In this paper, we consider the eigenvalue problem of a class of fourth-order operator matrices appearing in mechan- ics, including the geometric multiplicity, algebraic index, and algebraic multiplicity of the eigenva...In this paper, we consider the eigenvalue problem of a class of fourth-order operator matrices appearing in mechan- ics, including the geometric multiplicity, algebraic index, and algebraic multiplicity of the eigenvalue, the symplectic orthogonality, and completeness of eigen and root vector systems. The obtained results are applied to the plate bending problem.展开更多
We present a sufficient and necessary condition for a so-called Cnk pattern to have positive semidefnite (PSD) completion. Since the graph of the Cnk pattern is composed by some simple cycles, our results extend those...We present a sufficient and necessary condition for a so-called Cnk pattern to have positive semidefnite (PSD) completion. Since the graph of the Cnk pattern is composed by some simple cycles, our results extend those given in [1] for a simple cycle.We also derive some results for a partial Toeplitz PSD matrix specifying the Cnk pattern to have PSD completion and Toeplitz PSD completion.展开更多
In this paper, a new completely integrable system related to the complex spectral problem -φ xx+(i/4)wpx+(i/4)(wp)x+(1/4)vφ=iλφxand the constrained flows of the Boussinesq equations axe generated. Accor...In this paper, a new completely integrable system related to the complex spectral problem -φ xx+(i/4)wpx+(i/4)(wp)x+(1/4)vφ=iλφxand the constrained flows of the Boussinesq equations axe generated. According to the viewpoint of Hamiltonian mechanics, the Euler-Lagrange equations and the Legendre transformations, a reasonable Jacobi-Ostrogradsky coordinate system is obtained. Moreover, by means of the constrained conditions between the potentiaJ u, v and the eigenfunction φ, the involutive representations of the solutions for the Boussinesq equation hieraxchy axe given.展开更多
This paper presents an electrical impedance tomography(EIT)method using a partial-differential-equationconstrained optimization approach.The forward problem in the inversion framework is described by a complete electr...This paper presents an electrical impedance tomography(EIT)method using a partial-differential-equationconstrained optimization approach.The forward problem in the inversion framework is described by a complete electrodemodel(CEM),which seeks the electric potential within the domain and at surface electrodes considering the contact impedance between them.The finite element solution of the electric potential has been validated using a commercial code.The inverse medium problem for reconstructing the unknown electrical conductivity profile is formulated as an optimization problem constrained by the CEM.The method seeks the optimal solution of the domain’s electrical conductivity to minimize a Lagrangian functional consisting of a least-squares objective functional and a regularization term.Enforcing the stationarity of the Lagrangian leads to state,adjoint,and control problems,which constitute the Karush-Kuhn-Tucker(KKT)first-order optimality conditions.Subsequently,the electrical conductivity profile of the domain is iteratively updated by solving the KKT conditions in the reduced space of the control variable.Numerical results show that the relative error of the measured and calculated electric potentials after the inversion is less than 1%,demonstrating the successful reconstruction of heterogeneous electrical conductivity profiles using the proposed EIT method.This method thus represents an application framework for nondestructive evaluation of structures and geotechnical site characterization.展开更多
In this paper, the totally non-positive matrix is introduced. The totally non-positive completion asks which partial totally non-positive matrices have a completion to a totally non-positive matrix. This problem has. ...In this paper, the totally non-positive matrix is introduced. The totally non-positive completion asks which partial totally non-positive matrices have a completion to a totally non-positive matrix. This problem has. in general, a negative answer. Therefore, our question is for what kind of labeled graphs G each partial totally non-positive matrix whose associated graph is G has a totally non-positive completion? If G is not a monotonically labeled graph or monotonically labeled cycle, we give necessary and sufficient conditions that guarantee the existence of the desired completion.展开更多
If A: D(A) X→X is a densely defined and closed linear operator, which generates a linear semigroup S (t) in Banach space X. The nonlocal control/ability for the following nonlocal semilinear problems: u' (t...If A: D(A) X→X is a densely defined and closed linear operator, which generates a linear semigroup S (t) in Banach space X. The nonlocal control/ability for the following nonlocal semilinear problems: u' (t) = Au (t) + Bx( t) + f( t, u(t) ), 0≤t ≤ T with nonlocal initial condition u(0) = u0 + g(u) is discussed in Banach space X. The results show that if semigroup S(t) is strongly continuous, the functionsf and g are compact and the control B is bounded, then it is nonlocally controllable. The nonlocal controllability for the above nonlocal problem is also studied when B and W are unbounded and the semigroup S(t) is compact or strongly continuous. For illustration, a partial differential equation is worked out.展开更多
