QWs) approaching the p-Ga N side, the uniformity of distribution of carriers and radiative recombination rate for the nonpolar structure is better. So the theoretical analysis indicates that the removal of the internal polarization field in the MQWs active regions for non-polar structure LEDs contributes to the uniform distribution of electrons and holes, and decreases the electron leakage. Thus it enhances the radiative recombination rate, and further improves the IQEs and optical powers, and shows the best photoelectric properties among these three structures.
文摘This paper demonstrates that threshold voltages of GaN MISFET are controlla-ble by varying the Mg ion doses for Mg ion implantation. Furthermore, it de-monstrates for the first time that the short channel effect can be suppressed using a halo structure that has a p-layer in channel regions adjacent to source/ drain regions using tilt ion implantation. A device with a Mg dose of 8 × 1013/cm2 achieved maximum drain current of 240 mA/mm and a transconductance of 40 mS/mm. These results indicate a definite potential for the use of our new process in GaN MISFETs for applications in power switching devices.
文摘The blue band (BB) in low temperature photoluminescence of Mg-doped GaN films with different Mg concentrations is investigated.The BB peak of as-grown samples with higher Mg concentration centres at lower energy.A shift of the BB peak energy is observed after annealing in N2 at different temperatures,meanwhile,the difference between the BB peak energy is observed after annealing in N2 at different temperatures.Meanwhile,the difference between the BB peak energies diminishes for raised annealing temperature,and the BB peaks for different samples converge to 2.92eV after annealing at 850℃.These experimental results can be accounted for by a model based on compensation effect.The shift of BB lines provides a useful criterion for the optimum annealing temperature of the Mg-doped GaN material,and the value is taken to be 850℃ in our case.
基金Supported by the National Natural Science Foundation of China under Grant No 61204006the Fundamental Research Funds for the Central Universities under Grant No K50511250002
文摘Effects of the growth temperature on morphological and microstructural evolution of a-plane GaN films grown on r-plane sapphires by metal organic chemical vapor deposition are investigated by atomic force microscopy and secondary ion mass spectroscopy (SIMS). Surface morphology, structural quality and related impurity incorpora- tion are very sensitive to the growth temperature. A significant difference of yellow luminescence is observed and attributed to the incorporation of carbon into GaN films, which is confirmed by SIMS analysis. Our results show that the sample with triangular-pit morphology has sample with pentagon-like pit morphology, which is significantly higher concentrations of oxygen than the other induced by the existence of an N-face in triangular pits.