As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optim...As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.展开更多
An important aspect of the Orr Sommerfeld problem, which governs the linear stability of parallel shear flows, is concerned with the study of the temporal and spatial spectra for large but finite values of the Reynold...An important aspect of the Orr Sommerfeld problem, which governs the linear stability of parallel shear flows, is concerned with the study of the temporal and spatial spectra for large but finite values of the Reynolds number R . By using only outer (WKB) approximations which are valid in the "complete" sense, we are able to derive approximations to the eigenvalue relation for channel flows, pipe flow, and boundary layer flows which are all remarkably simple and which have a relative error of order ( αR) -1/2 . In this paper, we discuss briefly the basic ideas involved in the derivation of these approximations for boundary layer flows. We then present some results to illustrate the effectiveness of these new approximations. For example, we are even able to compute eigenvalues which lie arbitrarily close to the continuous spectra where all previous numerical treatments have failed.展开更多
In the theory of computational complexity, the travelling salesman problem is a typical one in the NP class. With the aid of a brand-new approach named “maximum-deleting method”, a fast algorithm is constructed for ...In the theory of computational complexity, the travelling salesman problem is a typical one in the NP class. With the aid of a brand-new approach named “maximum-deleting method”, a fast algorithm is constructed for it with a polynomial time of biquadrate, which greatly reduces the computational complexity. Since this problem is also NP-complete, as a corollary, P = NP is proved to be true. It indicates the crack of the well-known open problem named “P versus NP”.展开更多
By using partial order method. some existing theorems of solutions for two-point bouniary value problem of second order ordinary differenlial equations in Banach spaces are given.
In this paper, the sticker based DNA computing was used for solving the independent set problem. At first, solution space was constructed by using appropriate DNA memory complexes. We defined a new operation called “...In this paper, the sticker based DNA computing was used for solving the independent set problem. At first, solution space was constructed by using appropriate DNA memory complexes. We defined a new operation called “divide” and applied it in construction of solution space. Then, by application of a sticker based parallel algorithm using biological operations, independent set problem was resolved in polynomial time.展开更多
The surface-based DNA computing is one of the methods of DNA computing which uses DNA strands immobilized on a solid surface. In this paper, we applied surface-based DNA computing for solving the dominating set proble...The surface-based DNA computing is one of the methods of DNA computing which uses DNA strands immobilized on a solid surface. In this paper, we applied surface-based DNA computing for solving the dominating set problem. At first step, surface-based DNA solution space was constructed by using appropriate DNA strands. Then, by application of a DNA parallel algorithm, dominating set problem was resolved in polynomial time.展开更多
This works aims to give an answer to the problem P = NP? The result is positive with the criteria that solve the Traveling Salesman Problem in polynomial cost of the input size and a proof is given. This problem gets ...This works aims to give an answer to the problem P = NP? The result is positive with the criteria that solve the Traveling Salesman Problem in polynomial cost of the input size and a proof is given. This problem gets a solution because a polyhedron, with a cut flower looking, is introduced instead of graph (e.g. tree).展开更多
A new parallel algorithm is proposed for the knapsack problem where the method of divide and conquer is adopted. Based on an EREW-SIMD machine with shared memory, the proposed algorithm utilizes O(2 n/4 ) 1-ε ...A new parallel algorithm is proposed for the knapsack problem where the method of divide and conquer is adopted. Based on an EREW-SIMD machine with shared memory, the proposed algorithm utilizes O(2 n/4 ) 1-ε processors, 0≤ ε ≤1, and O(2 n/2 ) memory to find a solution for the n -element knapsack problem in time O(2 n/4 (2 n/4 ) ε) . The cost of the proposed parallel algorithm is O(2 n/2 ) , which is an optimal method for solving the knapsack problem without memory conflicts and an improved result over the past researches.展开更多
In the current paper, I present probably the simplest possible abstract formal proof that P ≠ NP, and NP = EXPTIME, in the context of the standard mathematical set theory of computational complexity and deterministic...In the current paper, I present probably the simplest possible abstract formal proof that P ≠ NP, and NP = EXPTIME, in the context of the standard mathematical set theory of computational complexity and deterministic Turing machines. My previous publications about the solution of the P vs. NP with the same result NP = EXPTIME, to be fully correct and understandable need the Lemma 4.1 and its proof of the current paper. The arguments of the current paper in order to prove NP = EXPTME are even simpler than in my previous publications. The strategy to solve the P vs. NP problem in the current paper (and in my previous publications) is by starting with an EXPTIME-complete language (problem) and proving that it has a re-formulation as an NP-class language, thus NP = EXPTIME. The main reason that the scientific community has missed so far such a simple proof, is because of two factors 1) It has been tried extensively but in vain to simplify the solutions of NP-complete problems from exponential time algorithms to polynomial time algorithms (which would be a good strategy only if P = NP) 2) It is believed that the complexity class NP is strictly a subclass to the complexity class EXPTIME (in spite the fact that any known solution to any of the NP-complete problems is not less than exponential). The simplicity of the current solution would have been missed if 2) was to be believed true. So far the majority of the relevant scientific community has considered this famous problem not yet solved. The present results definitely solve the 3rd Clay Millennium Problem about P versus NP in a simple, abstract and transparent way that the general scientific community, but also the experts of the area, can follow, understand and therefore become able to accept.展开更多
In this paper a kind of problems,which are a little wider than the axisymmetric problems of a transversely isotropic elastic body,are considered in a rectangular coordinates system.Two new general solutions of the axi...In this paper a kind of problems,which are a little wider than the axisymmetric problems of a transversely isotropic elastic body,are considered in a rectangular coordinates system.Two new general solutions of the axisymmetric problems of a transversely isotropic body are concisely obtained in a cylindrical coordinates system.Their completeness is also proved.It is worth while pointing out thai whether the meridional half-section is simply connected or multiply connected,both the new general solutions are single-valued.Using these results eight special general solutions are derived,including some known famous solutions.展开更多
The modern information society is enabled by photonic fiber networks characterized by huge coverage and great complexity and ranging in size from transcontinental submarine telecommunication cables to fiber to the hom...The modern information society is enabled by photonic fiber networks characterized by huge coverage and great complexity and ranging in size from transcontinental submarine telecommunication cables to fiber to the home and local segments.This world-wide network has yet to match the complexity of the human brain,which contains a hundred billion neurons,each with thousands of synaptic connections on average.However,it already exceeds the complexity of brains from primitive organisms,i.e.,the honey bee,which has a brain containing approximately one million neurons.In this study,we present a discussion of the computing potential of optical networks as information carriers.Using a simple fiber network,we provide a proof-of-principle demonstration that this network can be treated as an optical oracle for the Hamiltonian path problem,the famous mathematical complexity problem of finding whether a set of towns can be travelled via a path in which each town is visited only once.Pronouncement of a Hamiltonian path is achieved by monitoring the delay of an optical pulse that interrogates the network,and this delay will be equal to the sum of the travel times needed to visit all of the nodes(towns).We argue that the optical oracle could solve this NP-complete problem hundreds of times faster than brute-force computing.Additionally,we discuss secure communication applications for the optical oracle and propose possible implementation in silicon photonics and plasmonic networks.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11061019 and 10962004)the Chunhui Program of Ministry of Education of China (Grant No. Z2009-1-01010)+1 种基金the Natural Science Foundation of Inner Mongolia, China(Grant Nos. 2010MS0110 and 2009BS0101)the Cultivation of Innovative Talent of ‘211 Project’ of Inner Mongolia University
文摘In this paper, we consider the eigenvalue problem of a class of fourth-order operator matrices appearing in mechan- ics, including the geometric multiplicity, algebraic index, and algebraic multiplicity of the eigenvalue, the symplectic orthogonality, and completeness of eigen and root vector systems. The obtained results are applied to the plate bending problem.
基金Research supported in part by National Natural Science Foundation of China No. 10271099. Research supported in part by RGC Grant Nos. 7132/OOP and 7130/02PHKU CRCG Grant Nos 10203501, and 10204437.
文摘We present a sufficient and necessary condition for a so-called Cnk pattern to have positive semidefnite (PSD) completion. Since the graph of the Cnk pattern is composed by some simple cycles, our results extend those given in [1] for a simple cycle.We also derive some results for a partial Toeplitz PSD matrix specifying the Cnk pattern to have PSD completion and Toeplitz PSD completion.
文摘In this paper, a new completely integrable system related to the complex spectral problem -φ xx+(i/4)wpx+(i/4)(wp)x+(1/4)vφ=iλφxand the constrained flows of the Boussinesq equations axe generated. According to the viewpoint of Hamiltonian mechanics, the Euler-Lagrange equations and the Legendre transformations, a reasonable Jacobi-Ostrogradsky coordinate system is obtained. Moreover, by means of the constrained conditions between the potentiaJ u, v and the eigenfunction φ, the involutive representations of the solutions for the Boussinesq equation hieraxchy axe given.
基金funded by the National Research Foundation of Korea,the Grant from a Basic Science and Engineering Research Project(NRF-2017R1C1B200497515)and the Grant from Basic Laboratory Support Project(NRF-2020R1A4A101882611).
文摘This paper presents an electrical impedance tomography(EIT)method using a partial-differential-equationconstrained optimization approach.The forward problem in the inversion framework is described by a complete electrodemodel(CEM),which seeks the electric potential within the domain and at surface electrodes considering the contact impedance between them.The finite element solution of the electric potential has been validated using a commercial code.The inverse medium problem for reconstructing the unknown electrical conductivity profile is formulated as an optimization problem constrained by the CEM.The method seeks the optimal solution of the domain’s electrical conductivity to minimize a Lagrangian functional consisting of a least-squares objective functional and a regularization term.Enforcing the stationarity of the Lagrangian leads to state,adjoint,and control problems,which constitute the Karush-Kuhn-Tucker(KKT)first-order optimality conditions.Subsequently,the electrical conductivity profile of the domain is iteratively updated by solving the KKT conditions in the reduced space of the control variable.Numerical results show that the relative error of the measured and calculated electric potentials after the inversion is less than 1%,demonstrating the successful reconstruction of heterogeneous electrical conductivity profiles using the proposed EIT method.This method thus represents an application framework for nondestructive evaluation of structures and geotechnical site characterization.
基金The work was supported by the National Science Foundation of China (10571146).
文摘In this paper, the totally non-positive matrix is introduced. The totally non-positive completion asks which partial totally non-positive matrices have a completion to a totally non-positive matrix. This problem has. in general, a negative answer. Therefore, our question is for what kind of labeled graphs G each partial totally non-positive matrix whose associated graph is G has a totally non-positive completion? If G is not a monotonically labeled graph or monotonically labeled cycle, we give necessary and sufficient conditions that guarantee the existence of the desired completion.
基金the National Natural Science Foundation of China(No.10674024)
文摘If A: D(A) X→X is a densely defined and closed linear operator, which generates a linear semigroup S (t) in Banach space X. The nonlocal control/ability for the following nonlocal semilinear problems: u' (t) = Au (t) + Bx( t) + f( t, u(t) ), 0≤t ≤ T with nonlocal initial condition u(0) = u0 + g(u) is discussed in Banach space X. The results show that if semigroup S(t) is strongly continuous, the functionsf and g are compact and the control B is bounded, then it is nonlocally controllable. The nonlocal controllability for the above nonlocal problem is also studied when B and W are unbounded and the semigroup S(t) is compact or strongly continuous. For illustration, a partial differential equation is worked out.
基金supported by the National Natural Science Foundation of China(61771293)the Key Project of Shangdong Province(2019JZZY010111)。
文摘As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.
文摘An important aspect of the Orr Sommerfeld problem, which governs the linear stability of parallel shear flows, is concerned with the study of the temporal and spatial spectra for large but finite values of the Reynolds number R . By using only outer (WKB) approximations which are valid in the "complete" sense, we are able to derive approximations to the eigenvalue relation for channel flows, pipe flow, and boundary layer flows which are all remarkably simple and which have a relative error of order ( αR) -1/2 . In this paper, we discuss briefly the basic ideas involved in the derivation of these approximations for boundary layer flows. We then present some results to illustrate the effectiveness of these new approximations. For example, we are even able to compute eigenvalues which lie arbitrarily close to the continuous spectra where all previous numerical treatments have failed.
文摘In the theory of computational complexity, the travelling salesman problem is a typical one in the NP class. With the aid of a brand-new approach named “maximum-deleting method”, a fast algorithm is constructed for it with a polynomial time of biquadrate, which greatly reduces the computational complexity. Since this problem is also NP-complete, as a corollary, P = NP is proved to be true. It indicates the crack of the well-known open problem named “P versus NP”.
文摘By using partial order method. some existing theorems of solutions for two-point bouniary value problem of second order ordinary differenlial equations in Banach spaces are given.
文摘In this paper, the sticker based DNA computing was used for solving the independent set problem. At first, solution space was constructed by using appropriate DNA memory complexes. We defined a new operation called “divide” and applied it in construction of solution space. Then, by application of a sticker based parallel algorithm using biological operations, independent set problem was resolved in polynomial time.
文摘The surface-based DNA computing is one of the methods of DNA computing which uses DNA strands immobilized on a solid surface. In this paper, we applied surface-based DNA computing for solving the dominating set problem. At first step, surface-based DNA solution space was constructed by using appropriate DNA strands. Then, by application of a DNA parallel algorithm, dominating set problem was resolved in polynomial time.
文摘This works aims to give an answer to the problem P = NP? The result is positive with the criteria that solve the Traveling Salesman Problem in polynomial cost of the input size and a proof is given. This problem gets a solution because a polyhedron, with a cut flower looking, is introduced instead of graph (e.g. tree).
文摘A new parallel algorithm is proposed for the knapsack problem where the method of divide and conquer is adopted. Based on an EREW-SIMD machine with shared memory, the proposed algorithm utilizes O(2 n/4 ) 1-ε processors, 0≤ ε ≤1, and O(2 n/2 ) memory to find a solution for the n -element knapsack problem in time O(2 n/4 (2 n/4 ) ε) . The cost of the proposed parallel algorithm is O(2 n/2 ) , which is an optimal method for solving the knapsack problem without memory conflicts and an improved result over the past researches.
文摘In the current paper, I present probably the simplest possible abstract formal proof that P ≠ NP, and NP = EXPTIME, in the context of the standard mathematical set theory of computational complexity and deterministic Turing machines. My previous publications about the solution of the P vs. NP with the same result NP = EXPTIME, to be fully correct and understandable need the Lemma 4.1 and its proof of the current paper. The arguments of the current paper in order to prove NP = EXPTME are even simpler than in my previous publications. The strategy to solve the P vs. NP problem in the current paper (and in my previous publications) is by starting with an EXPTIME-complete language (problem) and proving that it has a re-formulation as an NP-class language, thus NP = EXPTIME. The main reason that the scientific community has missed so far such a simple proof, is because of two factors 1) It has been tried extensively but in vain to simplify the solutions of NP-complete problems from exponential time algorithms to polynomial time algorithms (which would be a good strategy only if P = NP) 2) It is believed that the complexity class NP is strictly a subclass to the complexity class EXPTIME (in spite the fact that any known solution to any of the NP-complete problems is not less than exponential). The simplicity of the current solution would have been missed if 2) was to be believed true. So far the majority of the relevant scientific community has considered this famous problem not yet solved. The present results definitely solve the 3rd Clay Millennium Problem about P versus NP in a simple, abstract and transparent way that the general scientific community, but also the experts of the area, can follow, understand and therefore become able to accept.
基金Project supported by the National Natural Science Foundation of China
文摘In this paper a kind of problems,which are a little wider than the axisymmetric problems of a transversely isotropic elastic body,are considered in a rectangular coordinates system.Two new general solutions of the axisymmetric problems of a transversely isotropic body are concisely obtained in a cylindrical coordinates system.Their completeness is also proved.It is worth while pointing out thai whether the meridional half-section is simply connected or multiply connected,both the new general solutions are single-valued.Using these results eight special general solutions are derived,including some known famous solutions.
基金This work was supported by the Singapore Ministry of Education Academic Research Fund Tier 3(Grant No.MOE2011-T3-1-005)the Singapore Agency for Science,Technology and Research(A*STAR,SERC Project No.1223600007)EPSRC(UK)via the Programme on Nanostructured Photonic Metamaterials.
文摘The modern information society is enabled by photonic fiber networks characterized by huge coverage and great complexity and ranging in size from transcontinental submarine telecommunication cables to fiber to the home and local segments.This world-wide network has yet to match the complexity of the human brain,which contains a hundred billion neurons,each with thousands of synaptic connections on average.However,it already exceeds the complexity of brains from primitive organisms,i.e.,the honey bee,which has a brain containing approximately one million neurons.In this study,we present a discussion of the computing potential of optical networks as information carriers.Using a simple fiber network,we provide a proof-of-principle demonstration that this network can be treated as an optical oracle for the Hamiltonian path problem,the famous mathematical complexity problem of finding whether a set of towns can be travelled via a path in which each town is visited only once.Pronouncement of a Hamiltonian path is achieved by monitoring the delay of an optical pulse that interrogates the network,and this delay will be equal to the sum of the travel times needed to visit all of the nodes(towns).We argue that the optical oracle could solve this NP-complete problem hundreds of times faster than brute-force computing.Additionally,we discuss secure communication applications for the optical oracle and propose possible implementation in silicon photonics and plasmonic networks.